数学物理学报, 2020, 40(4): 904-917 doi:

论文

带inflow边界条件的Landau方程解的性态研究

刘莉萍,1, 杨航,1, 马璇,2

The Landau Equation with Inflow Boundary Condition in a Finite Channel

Liu Liping,1, Yang Hang,1, Ma Xuan,2

通讯作者: 马璇,E-mail:xma@wtu.edu.cn

收稿日期: 2019-10-15  

基金资助: 国家自然科学基金.  11601092
国家自然科学基金.  11971201

Received: 2019-10-15  

Fund supported: the NSFC.  11601092
the NSFC.  11971201

作者简介 About authors

刘莉萍,E-mail:llp@stu2018.jnu.edu.cn , E-mail:llp@stu2018.jnu.edu.cn

杨航,E-mail:yhang918@stu2018.jnu.edu.cn , E-mail:yhang918@stu2018.jnu.edu.cn

摘要

该文研究有限管道上Landau方程的inflow边值问题.在该文中引入了一个新的函数空间,它的主要特征是在空间变量法向方向具有较低的正则性.该文的主要目的是用能量估计的方法,证明Landau方程在一个新的具有一定正则性的函数空间中存在全局唯一解,此外还得到了解的大时间性态以及解沿切向方向的正则性传播.

关键词: Landau方程 ; 能量估计 ; inflow边界 ; 低正则性

Abstract

This paper is concerned with the inflow boundary value problem of the Landau equation in a finite channel. Based on an elementary energy method, a global strong solution is established for the corresponding problem in a new function space which has mild regularity in normal direction. Moreover, the large time behaviors and the regularity propagation of the solution are also obtained.

Keywords: Landau equation ; Energy estimation ; Inflow boundary ; Mild regularity

PDF (380KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

刘莉萍, 杨航, 马璇. 带inflow边界条件的Landau方程解的性态研究. 数学物理学报[J], 2020, 40(4): 904-917 doi:

Liu Liping, Yang Hang, Ma Xuan. The Landau Equation with Inflow Boundary Condition in a Finite Channel. Acta Mathematica Scientia[J], 2020, 40(4): 904-917 doi:

1 引言与主要结论

本文研究了下列Landau方程的初边值问题

$ \begin{eqnarray} \partial_t F+v\cdot \nabla_x F = Q(F, F), \end{eqnarray} $

给定初值条件

$ \begin{equation} F(0, x, v) = F_0(x, v) \end{equation} $

及inflow边界条件

$ \begin{equation} F(t, -1, \bar{x}, v)|_{v_1>0} = G_-(t, \bar{x}, v), \ \ F(t, 1, \bar{x}, v)|_{v_1<0} = G_+(t, \bar{x}, v), \end{equation} $

其中$ F = F(t, x, v)\geq 0 $为粒子密度分布函数,并且有空间变量$ x = (x_1, x_2, x_3)\in \Omega\subset {\Bbb R}^3 $和速度变量$ v = (v_1, \bar{v}) = (v _1, v_2, v_3)\in {\Bbb R}^{3} $,以及时间$ t\geq0 $,有界域$ \Omega = I\times {\Bbb T}^{2} $, $ x_{1}\in I = (-1, 1) $$ \bar{x} = (x_2, x_3)\in {\Bbb T}^{2} $, $ {\Bbb T}^{2} $为周期域. Landau碰撞算子$ Q(\cdot, \cdot) $

Landau碰撞核$ \psi $是非负对称矩阵值函数,当$ 0\neq z = (z_1, z_2, z_3)\in {\Bbb R}^{3} $时,

其中$ \delta_{jm} $是Kronecker符号, $ \gamma $是由粒子间相互作用势决定的参数[1].当$ 0< \gamma\leq 1 $时称为硬位势;当$ \gamma = 0 $时称为Maxwell分子;当$ -2\leq \gamma<0 $时称为中等软位势;当$ -3 \le \gamma < -2 $时称为软位势;当$ \gamma = -3 $时对应于经典库伦势.考虑以下全局Maxwell平衡态

考虑方程(1.1)下述形式的解

因此,关于扰动$ f = f(t, x, v) $满足的方程为

$ \begin{equation} \partial_tf+v\cdot \nabla_xf+Lf = \Gamma(f, f), \end{equation} $

初始值满足

$ \begin{equation} f(0, x, v) = f_0(x, v) = \mu^{-\frac{1}{2}}[F_0(x, v)-\mu], \end{equation} $

相应的,关于扰动$ f = f(t, x, v) $满足的inflow边界条件为

$ \begin{equation} f(t, -1, \bar{x}, v)|_{v_1>0} = g_-(t, \bar{x}, v), \ \ f(t, 1, \bar{x}, v)|_{v_1<0} = g_+(t, \bar{x}, v). \end{equation} $

方程(1.4)中有$ Lf = -\mu^{-\frac{1}{2}}\left\{Q(\mu, \mu^{\frac{1}{2}}f)+Q(\mu^{\frac{1}{2}}f, \mu)\right\} $$ \Gamma(f, f) = \mu^{-\frac{1}{2}}Q(\mu^{\frac{1}{2}}f, \mu^{\frac{1}{2}}f) $.定义$ {\mathcal{N}}(L) = \left\{f|Lf = 0\right\} $,对于任意的$ f\in {\mathcal{N}}(L) $,当且仅当

$ \begin{equation} f = {\bf P}_{0}f = \left\{a+b\cdot v+\frac{1}{2}(|v|^2-3)c\right\}{\mu}^{\frac{1}{2}}, \end{equation} $

其中$ [a, b, c] $是一个向量. $ {\mathcal{N}}^\perp(L) $表示$ {\mathcal{N}}(L) $的正交补空间.

在稀薄气体中粒子的运动可用Landau方程来描述, Guo[2]对Landau方程在周期域上的Cauchy问题,给出了在Maxwell附近构造全局经典解$ f(t, x, v)\in L^{\infty}(0, \infty;H_{x, v}^{8}) $的第一个结果.最近Carrapatoso等[3]将Guo[2]的工作推广到更大的函数空间中.另外Caflisch[4], Strain等[5-7],以及Sohinger等[8]对于Landau方程在软位势条件下解的大时间行为进行了研究.

目前Landau方程在$ L^{\infty}_{x, v} $上关于解的全局存在性的理论不多,主要的原因是因为Landau碰撞算子具有微观耗散结构,因此用特征方法来求解在变量$ x $上的$ L^{\infty} $的界非常困难.我们注意到Kim等[9]发展了从$ L^2 $$ L^{\infty} $的求解周期区域的Landau方程,其中初始值要求在$ L^{\infty}_{x, v} $上足够的小,并且属于$ H^{1}_{x, v} $空间.最近Guo等[10]将此方法应用到镜面反射边界条件的Landau方程研究中. Duan等[11]发展了一类新的函数空间来处理有限管道的Landau方程和非截断的Boltzman方程的inflow边界和镜面反射边界问题.受Duan等[11]的启发,本文中我们引入了一个新的函数空间,它的主要特征是在空间变量法向方向具有较低的正则性,我们用能量估计的方法,证明Landau方程在这样一个新的具有一定正则性的函数空间中存在全局唯一解,并且该文还研究了解的大时间性态和正则性传播的问题.

在本文中$ C $ (一般大)和$ \lambda $ (一般小)表示与主要参数无关的正的常数,并且$ C $$ \lambda $在不同的地方可以取不同的值. $ D\lesssim E $表示存在常数$ C>0 $使得$ D\leq CE $.

定义指标$ \alpha = ( \alpha_{1}, \bar{ \alpha}) $,其中$ \bar{ \alpha} = ( \alpha_{2}, \alpha_{3}) $,且$ \partial^{ \alpha} = \partial^{ \alpha_{1}}_{x_1} \partial^{\bar{ \alpha}}_{\bar{x}} = \partial^{ \alpha_{1}}_{x_1} \partial^{ \alpha_{2}}_{x_2} \partial^{ \alpha_{3}}_{x_3} $.

定义指标集$ {\Lambda} = \left\{ \alpha\big| \alpha_{1}\leq 1, |\bar{ \alpha}|\leq 2\right\} $.对于任意正整数$ m $,定义另一指标集$ {\Lambda}_{m} = \left\{ \alpha\big| \alpha_{1}\leq 1, |\bar{ \alpha}|\leq m\right\} $.

在本文中,若无特殊说明,通常符号$ (\cdot, \cdot) $表示在$ L^{2}_{x, v} $$ L^{2}_{x} $上的内积, $ \langle\cdot, \cdot\rangle $表示在$ L^{2}_{\bar{x}, v} $上的内积, $ \|\cdot\| $表示在$ L^{2}_{x, v} $$ L^{2}_{x} $上的范数.

对于任意$ 0<T\leq\infty $,定义函数空间

定义速度权函数

并且参数$ (q, \theta) $满足

定义参数

$ \begin{equation} \kappa = \left\{ \begin{array}{ll} 1, &\mbox{当$q = 0$, $-2\leq \gamma\leq 1$};\\ { } \frac{ \theta}{ \theta+| \gamma+2|}, &\mbox{当$q>0$, $-3\leq \gamma<-2$}. \end{array}\right. \end{equation} $

定义速度加权$ D $ -范数

定义加权总能量泛函和能量耗散泛函分别为

并且当$ q = 0 $时,简记为$ {\cal E}_{T} $$ {\cal D}_{T} $.定义了以下泛函来控制给定函数$ g_{\pm} $的边界效应.

本文的主要结论如下.

定理1.1 设$ \Omega = I\times {\Bbb T}^2 $, $ \alpha\in {\Lambda} $, $ (q, \theta) $满足(H),对于$ \epsilon_0>0 $$ C>0 $,如果$ F_0(x_1, \bar{x}, v) = \mu+\mu^{\frac{1}{2}}f_0(x_1, \bar{x}, v)\geq0 $, $ F(t, \pm1, \bar{x}, v) = \mu+\mu^{\frac{1}{2}}g_\pm(t, \bar{x}, v)\geq0 $,并且有$ \sum\limits_{ \alpha\in {\Lambda}}\|w_{q, \theta} \partial^{ \alpha}f_{0}\|_{L^{2}_{x, v}}+\sum\limits_{ \alpha\in {\Lambda}}E(w_{q, \theta} \partial^{ \alpha}g_\pm)\leq \epsilon_0 $成立,对任意$ T>0 $,方程(1.1), (1.2)和(1.3)存在一个整体解$ F(t, x_1, \bar{x}, v) = \mu+\mu^{\frac{1}{2}}f(t, x_1, \bar{x}, v)\geq0 $

$ \begin{equation} {\cal E}_{T, w}(f)+{\cal D}_{T, w}(f)\leq C \left\{\sum\limits_{ \alpha\in {\Lambda}}\|w_{q, \theta} \partial^{ \alpha}f_0\|_{L^2_{x, v}} +\sum\limits_{ \alpha\in {\Lambda}}E(w_{q, \theta} \partial^{ \alpha}g_\pm)\right\} \end{equation} $

成立.假设$ \kappa $满足(1.8)式,则存在$ \lambda>0 $,如果有$ \sum\limits_{ \alpha\in {\Lambda}}E(w_{q, \theta} \partial^{ \alpha}g_\pm)+\sum\limits_{ \alpha\in {\Lambda}}\sup\limits_{s>0} E_(e^{ \lambda s^ \kappa} \partial^{ \alpha}g_{\pm})\leq \epsilon_0 $成立,其中$ \epsilon_0>0 $足够小,对任意的$ t\geq0 $,上面构建的解就会满足

$ \begin{eqnarray} \sum\limits_{ \alpha\in {\Lambda}}\| \partial^{ \alpha}f(t)\|_{L^2_{x, v}} &\lesssim &e^{- \lambda t^{ \kappa}}\sum\limits_{ \alpha\in {\Lambda}}\|w_{q, \theta} \partial^{ \alpha}f_0\|_{L^2_{x, v}} {}\\ &&+e^{- \lambda t^{ \kappa}}\left\{\sum\limits_{ \alpha\in {\Lambda}}E(w_{q, \theta} \partial^{ \alpha}g_\pm) +\sum\limits_{ \alpha\in {\Lambda}}\sup\limits_{s> 0} E(e^{ \lambda s^ \kappa} \partial^{ \alpha}g_{\pm})\right\}. \end{eqnarray} $

定理1.2(沿空间变量$ \bar{x} $方向的正则性传播) 假设$ \alpha\in {\Lambda}_{m} $,在定理1.1的条件下,对于$ \epsilon_0>0 $$ C>0 $,如果有$ \sum\limits_{ \alpha\in {\Lambda}_{m}}\|w_{q, \theta} \partial^{ \alpha}f_{0}\|_{L^{2}_{x, v}}+ \sum\limits_{ \alpha\in {\Lambda}_{m}}E(w_{q, \theta} \partial^{ \alpha}g_\pm)\leq \epsilon_0 $成立,我们就有

成立.

2 非线性项估计

本节主要讨论了非线性项$ \Gamma(f, f) $的估计,首先提出一个最基本的估计可参见文献[5, p327,引理10].

引理2.1 设$ (q, \theta) $满足(H),有

基于引理2.1,有下述引理成立.

引理2.2 设$ \alpha\in {\Lambda} $,对任意的$ \eta>0 $

成立.

 下面证明中只考虑$ |\bar{ \alpha}| = 2 $的情形,此时

$ \begin{eqnarray} \sum\limits_{ \alpha\in {\Lambda}}\left(\int_{0}^{T}|\left( \partial^{ \alpha} \Gamma(f, g), w^{2}_{q, \theta}h\right)|{\rm d}t\right)^{\frac{1}{2}} & = &\sum\limits_{|\bar{ \alpha}| = 2}\left(\int_{0}^{T}|\left( \partial_{\bar{x}}^{\bar{ \alpha}} \Gamma(f, g), w^{2}_{q, \theta}h\right)|{\rm d}t\right)^{\frac{1}{2}} {}\\&& +\sum\limits_{|\bar{ \alpha}| = 2}\left(\int_{0}^{T}|\left( \partial_{x_1} \partial_{\bar{x}}^{\bar{ \alpha}} \Gamma(f, g), w^{2}_{q, \theta}h\right)|{\rm d}t\right)^{\frac{1}{2}}, \end{eqnarray} $

其中有

$ \begin{eqnarray} &&\sum\limits_{|\bar{ \alpha}| = 2}\left(\int_{0}^{T}|\left( \partial_{\bar{x}}^{\bar{ \alpha}} \Gamma(f, g), w^{2}_{q, \theta}h\right)|{\rm d}t\right)^{\frac{1}{2}} {}\\& \leq&\sum\limits_{2\leq i, j\leq3}\left(\int_{0}^{T}|\left( \Gamma( \partial_{x_i} \partial_{x_j}f, g), w^{2}_{q, \theta}h\right)|{\rm d}t\right)^{\frac{1}{2}} +\sum\limits_{2\leq i, j\leq3}\left(\int_{0}^{T}|\left( \Gamma(f, \partial_{x_i} \partial_{x_j}g), w^{2}_{q, \theta}h\right)|{\rm d}t\right)^{\frac{1}{2}} {}\\&& +\sum\limits_{2\leq i, j\leq3}\left(\int_{0}^{T}|\left( \Gamma( \partial_{x_i}f, \partial_{x_j}g), w^{2}_{q, \theta}h\right)|{\rm d}t\right)^{\frac{1}{2}} {}\\& = &\sum\limits_{2\leq i, j\leq3}A^{\frac{1}{2}}_{i, j}+\sum\limits_{2\leq i, j\leq3}B^{\frac{1}{2}}_{i, j}+\sum\limits_{2\leq i, j\leq3}C^{\frac{1}{2}}_{i, j}. \end{eqnarray} $

估计$ A_{2, 2} $,由引理2.1得到

$ \begin{eqnarray} A_{2, 2} &\lesssim&\int_{0}^{T}\int_{I}\int_{ {\Bbb T}^{2}}\left|w_{q, \theta} \partial^{2}_{x_2}f\right|_{2}|w_{q, \theta}g|_{D}|w_{q, \theta}h|_{D}{\rm d}\bar{x}{\rm d}x_1{\rm d}t {}\\ &&+\int_{0}^{T}\int_{I}\int_{ {\Bbb T}^{2}}\left|w_{q, \theta} \partial^{2}_{x_2}f\right|_D|w_{q, \theta}g|_2|w_{q, \theta}h|_D{\rm d}\bar{x}{\rm d}x_1{\rm d}t, \end{eqnarray} $

(2.3)式右端第一项,由Young不等式和Sobolev嵌入$ H^1_{x_1}\hookrightarrow L^{\infty}_{x_1} , H^2_{\bar{x}}\hookrightarrow L^{\infty}_{\bar{x}} $得到

(2.3)式右端第二项,类似可得

因此有

估计$ C_{2, 2} $,由引理2.1得到

$ \begin{eqnarray} C_{2, 2} &\lesssim&\int_{0}^{T}\int_{I}\int_{ {\Bbb T}^{2}}\left|w_{q, \theta} \partial_{x_2}f\right|_{2}|w_{q, \theta} \partial_{x_2}g|_{D}|w_{q, \theta}h|_{D}{\rm d}\bar{x}{\rm d}x_1{\rm d}t {}\\ &&+\int_{0}^{T}\int_{I}\int_{ {\Bbb T}^{2}}\left|w_{q, \theta} \partial_{x_2}f\right|_D|w_{q, \theta} \partial_{x_2}g|_2|w_{q, \theta}h|_D{\rm d}\bar{x}{\rm d}x_1{\rm d}t, \end{eqnarray} $

(2.4)式右端第一项,由Young不等式, Holder不等式和Sobolev嵌入$ H^1_{\bar{x}}\hookrightarrow L^4_{\bar{x}} $可得

(2.4)式右端第二项,类似可得

因此有

(2.2)式中的其余项用类似方法处理.

(2.1)式右端第二项有

$ \begin{equation} \sum\limits_{|\bar{ \alpha}| = 2}\left(\int_{0}^{T}|\left( \partial_{x_1} \partial_{\bar{x}}^{\bar{ \alpha}} \Gamma(f, g), w^{2}_{q, \theta}h\right)|{\rm d}t\right)^{\frac{1}{2}} \leq\sum\limits_{2\leq i, j\leq3}\left\{H^{\frac{1}{2}}_{i, j}+I^{\frac{1}{2}}_{i, j}+J^{\frac{1}{2}}_{i, j} +K^{\frac{1}{2}}_{i, j}+N^{\frac{1}{2}}_{i, j}+M^{\frac{1}{2}}_{i, j}\right\}, \end{equation} $

其中

估计$ H_{2, 2} $,由引理2.1得到

$ \begin{eqnarray} H_{2, 2} &\lesssim&\int_{0}^{T}\int_{I}\int_{ {\Bbb T}^{2}}\left|w_{q, \theta} \partial_{x_1} \partial^{2}_{x_2}f\right|_{2}|w_{q, \theta}g|_{D}|w_{q, \theta}h|_{D}{\rm d}\bar{x}{\rm d}x_1{\rm d}t {}\\ &&+\int_{0}^{T}\int_{I}\int_{ {\Bbb T}^{2}}\left|w_{q, \theta} \partial_{x_1} \partial^{2}_{x_2}f\right|_D|w_{q, \theta}g|_2|w_{q, \theta}h|_D{\rm d}\bar{x}{\rm d}x_1{\rm d}t, \end{eqnarray} $

(2.6)式右端第一项,由Young不等式和Sobolev嵌入得到

(2.6)式右端第二项,类似可得

因此有

(2.5)式中的其余项用类似方法处理.证毕.

3 宏观估计

$ f $作宏-微观分解,有$ f = {\bf P}_{0}f+\left\{{\bf I}-{\bf P}_{0}\right\}f $,其中$ {\bf I}f = f $.在本节中,我们推导了方程(1.4)–(1.6)解的宏观部分$ [a, b, c] $的重要估计.在此之前,首先定义边界积分泛函

其中$ h = h(t, x_1, \bar{x}, v) $是在边界上定义好的分布函数.当$ q = 0 $时,简记$ \Upsilon_{T, w}^\pm(\cdot) = \Upsilon_T^\pm(\cdot) $.

定理3.1 假设在定理1.1的条件下,当$ \alpha\in {\Lambda} $时,有

$ \begin{eqnarray} \sum\limits_{ \alpha\in {\Lambda}}\| \partial^{ \alpha}[a, b, c]\|_{L^2_TL^2_{x}}{} &\lesssim&\sum\limits_{ \alpha\in {\Lambda}}\|\left\{\bf I-\bf P_{0}\right\} \partial^{ \alpha} f\|_{L^2_TL^{2}_{x}L^2_{v, D}} +\sum\limits_{ \alpha\in\Lambda}\| \partial^{ \alpha}f\|_{L^\infty_TL^2_{x, v}} {\nonumber} \\&&+\sum\limits_{ \alpha\in {\Lambda}}\| \partial^{ \alpha}f_0\|_{L^2_{x, v}}+\sum\limits_{ \alpha\in {\Lambda}}\left(\int_0^T\left\|\left({ \partial^ \alpha \Gamma(f, f)}, \mu^{\frac{1}{4}}\right)_{L^{2}_{v}}\right\|^2{\rm d}t\right)^{1/2} {} \\&&+\sum\limits_{ \alpha\in {\Lambda}}E({ \partial^{ \alpha}g_\pm}) +\sum\limits_{ \alpha\in {\Lambda}}|\Upsilon_{T}^+({ \partial^ \alpha f})| +\sum\limits_{ \alpha\in {\Lambda}}\left|\Upsilon_{T}^-\left(\frac{ \partial^{ \alpha}\Gamma(f, f)}{|v_1|}\right)\right| \end{eqnarray} $

成立.

 给定速度矩: $ \mu^{\frac{1}{2}} $, $ v_{j}\mu^{\frac{1}{2}} $, $ {\frac{1}{6}}(|v|^{2}-3)\mu^{\frac{1}{2}} $, $ (v_{j}v_{m}-1)\mu^{\frac{1}{2}} $, $ {\frac{1}{10}}(|v|^{2}-5)v_{j}\mu^{\frac{1}{2}} $,其中$ 1\leq j, $$ m\leq3 $,将方程(1.4)分别与上述速度矩关于$ v $作内积,得到系数函数$ [a, b, c] $所满足的流体系统

$ \begin{equation} \left\{\begin{array}{l} \partial_t a + \partial_{x_1}b_1+ \partial_{\bar{x}}\cdot \bar{b} = 0, \ \bar{b} = (b_2, b_3), \\ \partial_t b + \nabla_x (a+2c)+ \nabla_x\cdot \Theta (\left\{{\bf I}-{\bf P_{0}}\right\} f) = 0, \\ { } \partial_t c +\frac{1}{3} \nabla_x\cdot b +\frac{1}{6} \nabla_x\cdot {\Lambda} (\left\{{\bf I}-{\bf P_{0}}\right\} f) = 0, \\ \partial_t[ \Theta_{{ jm}}(\left\{{\bf I}-{\bf P_{0}}\right\} f)+2c \delta_{{ jm}}]+ \partial_jb_m+ \partial_m b_j = \Theta_{jm}({\bf r}+{\bf h}), \\ \partial_t {\Lambda}_j(\left\{{\bf I}-{\bf P_{0}}\right\} f)+ \partial_j c = {\Lambda}_j(\bf{r}+{\bf h}), \end{array}\right. \end{equation} $

其中$ \Theta = ( \Theta_{jm}(\cdot))_{3\times 3} $$ \Lambda = ( \Lambda_j(\cdot))_{1\leq j\leq 3} $分别定义为

并且有$ {\bf r} = -{v}\cdot \nabla_{{x}}\left\{{\bf I}-{\bf P_{0}}\right\}f $$ {\bf h} = -L \left\{{\bf I}-{\bf P_{0}}\right\}f+\Gamma(f, f) $.方程(1.4)两边作用$ \partial^{ \alpha} $,再取$ \Psi(t, x_1, \bar{x}, v)\in C^1((0, +\infty)\times\Omega\times {\Bbb R}^3) $作为测试函数,在$ [0, T] $上积分,有

其中$ S_{j}(1\leq j\leq 5) $

估计$ c(t, x_1, \bar{x}) $:取测试函数$ \Psi = \Psi_c = (\vert v \vert^2-5)\left\{v\cdot \nabla\Phi_c(t, x_1, \bar{x})\right\}\mu^{\frac{1}{2}} $,其中$ \Phi_{c} $满足椭圆方程

$ \begin{equation} -\triangle\Phi_{c} = \partial^{ \alpha}c. \end{equation} $

由椭圆的$ H^{2} $估计得

$ \begin{equation} \|\Phi_{c}\|_{H_{x}^{2}}\lesssim\| \partial^{ \alpha}c\|_{L_{x}^{2}}. \end{equation} $

由(1.7)式有

接下来逐步估计$ S_{j}(1\leq j\leq 5) $.对于$ S_{1} $,由Cauchy-Schwarz不等式和椭圆估计(3.4)式得到

对于$ S_{2} $,首先由椭圆方程(3.3)得到

$ \begin{equation} \| \partial_{t}\Phi_{c}\|_{H^{1}_{x}}\lesssim\| \partial_{t} \partial^{ \alpha}c\|_{H^{-1}_{x}}. \end{equation} $

再由(3.2)式中的第三个方程得到

$ \begin{equation} \| \partial_{t} \partial^{ \alpha}c\|_{H^{-1}_{x}}\lesssim\| \partial^{ \alpha}b\|+\|\left\{{\bf I}-{\bf P_{0}}\right\} \partial^{ \alpha}f\|_{D}. \end{equation} $

由Cauchy-Schwarz不等式, (3.5)式和(3.6)式得到

对于$ S_{3} $,由Cauchy-Schwarz不等式和椭圆估计(3.4)式得到

对于$ S_{4} $,由迹定理和椭圆估计(3.4)式得

$ \begin{equation} \left\| \nabla\Phi_{c}(t, \pm1, \bar{x})\right\|\lesssim\left\|\Phi_{c}(t, \pm1, \bar{x})\right\|_{H^{2}_{x}}\lesssim\| \partial^{ \alpha}c\|, \end{equation} $

由Cauchy-Schwarz不等式, Young不等式和(3.7)式得到

$ \partial^{ \alpha} = \partial^{ \alpha_{1}}_{x_{1}} \partial^{\bar{ \alpha}}_{\bar{x}} $,其中$ \alpha = ( \alpha_{1}, \bar{ \alpha})\in {\Lambda} = \left\{ \alpha\big| \alpha_{1}\leq1, |\bar{ \alpha}|\leq2\right\} $.$ \alpha_1 = 0 $时,有

因此有

$ \alpha_1 = 1 $时,由(1.4)式得到

因此有

综上得

对于$ S_{5} $,由Cauchy-Schwarz不等式和椭圆估计(3.4)式得到

综上$ S_{j}(1\leq j\leq 5) $的估计得

使用类似的方法可得到$ a, b $的估计,这里就不再赘述.证毕.

4 证明主要结论

定理1.1的证明 我们将证明分为以下三个部分,首先证明解的全局存在性,然后证明解的时间衰减,最后证明解的唯一性和非负性.

全局存在.证明解的全局存在,在这里我们只证明解的先验估计,因为解的全局存在性可以通过局部解的构造和连续性技巧得到.而解的局部存在性的证明与文献[11]中的证明完全类似,故省略.

假设$ \alpha\in {\Lambda} $,方程(1.4)两边同时作用$ \partial^{\alpha} $

$ \begin{equation} \partial_t \partial^ \alpha f+v\cdot \nabla_{x} \partial^ \alpha f+L \partial^ \alpha f = \partial^ \alpha \Gamma(f, f). \end{equation} $

方程(4.1)与$ \partial^{ \alpha}f $关于$ (x, v) $作内积,由引理5.1,存在$ \delta_{0}>0 $使得

$ \begin{eqnarray} &&{\frac{1}{2}}{\frac{\rm d}{{\rm d}t}\| \partial^{ \alpha}f}\|^{2} +{\frac{1}{2}}\int_{ {\Bbb T}^2}\int_{ {\Bbb R}^3}v_1\left[| \partial^{ \alpha}f(1)|^{2}-| \partial^{ \alpha}f(-1)|^{2}\right]{\rm d}v{\rm d}\bar{x} +\delta_{0}\|\left\{{\bf I}-{\bf P_{0}}\right\} \partial^{ \alpha}f\|_{D}^{2} {}\\&\leq&( \partial^{ \alpha}\Gamma(f, f), \left\{{\bf I}-{\bf P_{0}}\right\} \partial^{ \alpha}f), \end{eqnarray} $

对任意的$ 0\leq t \leq T $, (4.2)式在$ [0, t] $上积分并再对$ t $取上确界,注意$ |\Upsilon_{T}^{\pm}(\cdot)|^{2} $的定义,得到

由初等不等式和引理2.2得到

$ \begin{eqnarray} &&\sum\limits_{ \alpha\in {\Lambda}}\sup\limits_{0\leq t\leq T}\| \partial^{ \alpha}f(t)\|+\sum\limits_{ \alpha\in {\Lambda}}|\Upsilon_{T}^{+}( \partial^{ \alpha}f)| +\sum\limits_{ \alpha\in {\Lambda}}\left(\int_{0}^{T}\|\left\{{\bf I}-{\bf P_{0}}\right\} \partial^{ \alpha}f\|_{D}^{2}{\rm d}t\right)^{\frac{1}{2}} {}\\& \lesssim&\sum\limits_{ \alpha\in {\Lambda}}\| \partial^{ \alpha}f_{0}\|+\sum\limits_{ \alpha\in {\Lambda}}E( \partial^{ \alpha}g_\pm) +C_{\eta}\|f\|_{L^{\infty}_{T}H^{1}_{x_{1}}H^{2}_{\bar{x}}L^{2}_{v}}\|f\|_{L^{2}_{T}H^{1}_{x_{1}}H^{2}_{\bar{x}}L^{2}_{v, D}} {}\\&& +\eta\sum\limits_{ \alpha\in {\Lambda}}\|\left\{{\bf I}-{\bf P_{0}}\right\} \partial^{ \alpha}f\|_{L^{2}_{T}L^{2}_{x}L^{2}_{v, D}}. \end{eqnarray} $

由定理3.1, (4.3)式和(3.1)式适当的线性组合得到

方程(4.1)与$ w_{q, \theta}^{2} \partial^{ \alpha}f $关于$ (x, v) $作内积,使用引理5.2经过类似的计算可以得到加权的估计

时间衰减率.这里只证明软势$ -3\leq \gamma<-2 $的情况.取$ h = e^{ \lambda t^{p}}f $,其中$ \lambda>1.1>p>0 $,关于$ \partial^{ \alpha}h $满足的方程为

$ \begin{equation} \partial_{t} \partial^{ \alpha}h+v_{1} \partial_{x_1} \partial^{ \alpha}h+\bar{v}\cdot \nabla_{\bar{x}} \partial^{ \alpha}h +L \partial^{ \alpha}h = \lambda pt^{p-1} \partial^{ \alpha}h+e^{- \lambda t^{p}} \partial^{ \alpha}\Gamma(h, h). \end{equation} $

对方程(4.4)作类似于全局存在性的估计可得

$ \begin{eqnarray} &&{\frac{\rm d}{{\rm d}t}}\| \partial^{ \alpha}h\|^{2}+\int_{ {\Bbb T}^2}\int_{ {\Bbb R}^3}v_1| \partial^{ \alpha}h(1)|^2{\rm d}v{\rm d}\bar{x}-\int_{ {\Bbb T}^2}\int_{ {\Bbb R}^3}v_1| \partial^{ \alpha}h(-1)|^2{\rm d}v{\rm d}\bar{x} +\| \partial^{ \alpha}h\|^{2}_{D} {}\\&\lesssim& \lambda pt^{p-1}\| \partial^{ \alpha}h\|^{2}+\sum\limits_{ \alpha\in {\Lambda}}E(e^{ \lambda t^{p}} \partial^{ \alpha}g_\pm). \end{eqnarray} $

对任意的$ 0\leq t\leq T $,由(4.5)式进一步可得到

$ \begin{eqnarray} &&\sup\limits_{0\leq t\leq T}\| \partial^{ \alpha}h\|+\left(\int_{0}^{T}\| \partial^{ \alpha}h\|^{2}_{D}{\rm d}t\right)^{\frac{1}{2}}+|\Upsilon_{T}^{+}( \partial^{ \alpha}h)| {}\\ &\lesssim&\| \partial^{ \alpha}f_0\|+\sup\limits_{0\leq t\leq T}E(e^{ \lambda t^{p}} \partial^{ \alpha}g_{\pm})+\left(\int_{0}^{T} \lambda pt^{p-1}\| \partial^{ \alpha}h\|^{2}{\rm d}t\right)^{\frac{1}{2}}+\sum\limits_{ \alpha\in {\Lambda}}E(w_{q, \theta} \partial^{ \alpha}g_\pm). \end{eqnarray} $

定义集合$ E = \left\{\langle v\rangle\leqslant\rho t^{p'}\right\} $,其中$ \rho>0 $足够小, $ p' $是一个与$ p $有关的正数, (4.6)式右端的第三项有

对于$ I_{1} $,由引理5.1,取$ {\frac{p-1}{p'}} = \gamma+2 $,有

$ p = p' \theta $,即有$ p = {\frac{ \theta}{ \theta-(\gamma+2)}} $,令$ 2 \lambda <{\frac{1}{2}}q\rho^{ \theta} $,有$ w_{q, \theta}^{-2}\leq e^{-{\frac{1}{2}}q\rho^{ \theta}t^{p' \theta}} $,

$ I_1 $$ I_2 $的估计带入(4.6)式,即可得到时间衰减估计(1.10)式.

唯一性和非负性.假设$ f $$ g $是方程(1.4)–(1.6)满足(1.9)式的两个解,关于$ f-g $满足的方程为

$ [f-g](0, x, v) = 0 $,

上述方程两边乘以$ f-g $并在$ (0, t)\times \Omega\times{ {\Bbb R}^3} $上积分得到

由引理2.2,有

其中$ \epsilon_{0} $由定理1.1给出,由$ \epsilon_{0} $任意小,由Gronwall不等式有$ f = g $.因为有$ F(t, \pm1, \bar{x}, v) = \mu+\sqrt{\mu}g_{\pm}(t, \bar{x}, v)\geq0 $成立,由极大值原理有$ F(t, \pm1, \bar{x}, v)\geqslant0 $,具体证明可参见文献[2].证毕.

定理1.2的证明 我们证明初始数据或边界数据的正则性可以沿切向从边界传播到管道内部.设$ \alpha\in {\Lambda}_{m} $,对于非线性项有

宏观估计有

方程(1.4)两边同时作用$ \partial^{ \alpha} $

$ \begin{equation} \partial_t \partial^{ \alpha}f+v\cdot \nabla_{x} \partial^{ \alpha} f+L \partial^{ \alpha} f = \partial^{ \alpha} \Gamma(f, f). \end{equation} $

(4.7)式与$ w_{q, \theta}^{2} \partial^{ \alpha}f $$ (x, v) $上作内积,类似于定理1.1中全局存在性的证明,由引理5.2得到定理1.2成立.

5 附录

附录中列出了线性算子$ L $的基本估计,它们的证明可以参见文献[2, p400,推论1,引理5]和[5, p323,引理9].

引理5.1 设$ \gamma\geq-3 $,则存在常数$ \delta_0, \ C>0 $,使得

成立,其中映射$ {\bf P}_v $被定义为:对任意的向量值函数$ h(v) = [h_1(v), h_2(v), h_3(v)] $,有

引理5.2(加权估计) 设$ Lf = -\mu^{-\frac{1}{2}}\left\{Q(\mu, \mu^{\frac{1}{2}}f)+Q(\mu^{\frac{1}{2}}f, \mu)\right\} $,有

其中$ \delta_q, C>0 $, $ B_R $$ {\Bbb R}^3_v $中以原点为圆心半径$ R>0 $的闭球,并且$ (q, \theta) $满足(H).

参考文献

Villani C. A Review of Mathematical Topics in Collisional Kinetic Theory. Amsterdam: North-Holland, 2002

[本文引用: 1]

Guo Y .

The Landau equation in a periodic box

Comm Math Phys, 2002, 231 (3): 391- 434

DOI:10.1007/s00220-002-0729-9      [本文引用: 4]

Carrapatoso K , Mischler S .

Landau equation for very soft and Coulomb potentials near Maxwellians

Ann PDE, 2017, 3 (1): Artcile 1

DOI:10.1007/s40818-017-0021-0      [本文引用: 1]

Caflisch R E .

The Boltzmann equation with a soft potential. II. Nonlinear, spatially-periodic

Comm Math Phys, 1980, 74 (2): 97- 109

DOI:10.1007/BF01197752      [本文引用: 1]

Strain R M , Guo Y .

Exponential decay for soft potentials near Maxwellian

Arch Ration Mech Anal, 2008, 187 (2): 287- 339

DOI:10.1007/s00205-007-0067-3      [本文引用: 2]

Strain R M , Guo Y .

Almost exponential decay near Maxwellian

Comm Partial Differential Equations, 2006, 31 (1/3): 417- 429

URL    

Strain R M .

Optimal time decay of the non cut-off Boltzmann equation in the whole space

Kinet Relat Models, 2012, 5 (3): 583- 613

DOI:10.3934/krm.2012.5.583      [本文引用: 1]

Sohinger V , Strain R M .

The Boltzmann equation, Besov spaces, and optimal time decay rates in Rn x

Adv Math, 2014, 261, 274- 332

DOI:10.1016/j.aim.2014.04.012      [本文引用: 1]

Kim J, Guo Y, Hwang H J. A L2 to L approach for the Landau equation. 2016, arXiv: 1610.05346

[本文引用: 1]

Guo Y, Hwang H J, Jang J W, Ouyang Z. The Landau equation with the specular reflection boundary condition. 2019, arXiv: 1905.00173

[本文引用: 1]

Duan R J, Liu S Q, Sakamoto S, Strain R M. Global mild solutions of the Landau equation and non-cutoff Boltzmann equations. 2019, arXiv: 1904.12086

[本文引用: 3]

/