四阶偏微分多智能体系统的迭代学习控制
Iterative Learning Control for Fourth Order Partial Differential Multi-Agent Systems
通讯作者:
收稿日期: 2019-05-24
基金资助: |
|
Received: 2019-05-24
Fund supported: |
|
该文研究多智能体系统基于一致性收敛的迭代学习控制问题,该系统中所有的智能体是由四阶梁方程构建而成.基于网络拓扑结构,并利用相邻智能体的信息,构建得到基于一致性的迭代学习控制协议.当该迭代学习律作用于系统时,一致性误差在给定的有限时间段上有界;进一步,在无初始偏差情形下,当迭代次数趋于无穷时,该一致性误差于
关键词:
In this paper, the problem of iterative learning control for multi-agent systems is studied based on consensus. All the considered agents are constructed by the fourth-order beam equations. Based on the network topology, a consensus iterative learning control protocol is designed by using the information of adjacent agents. When the iterative learning law is applied to the systems, the consensus errors are bounded, and furthermore, the consensus errors on
Keywords:
本文引用格式
郁鹏飞, 傅勤.
Yu Pengfei, Fu Qin.
1 引言
对于生物群体行为(如迁徙鸟类的编队飞行、鱼群的聚集行为、蚁群的协同工作等)的研究,使多智能体系统的控制设计成为国际控制领域中的研究热点[21].近年来,随着计算机通信技术的发展,多智能体系统的协同控制已被应用于无线传感器网络、移动机器人编队、集群航天器深空探测等众多领域中[22-25].一致性问题作为多智能体系统协调控制中最基本的问题,更是受到了众多研究人员的广泛关注[26-29].一致性问题考虑的是如何设计合适的分布式控制协议,使得所有智能体的状态(或输出)随着时间趋于无穷而收敛到同一个常数.最近,文献[30]研究了分布参数多智能体系统基于一致性的迭代学习控制问题,考虑的系统中的每个智能体都是由一维二阶抛物型方程或一维二阶双曲型方程构建而成.基于有限时间区间的一致性目的,构建得到P型迭代学习控制协议.文献[31]研究了具有时滞的分布参数模型多智能体系统的一致控制问题,针对多智能体系统中的时滞问题,提出了一种分布式P型迭代学习控制协议,基于所提出的迭代学习控制律,经过足够的迭代次数后,一致性误差于
2 问题描述
本文符号约定如下:
智能体之间的信息交流常可用图来刻画,由此,一些常用的图论知识给出如下:记
记
引理2.1[30] 若有向图
考虑文献[15]中的变系数四阶梁方程
其中
方程(2.1)的边值条件[15]如下
或者
和
或者
注2.1 文献[15]给出了方程(2.1)解存在的条件:
记
由这些量的物理意义可知,
为了控制设计的需要,我们用控制变量
注2.2 本文用
假设2.1 图
假设2.2[30] 对于所有的
这里
相应于方程(2.1)中的边值条件,给出系统(2.4)的如下边值条件假设.
假设2.3 当时
或者
引理2.2[30]
则
3 主要结果
构建如下的P型迭代学习律
其中
其中
注3.1[30] 如果
注3.2 取
记
其中
将
记
由系统(2.4)和学习律(3.1)式可知
进一步有
上式写成紧凑形式,可得
进一步有
引理3.1[32] 对于任意的矩阵
引理3.2[33] 对于任意矩阵范数
后文中为了方便,引理3.1、3.2中的向量范数和与之相容的矩阵范数都用
根据
由此,存在
根据
使用基本不等式,可得
进一步有
这里
定理3.1 如果关于系统
则系统的一致性误差随着迭代学习次数的增加而趋于零,即,
证
其中
这里
将
这里
因此
另一方面,应用基本不等式,有
使用Gronwall引理并结合假设
取
将
由于
因此,结合
将
这里
由
进一步有
再由
于是
由此可知,任两个智能体之间于
即
定理3.1证毕.
4 仿真算例
考虑由四阶梁方程构建而成的如下四个智能体(
图 1
显然对应的图
图 2
图 3
5 结论
本文研究了一类四阶分布参数多智能体系统的迭代学习控制算法,构建了基于一致性的P型学习律.当P型学习律作用于系统时,任两个智能体之间于
参考文献
A nonlinear iterative learning method for robot path control
,
Iterative learning control with initial rectifying action
,DOI:10.1016/S0005-1098(02)00003-1
An iterative learning controller with initial state learning
,DOI:10.1109/9.746269 [本文引用: 1]
Iterative learning control for multiple point-to-point tracking application
,DOI:10.1109/TCST.2010.2051670 [本文引用: 1]
Convergence characteristics of proportional-type iterative learning control in the sense of Lebesgue-p norm
,
On the P-type and Newton-type ILC schemes for dynamic systems with non-affine-in-input factors
,DOI:10.1016/S0005-1098(02)00021-3 [本文引用: 1]
A survey of iterative learning control:A learning-method for high-performance tracking control
,DOI:10.1109/MCS.2006.1636313 [本文引用: 1]
Stabilization and regulator design for a one-dimensional unstable wave equation with harmonic disturbance
,DOI:10.1002/rnc.1843 [本文引用: 1]
Exponential stabilization of the uncertain wave equation via distributed dynamic input extension
,
Feedback control for a class of second order hyperbolic distributed parameter systems
,DOI:10.1007/s11432-016-5554-4 [本文引用: 1]
Tracking control of the uncertain heat and wave equation via power-fractional and sliding-mode techniques
,DOI:10.1137/090781140 [本文引用: 1]
Galerkin methods for vibration problems in two space variables
,
Discrete-time orthogonal spline collocation methods for vibration problem
,
An exact solution for variable coefficients fourth-order wave equation using the Adomian method
,
Fourth order wave equations with nonlinear strain and source terms
,DOI:10.1016/j.jmaa.2006.09.010
Global existence for rough solutions of a fourth-order nonlinear wave equation
,DOI:10.1016/j.jmaa.2010.04.003
On the initial-boundary problem for fourth order wave equations with damping, strain and source terms
,
Analysis of mixed finite element methods for fourth-order wave equations
,DOI:10.1016/j.camwa.2012.10.002 [本文引用: 2]
Iterative learning control for one-dimensional fourth order distributed parameter systems
,DOI:10.1007/s11432-015-1031-6 [本文引用: 2]
Cooperative control design for time-varying formations of multi-agent systems
,DOI:10.1109/TAC.2014.2303213 [本文引用: 1]
Cooperative output regulation of linear multi-agent systems
,
Robust cooperative output regulation problem for non-linear multi-agent systems
,
Cooperative control of multi-agent systems with unknown state-dependent controlling effects
,DOI:10.1109/TASE.2015.2403261 [本文引用: 1]
Consensus problems in networks of agents with switching topology and timedelays
,DOI:10.1109/TAC.2004.834113 [本文引用: 1]
Necessary and sufficient conditions for consensusability of linear multi-agent systems
,
Consensus control for multi-agent systems with double-integrator dynamics and time-delays
,
Distributed consensus control of multi-agent systems with higher order agent dynamics and dynamically changing directed interaction topologies
,
Consensus control for multi-agent systems with distributed parameter models via iterative learning algorithm
,DOI:10.1016/j.jfranklin.2018.04.033 [本文引用: 7]
Consensus control via iterative learning for distributed parameter models multi-agent systems with time-delay
,DOI:10.1016/j.jfranklin.2019.05.015 [本文引用: 1]
Iterative learning control approach for consensus of multi-agent systems with regular linear dynamics
,
Robust boundary iterative learning control for a class of nonlinear hyperbolic systems with unmatched uncertainties and disturbance
,DOI:10.1016/j.neucom.2018.09.020 [本文引用: 1]
/
〈 | 〉 |