数学物理学报, 2020, 40(4): 1029-1042 doi:

论文

四阶偏微分多智能体系统的迭代学习控制

郁鹏飞, 傅勤,

Iterative Learning Control for Fourth Order Partial Differential Multi-Agent Systems

Yu Pengfei, Fu Qin,

通讯作者: 傅勤, E-mail: fuqin925@sina.com

收稿日期: 2019-05-24  

基金资助: 国家自然科学基金.  11971343
苏州科技大学研究生培养创新工程项目.  SKCX18_Y01

Received: 2019-05-24  

Fund supported: the NSFC.  11971343
Suzhou University of Science and Technology Postgraduate Training Innovation Project.  SKCX18_Y01

摘要

该文研究多智能体系统基于一致性收敛的迭代学习控制问题,该系统中所有的智能体是由四阶梁方程构建而成.基于网络拓扑结构,并利用相邻智能体的信息,构建得到基于一致性的迭代学习控制协议.当该迭代学习律作用于系统时,一致性误差在给定的有限时间段上有界;进一步,在无初始偏差情形下,当迭代次数趋于无穷时,该一致性误差于${L^2}$空间中能够收敛于零.仿真算例验证了算法的有效性.

关键词: 多智能体系统 ; 迭代学习控制协议 ; 四阶梁方程 ; L2空间

Abstract

In this paper, the problem of iterative learning control for multi-agent systems is studied based on consensus. All the considered agents are constructed by the fourth-order beam equations. Based on the network topology, a consensus iterative learning control protocol is designed by using the information of adjacent agents. When the iterative learning law is applied to the systems, the consensus errors are bounded, and furthermore, the consensus errors on ${L^2}$ space tend to zero as the iteration index tends to infinity in the absence of initial errors. The effectiveness of the algorithm is verified by simulation examples.

Keywords: Multi-agent systems ; Iterative learning control protocol ; Fourth-order beam equation ; L2 space

PDF (450KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

郁鹏飞, 傅勤. 四阶偏微分多智能体系统的迭代学习控制. 数学物理学报[J], 2020, 40(4): 1029-1042 doi:

Yu Pengfei, Fu Qin. Iterative Learning Control for Fourth Order Partial Differential Multi-Agent Systems. Acta Mathematica Scientia[J], 2020, 40(4): 1029-1042 doi:

1 引言

Arimoto等人1984年系统地提出了迭代学习控制算法[1].针对有限时间段上的需要跟踪的理想输出,迭代学习控制设计的基本思想是:构建合适的迭代学习律,并将其作用于有限时间段的重复受控系统上,通过反复迭代,不断地修正输出跟踪误差,并最终使得系统的输出能够完全跟踪给定的理想输出.在设计过程中,常用的是D型学习律[1-4]和P型学习律[5-7].由于其构建的简便性和控制的有效性,迭代学习控制算法已成为控制领域研究的热点之一,参见文献[8].

由偏微分方程描述的系统称为分布参数系统,分布参数系统常被应用于描述波运动、热传导等物理现象[9-12].近年来,描述梁和薄板振动的四阶波动方程受到了广泛关注[13-19].然而,相关的研究工作至今大多集中于方程的适定性和数值解上[15-19].最近,文献[20]提出和研究了四阶分布参数系统的迭代学习控制问题,文中的系统是由一维四阶抛物方程或一维四阶波动方程构建而成.当构建得到的P型迭代学习律作用于系统时,跟踪误差于空间有界,进一步,当系统的初始偏差为零时,跟踪误差于$ {L^2} $空间中能够随着迭代次数的增加收敛于零.

对于生物群体行为(如迁徙鸟类的编队飞行、鱼群的聚集行为、蚁群的协同工作等)的研究,使多智能体系统的控制设计成为国际控制领域中的研究热点[21].近年来,随着计算机通信技术的发展,多智能体系统的协同控制已被应用于无线传感器网络、移动机器人编队、集群航天器深空探测等众多领域中[22-25].一致性问题作为多智能体系统协调控制中最基本的问题,更是受到了众多研究人员的广泛关注[26-29].一致性问题考虑的是如何设计合适的分布式控制协议,使得所有智能体的状态(或输出)随着时间趋于无穷而收敛到同一个常数.最近,文献[30]研究了分布参数多智能体系统基于一致性的迭代学习控制问题,考虑的系统中的每个智能体都是由一维二阶抛物型方程或一维二阶双曲型方程构建而成.基于有限时间区间的一致性目的,构建得到P型迭代学习控制协议.文献[31]研究了具有时滞的分布参数模型多智能体系统的一致控制问题,针对多智能体系统中的时滞问题,提出了一种分布式P型迭代学习控制协议,基于所提出的迭代学习控制律,经过足够的迭代次数后,一致性误差于$ {L^2} $范数意义下可以收敛到零.注意到这方面相关的研究工作,尚未涉及到四阶的分布参数系统.

在文献[20, 30]中的工作基础上,本文进一步研究分布参数多智能体系统的迭代学习控制,该类多智能体系统中的每个智能体是由文献[15]中的四阶梁方程构建而成.基于文献[30]中的虚拟领导者方法,构建得到P型学习律.当该学习律作用于系统时,任两个智能体之间于$ {L^2} $空间中的一致性误差有界;进一步,当初始偏差为零时,且迭代次数趋于无穷,则任两个智能体之间的一致性误差于$ {L^2} $空间中能够收敛于零.

2 问题描述

本文符号约定如下: $ {I_b} $$ b \times b $维单位矩阵, $ \otimes $为克罗内克积, $ {{\bf 1}_b} $为每个元素均为$ 1 $$ {b} $阶列向量.对于给定的向量或矩阵$ P $, $ {P^{\rm{T}}} $表示其转置, $ \left\| P \right\| $表示其2 -范数, $ {P^{ - 1}} $表示其逆(若$ P $可逆).对函数$ W(x, t):[0, l] \times [0, T] \to {{{{\Bbb R}} }^n} $,定义$ {\left\| {W( \cdot , t)} \right\|_{{L^2}}} = \sqrt {\int_0^l {{{\left\| {W(x, t)} \right\|}^2}{\rm{d}}x} } $,进一步记$ {\left\| W \right\|_{{L^2}, s}} = {\sup\limits_{t \in [0, T]}}\left\| {W( \cdot , t)} \right\|_{{L^2}}^2 $.

智能体之间的信息交流常可用图来刻画,由此,一些常用的图论知识给出如下:记$ G = (V, E, A) $为一加权的有向图,其中$ V = \{ 1, 2, \cdots , N\} $为结点集合, $ E \subseteq V \times V $为边集合,而$ A = ({a_{ij}}) \in {R^{N \times N}} $表示图$ G $带权的邻接矩阵,如果$ (j, i) \in E $,则$ {a_{ij}} > 0 $,否则$ {a_{ij}} = 0 $,进一步地,约定$ {a_{ii}} = 0 $.定义有向图$ G $的拉普拉斯阵为$ {L_G} = D - A $,这里$ D = {\rm diag}({\deg _{in}}(1), \cdots , {\deg _{in}}(N)) $,而$ {\deg _{in}}(i) = \sum\limits_{j = 1}^N {{a_{ij}}} $为结点$ i $的入度.在有向图$ G $中,我们用第$ i $个结点表示第$ i $个智能体,用结点$ i $到结点$ j $的有向边$ (i, j) \in E $表示第$ j $个智能体能直接接受到来自第$ i $个智能体的信息.

引理2.1[30]  若有向图$ G $存在生成树,则矩阵$ {L_{22}} + {{\bf{1}}_{N - 1}} \cdot {\beta ^{\rm{T}}} $的每个特征值均有正实部.

考虑文献[15]中的变系数四阶梁方程

$ \begin{equation} \mu (x)\frac{{{\partial ^2}w(x, t)}}{{\partial {t^2}}} + \frac{{{\partial ^2}}}{{\partial {x^2}}}\Big[ {EI(x)\frac{{{\partial ^2}w(x, t)}}{{\partial {x^2}}}} \Big] = q(x, t), x \in (0, l), t > 0, \end{equation} $

其中$ \mu (x) $, $ w(x, t) $, $ EI(x) $$ q(x, t) $分别表示单位长度质量,侧梁位移,梁抗弯刚度和单位长度荷载.

方程(2.1)的边值条件[15]如下

或者

或者

文献[15]利用傅里叶级数展开式解决了方程(2.1)解的存在性问题,并给出了方程(2.1)的解的形式,详见文献[15]中公式(46).

注2.1  文献[15]给出了方程(2.1)解存在的条件: $ \frac{{q(x, t)}}{{\mu (x)}} $在定义区间内能够展开为傅里叶级数.

$ \begin{equation} {\mu _1} = \mathop {\min }\limits_{0 \le x \le l} \mu (x), \; \; {\mu _2} = \mathop {\max }\limits_{0 \le x \le l} \mu (x). \end{equation} $

$ \begin{equation} E{I_1} = \mathop {\min }\limits_{0 \le x \le l} EI(x), \; \; E{I_2} = \mathop {\max }\limits_{0 \le x \le l} EI(x). \end{equation} $

由这些量的物理意义可知, $ {\mu _1} $, $ {\mu _2} $, $ E{I_1} $, $ E{I_2} $均为正常数.

为了控制设计的需要,我们用控制变量$ u(x, t) $代替(2.1)式中的$ q(x, t) $$ \rm(单位长度荷载) $,并添加通常形式的输出项.由此,考虑如下由分布参数系统构建而成的$ N $个智能体

$ \begin{equation} \left\{ \begin{array}{l} { } \mu (x)\frac{{{\partial ^2}{w_{i, k}}(x, t)}}{{\partial {t^2}}} + \frac{{{\partial ^2}}}{{\partial {x^2}}}\Big[ {EI(x)\frac{{{\partial ^2}{w_{i, k}}(x, t)}}{{\partial {x^2}}}} \Big] = {u_{i, k}}(x, t), \\ [2mm] {y_{i, k}}(x, t) = F{w_{i, k}}(x, t) + B{u_{i, k}}(x, t), \end{array}\right. \; \; i = 1, 2, \cdots , N. \end{equation} $

其中$ (x, t) \in (0, l) \times [0, T] $, $ ({w_{i, k}}(x, t), \frac{{\partial {w_{i, k}}(x, t)}}{{\partial t}}) $, $ {u_{i, k}}(x, t) $, $ {y_{i, k}}(x, t) $分别表示第$ i $个智能体在$ k $次迭代时的状态(参见文献[10, 11]),控制输入和输出,而$ B \ne 0 $.对于系统(2.4),假设$ k $次迭代时的网络拓扑为已知的,用拉普拉斯阵$ {L_G} $来表示.

注2.2  本文用$ {u_{i, k}}(x, t) $代替$ q(x, t) $,结合傅里叶级数展开需求,我们要求$ {u_{i, k}}(x, t) $$ \mu (x) $为连续函数,则$ \frac{{{u_{i, k}}(x, t)}}{{\mu (x)}} $为连续函数,满足傅里叶级数展开需求.

假设2.1  图$ G $存在生成树.

假设2.2[30]  对于所有的$ k $,设重复性初始偏差被设置在容许偏差范围内,即

这里$ {\varepsilon _1}, {\varepsilon _2} $是非负常数.

相应于方程(2.1)中的边值条件,给出系统(2.4)的如下边值条件假设.

假设2.3  当时$ x = 0, l $,有

或者$ {w_{i, k}}(x, t) = 0 $$ EI(x)\frac{{{\partial ^2}{w_{i, k}}(x, t)}}{{\partial {x^2}}} = 0, $或者

引理2.2[30]  $ {\rm{\{ }}{\varpi _k}{\rm{\} }} $为实数序列,如果有

3 主要结果

构建如下的P型迭代学习律

$ \begin{equation} {u_{i, k + 1}}(x, t) = {u_{i, k}}(x, t) + g\sum\limits_{j = 1}^N {{a_{ij}}({y_{j, k}}(x, t) - {y_{i, k}}(x, t))} , \end{equation} $

其中$ g $为学习增益.取$ g $满足

$ \begin{equation} \rho \Big( {{I_{N - 1}} - gB\Big( {{L_{22}} + {{\bf{1}}_{N - 1}} \cdot {\beta ^{\rm{T}}}} \Big)} \Big) < 1, \end{equation} $

其中$ \rho $为矩阵的谱半径.

注3.1[30]  如果$ {L_{22}} + {{\bf{1}}_{N - 1}} \cdot {\beta ^{\rm{T}}} $的每个特征值都有正实部,则满足$ \rm(3.2) $式的学习增益是存在的.

注3.2  取$ {u_{i, 0}}(x, t) $(相应于$ q(x, t) $)为连续函数,由系统(2.4)中第一式可解得$ {w_{i, 0}}(x, t) $为连续函数,再由系统(2.4)中第二式可知$ {y_{i, 0}}(x, t) $也为连续函数,再由学习律(3.1),可知$ {u_{i, 1}}(x, t) $也为连续函数.取$ k = 1, 2, \cdots $,循环往复上述过程,再结合注2.1和注2.2,可知在每步迭代过程中,系统(2.4)的解均存在且连续.

$ {\delta _{i, k}}(x, t) = {y_{i, k}}(x, t) - {y_{1, k}}(x, t) $, $ i = 1, 2, \cdots , N $,这里$ {y_{1, k}}(x, t) $为虚拟领导者.由系统(2.4)和学习律(3.1)式可知

$ \begin{eqnarray} {\delta _{i, k + 1}}(x, t) & = & {y_{i, k + 1}}(x, t) - {y_{1, k + 1}}(x, t){}\\ & = &{y_{i, k}}(x, t) - {y_{1, k}}(x, t) + {y_{i, k + 1}}(x, t) - {y_{i, k}}(x, t) - ({y_{1, k + 1}}(x, t) - {y_{1, k}}(x, t)){}\\ & = & {\delta _{i, k}}(x, t) + F({w_{i, k + 1}}(x, t) - {w_{i, k}}(x, t)) + B({u_{i, k + 1}}(x, t) - {u_{i, k}}(x, t)){}\\ &&- F({w_{1, k + 1}}(x, t) - {w_{1, k}}(x, t)) - B({u_{1, k + 1}}(x, t) - {u_{1, k}}(x, t)){}\\ & = & {\delta _{i, k}}(x, t) + F({w_{i, k + 1}}(x, t) - {w_{i, k}}(x, t)) + gB\sum\limits_{j = 1}^N {{a_{ij}}({y_{j, k}}(x, t) - {y_{i, k}}(x, t))} {}\\ &&- F({w_{1, k + 1}}(x, t) - {w_{1, k}}(x, t)) - gB\sum\limits_{j = 1}^N {{a_{1j}}({y_{j, k}}(x, t) - {y_{1, k}}(x, t))} {}\\ & = &{\delta _{i, k}}(x, t) + F\Delta {w_{i, k}}(x, t) + gB\sum\limits_{j = 1}^N {{a_{ij}}({\delta _{j, k}}(x, t) - {\delta _{i, k}}(x, t))} {}\\ &&- F\Delta {w_{1, k}}(x, t) - gB\sum\limits_{j = 1}^N {{a_{1j}}{\delta _{j, k}}(x, t)} , \; \; i = 2, 3, \cdots , N. \end{eqnarray} $

其中$ \Delta {w_{i, k}}(x, t) = {w_{i, k + 1}}(x, t) - {w_{i, k}}(x, t), $$ i = 1, 2, \cdots , N. $

$ \rm(3.3) $式写成如下的紧凑形式

$ \tilde \Delta {w_k}(x, t) = \Delta {w_k}(x, t) - {{\bf{1}}_{N - 1}} \otimes \Delta {w_{1, k}}(x, t) $,则进一步有

$ \begin{equation} {\delta _{k + 1}}(x, t) = \Big[ {{I_{N - 1}} - gB\Big( {{L_{22}} + {{\bf{1}}_{N - 1}} \cdot {\beta ^{\rm{T}}}} \Big)} \Big]{\delta _k}(x, t) + F\tilde \Delta {w_k}(x, t). \end{equation} $

由系统(2.4)和学习律(3.1)式可知

进一步有

上式写成紧凑形式,可得

进一步有

$ \begin{eqnarray} &&\Big( {{I_{N - 1}} \otimes \mu (x)} \Big)\frac{{{\partial ^2}\tilde \Delta {w_k}(x, t)}}{{\partial {t^2}}}{\rm{ + }}\frac{{{\partial ^2}}}{{\partial {x^2}}}\Big[ {\Big( {{I_{N - 1}} \otimes EI(x)} \Big)\frac{{{\partial ^2}\tilde \Delta {w_k}(x, t)}}{{\partial {x^2}}}} \Big]{}\\ & = & - g\Big( {{L_{22}} + {{\bf{1}}_{N - 1}} \cdot {\beta ^{\rm{T}}}} \Big){\delta _k}(x, t). \end{eqnarray} $

引理3.1[32]  对于任意的矩阵$ X \in {{\mathbb R}^{(N - 1) \times (N - 1)}} $,如果谱半径$ \rho (X) < 1 $,则至少存在一种矩阵范数$ {\left\| \cdot \right\|_\kappa } $,使得$ {\left\| X \right\|_\kappa } < 1 $.

引理3.2[33]  对于任意矩阵范数$ {\left\| \cdot \right\|_\kappa } $,则至少存在与之相容的一种向量范数$ {\left\| \cdot \right\|_\xi } $,使得对任意$ P \in {{\mathbb R}^{(N - 1) \times (N - 1)}} $$ x \in {{\mathbb R}^{N - 1}} $,有$ {\left\| {Px} \right\|_\xi } \le {\left\| P \right\|_\kappa }{\left\| x \right\|_\xi } $.

后文中为了方便,引理3.1、3.2中的向量范数和与之相容的矩阵范数都用$ {\left\| \cdot \right\|_{\rm{*}}} $表示.

根据$ \rm(3.2) $式和引理3.1,有

由此,存在$ \varepsilon > 0 $使得

$ \begin{equation} \bar \rho = {\left\| {{I_{N - 1}} - gB\Big( {{L_{22}} + {{\bf{1}}_{N - 1}} \cdot {\beta ^{\rm{T}}}} \Big)} \right\|_{\rm{*}}} < \frac{1}{{\sqrt {1 + \varepsilon } }}. \end{equation} $

根据$ \rm(3.4) $式和$ \rm(3.6) $式,有

使用基本不等式,可得

进一步有

$ \begin{eqnarray} \mathop {\sup }\limits_{t \in [0, T]} \Big\{ {\int_0^l {{{\rm e}^{ - \lambda t}} \left\| {{\delta _{k + 1}}(x, t)} \right\|_{\rm{*}}^2{\rm{d}}x} } \Big\} &\le & (1 + \varepsilon ){\bar \rho ^2}\mathop {\sup }\limits_{t \in [0, T]} \Big\{ {\int_0^l {{{\rm e}^{ - \lambda t}}\left\| {{\delta _k}(x, t)} \right\|_{\rm{*}}^2{\rm{d}}x} } \Big\} {}\\ && + \Big( {1 + \frac{1}{\varepsilon }} \Big){F^2}\mathop {\sup }\limits_{t \in [0, T]} \Big\{ {\int_0^l {{{\rm e}^{ - \lambda t}}\left\| {\tilde \Delta {w_k}(x, t)} \right\|_{\rm{*}}^2{\rm{d}}x} } \Big\}, {\qquad} \end{eqnarray} $

这里$ \lambda $是个正实数.

定理3.1  如果关于系统$ \rm(2.4) $的假设$ \rm2.1–2.3 $都成立,则在学习律$ \rm(3.1) $的作用下,任意两个智能体之间于$ {L^2} $空间中的一致性误差有界;进一步,当系统没有初始偏差时,即

则系统的一致性误差随着迭代学习次数的增加而趋于零,即, $ \mathop {\lim }\limits_{k \to \infty } {\left\| {{y_{i, k}} - {y_{j, k}}} \right\|_{{L^2}, s}} = 0 $, $ \forall i, $$ j \in \{ 1, 2, \cdots , N\} $.

  $ \rm(3.5) $式两端左乘$ {\Big( {\frac{{\partial \tilde \Delta {w_k}(x, t)}}{{\partial t}}} \Big)^{\rm{T}}} $,且两端同时对$ x $从0到$ l $积分,有

$ \begin{eqnarray} &&\int_0^l {{{\Big( {\frac{{\partial \tilde \Delta {w_k}(x, t)}}{{\partial t}}} \Big)}^{\rm{T}}}} \Big( {{I_{N - 1}} \otimes \mu (x)} \Big)\frac{{{\partial ^2}\tilde \Delta {w_k}(x, t)}}{{\partial {t^2}}}{\rm{d}}x{}\\ &&+ \int_0^l {{{\Big( {\frac{{\partial \tilde \Delta {w_k}(x, t)}}{{\partial t}}} \Big)}^{\rm{T}}}\frac{{{\partial ^2}}}{{\partial {x^2}}}\Big[ {\Big( {{I_{N - 1}} \otimes EI(x)} \Big)\frac{{{\partial ^2}\tilde \Delta {w_k}(x, t)}}{{\partial {x^2}}}} \Big]{\rm{d}}x} {}\\ & = & - g\int_0^l {{{\Big( {\frac{{\partial \tilde \Delta {w_k}(x, t)}}{{\partial t}}} \Big)}^{\rm{T}}}\Big( {{L_{22}} + {{\bf{1}}_{N - 1}} \cdot {\beta ^{\rm{T}}}} \Big){\delta _k}(x, t)} {\rm{d}}x, \end{eqnarray} $

其中

$ \begin{eqnarray} &&\int_0^l {{{\Big( {\frac{{\partial \tilde \Delta {w_k}(x, t)}}{{\partial t}}} \Big)}^{\rm{T}}}} \Big( {{I_{N - 1}} \otimes \mu (x)} \Big)\frac{{{\partial ^2}\tilde \Delta {w_k}(x, t)}}{{\partial {t^2}}}{\rm{d}}x {}\\ & = &\frac{1}{2}\frac{{\rm{d}}}{{{\rm{d}}t}}\int_0^l {{{\Big( {\frac{{\partial \tilde \Delta {w_k}(x, t)}}{{\partial t}}} \Big)}^{\rm{T}}}} \Big( {{I_{N - 1}} \otimes \mu (x)} \Big)\frac{{\partial \tilde \Delta {w_k}(x, t)}}{{\partial t}}{\rm{d}}x, \end{eqnarray} $

$ \begin{eqnarray} && - g\int_0^l {{{\Big( {\frac{{\partial \tilde \Delta {w_k}(x, t)}}{{\partial t}}} \Big)}^{\rm{T}}}\Big( {{L_{22}} + {{\bf{1}}_{N - 1}} \cdot {\beta ^{\rm{T}}}} \Big){\delta _k}(x, t)} {\rm{d}}x {}\\ & \le &\frac{{{c_1}}}{2}\Big\{ {{{\int_0^l {\left\| {\frac{{\partial \tilde \Delta {w_k}(x, t)}}{{\partial t}}} \right\|} }^2}{\rm{d}}x + \int_0^l {{{\left\| {{\delta _k}(x, t)} \right\|}^2}} {\rm{d}}x} \Big\}, \end{eqnarray} $

这里$ {c_1} = \left| g \right|\left\| {{L_{22}} + {{\bf{1}}_{N - 1}} \cdot {\beta ^{\rm{T}}}} \right\| $.利用分部积分并结合假设$ \rm2.3 $,有

$ \begin{eqnarray} &&{\int_0^l {\Big( {\frac{{\partial \tilde \Delta {w_k}(x, t)}}{{\partial t}}} \Big)} ^{\rm{T}}}\frac{{{\partial ^2}}}{{\partial {x^2}}}\Big[ {({I_{N - 1}} \otimes EI(x))\frac{{{\partial ^2}\tilde \Delta {w_k}(x, t)}}{{\partial {x^2}}}} \Big]{\rm{d}}x{}\\ & = &\Big( {{{\Big( {\frac{{\partial \tilde \Delta {w_k}(x, t)}}{{\partial t}}} \Big)}^{\rm{T}}}\frac{\partial }{{\partial x}}\Big[ {({I_{N - 1}} \otimes EI(x))\frac{{{\partial ^2}\tilde \Delta {w_k}(x, t)}}{{\partial {x^2}}}} \Big]} \Big) \Big|_0^l{}\\ && - \int_0^l {{{\Big( {\frac{{{\partial ^2}\tilde \Delta {w_k}(x, t)}}{{\partial t\partial x}}} \Big)}^{\rm{T}}}\frac{\partial }{{\partial x}}\Big[ {\Big( {{I_{N - 1}} \otimes EI(x)} \Big)\frac{{{\partial ^2}\tilde \Delta {w_k}(x, t)}}{{\partial {x^2}}}} \Big]{\rm{d}}x} {}\\ & = & - \int_0^l {{{\Big( {\frac{{{\partial ^2}\tilde \Delta {w_k}(x, t)}}{{\partial t\partial x}}} \Big)}^{\rm{T}}}\frac{\partial }{{\partial x}}\Big[ {\Big( {{I_{N - 1}} \otimes EI(x)} \Big)\frac{{{\partial ^2}\tilde \Delta {w_k}(x, t)}}{{\partial {x^2}}}} \Big]{\rm{d}}x} {}\\ & = & { - \Big( {{{\Big( {\frac{{\partial \tilde \Delta {w_k}(x, t)}}{{\partial t\partial x}}} \Big)}^{\rm{T}}}\Big( {{I_{N - 1}} \otimes EI(x)} \Big)\frac{{{\partial ^2}\tilde \Delta {w_k}(x, t)}}{{\partial {x^2}}}} \Big)} \Big|_0^l\\ &&{\rm{ + }}\int_0^l {{{\Big( {\frac{{{\partial ^3}\tilde \Delta {w_k}(x, t)}}{{\partial t\partial {x^2}}}} \Big)}^{\rm{T}}}\Big( {{I_{N - 1}} \otimes EI(x)} \Big)\frac{{{\partial ^2}\tilde \Delta {w_k}(x, t)}}{{\partial {x^2}}}{\rm{d}}x} \\ & = & \frac{1}{2}\frac{{\rm{d}}}{{{\rm{d}}t}}\int_0^l {{{\Big( {\frac{{{\partial ^2}\tilde \Delta {w_k}(x, t)}}{{\partial {x^2}}}} \Big)}^{\rm{T}}}\Big( {{I_{N - 1}} \otimes EI(x)} \Big)\frac{{{\partial ^2}\tilde \Delta {w_k}(x, t)}}{{\partial {x^2}}}{\rm{d}}x}. \end{eqnarray} $

$ \rm(3.9)–(3.11) $式代入$ \rm(3.8) $式,并结合$ \rm(2.2) $式,有

这里$ {c_2} = \frac{{{c_1}}}{{{\mu _1}}} $.利用Gronwall引理并结合假设$ \rm2.2 $, $ \rm(2.2) $式和$ \rm(2.3) $式,有

因此

$ \begin{eqnarray} &&\mathop {\sup }\limits_{t \in [0, T]} \Big\{ {{{\rm{e}}^{ - \lambda t}}\int_0^l {{{\Big( {\frac{{\partial \tilde \Delta {w_k}(x, t)}}{{\partial t}}} \Big)}^{\rm{T}}}} ({I_{N - 1}} \otimes \mu (x))\frac{{\partial \tilde \Delta {w_k}(x, t)}}{{\partial t}}{\rm{d}}x} \Big\}\\ &\le &\mathop {\sup }\limits_{t \in [0, T]} \{ {{{\rm{e}}^{ - \lambda t}}\int_0^l {{{\Big( {\frac{{\partial \tilde \Delta {w_k}(x, t)}}{{\partial t}}} \Big)}^{\rm{T}}}} ({I_{N - 1}} \otimes \mu (x))\frac{{\partial \tilde \Delta {w_k}(x, t)}}{{\partial t}}{\rm{d}}x}\\ & &{ + {{\rm{e}}^{ - \lambda t}}\int_0^l {{{\Big( {\frac{{{\partial ^2}\tilde \Delta {w_k}(x, t)}}{{\partial {x^2}}}} \Big)}^{\rm{T}}}} ({I_{N - 1}} \otimes EI(x))\frac{{{\partial ^2}\tilde \Delta {w_k}(x, t)}}{{\partial {x^2}}}{\rm{d}}x} \Big\}\\ & \le& {c_1}{{\rm{e}}^{{c_2}T}}\mathop {\sup }\limits_{t \in [0, T]} \Big\{ {\frac{{1 - {{\rm{e}}^{ - \lambda t}}}}{\lambda }} \Big\}\mathop {\sup }\limits_{t \in [0, T]} \Big\{ {{{\rm{e}}^{ - \lambda t}}\int_0^l {{{\left\| {{\delta _k}(x, t)} \right\|}^2}{\rm{d}}x} } \Big\}\\ &&{\rm{ + }}\mathop {\sup }\limits_{t \in [0, T]} \Big\{ {{{\rm{e}}^{ - \lambda t}}} \Big\}{\rm{4}}l{{\rm{e}}^{{c_2}T}}(N - 1)({\mu _2}\varepsilon _2^2 + E{I_2}\varepsilon _1^2)\\ &\le& {c_1}{{\rm{e}}^{{c_2}T}}\frac{{1 - {{\rm{e}}^{ - \lambda T}}}}{\lambda }\mathop {\sup }\limits_{t \in [0, T]} \Big\{ {{{\rm{e}}^{ - \lambda t}}\int_0^l {{{\left\| {{\delta _k}(x, t)} \right\|}^2}{\rm{d}}x} } \Big\} {\rm{ + }}4l{{\rm{e}}^{{c_2}T}}(N - 1)({\mu _2}\varepsilon _2^2 + E{I_2}\varepsilon _1^2). {\qquad} \end{eqnarray} $

另一方面,应用基本不等式,有

使用Gronwall引理并结合假设$ \rm2.2 $,可得

$ k > 1 $,结合$ \rm(2.2) $式,有

$ \begin{eqnarray} &&\mathop {\sup }\limits_{t \in [0, T]} \Big\{ {{{\rm e}^{ - \lambda t}}\int_0^l {{{\left\| {\tilde \Delta {w_k}(x, t)} \right\|}^2}{\rm{d}}x} } \Big\}\\ & \le& \mathop {\sup }\limits_{t \in [0, T]} \Big\{ {\frac{{1 - {{\rm{e}}^{ - (\lambda - 1)t}}}}{{\lambda - 1}}} \Big\}\mathop {\sup }\limits_{t \in [0, T]} \Big\{ {{{\rm{e}}^{ - \lambda t}}\int_0^l {{{\left\| {\frac{{\partial \tilde \Delta {w_k}(x, t)}}{{\partial t}}} \right\|}^2}{\rm{d}}x} } \Big\} + \mathop {\sup }\limits_{t \in [0, T]} \Big\{ {{{\rm{e}}^{ - \lambda t}}} \Big\}4l{{\rm{e}}^T}(N - 1)\varepsilon _1^2\\ & = & \frac{{1 - {{\rm{e}}^{ - (\lambda - 1)T}}}}{{\lambda - 1}}\mathop {\sup }\limits_{t \in [0, T]} \Big\{ {{{\rm{e}}^{ - \lambda t}}\int_0^l {{{\left\| {\frac{{\partial \tilde \Delta {w_k}(x, t)}}{{\partial t}}} \right\|}^2}{\rm{d}}x} } \Big\} + 4l{{\rm{e}}^T}(N - 1)\varepsilon _1^2\\ &\le& \frac{{1 - {{\rm{e}}^{ - (\lambda - 1)T}}}}{{\lambda - 1}}\frac{1}{{{\mu _1}}}\mathop {\sup }\limits_{t \in [0, T]} \Big\{ {{{\rm{e}}^{ - \lambda t}}\int_0^l {{{\Big( {\frac{{\partial \tilde \Delta {w_k}(x, t)}}{{\partial t}}} \Big)}^{\rm{T}}}\Big( {{I_{N - 1}} \otimes \mu (x)} \Big)\frac{{\partial \tilde \Delta {w_k}(x, t)}}{{\partial t}}{\rm{d}}x} } \Big\}\\ && + 4l{{\rm e}^T}(N - 1)\varepsilon _1^2. \end{eqnarray} $

$ \rm(3.12) $式代入$ \rm(3.13) $式,可得

$ \begin{eqnarray} &&\mathop {\sup }\limits_{t \in [0, T]} \Big\{ {{{\rm{e}}^{ - \lambda t}}\int_0^l {{{\left\| {\tilde \Delta {w_k}(x, t)} \right\|}^2}{\rm{d}}x} } \Big\}\\ &\le& \frac{{1 - {{\rm{e}}^{ - (\lambda - 1)T}}}}{{\lambda - 1}}\frac{1}{{{\mu _1}}}\Big\{ {{c_1}{{\rm{e}}^{{c_2}T}}\frac{{1 - {{\rm{e}}^{ - \lambda T}}}}{\lambda }\mathop {\sup }\limits_{t \in [0, T]} \Big\{ {{{\rm{e}}^{ - \lambda t}}\int_0^1 {{{\left\| {{\delta _k}(x, t)} \right\|}^2}{\rm{d}}x} } \Big\}} \Big\}\\ &&+ \frac{{1 - {{\rm{e}}^{ - (\lambda - 1)T}}}}{{\lambda - 1}}\frac{1}{{{\mu _1}}}4l{{\rm{e}}^{{c_2}T}}(N - 1)({\mu _2}\varepsilon _2^2 + E{I_2}\varepsilon _1^2) + 4l{{\rm{e}}^T}(N - 1)\varepsilon _1^2. \end{eqnarray} $

由于$ {{\mathbb R}^{N - 1}} $中所有的范数都是等价的,所以存在两个正数$ \tau $$ \sigma $使得

$ \begin{equation} \left\| {\tilde \Delta {w_k}(x, t)} \right\| \ge \tau {\left\| {\tilde \Delta {w_k}(x, t)} \right\|_ * }, \; \; \left\| {{\delta _k}(x, t)} \right\| \le \sigma {\left\| {{\delta _k}(x, t)} \right\|_ * }. \end{equation} $

因此,结合$ \rm(3.14) $式和$ \rm(3.15) $式,有

$ \begin{eqnarray} &&\mathop {\sup }\limits_{t \in [0, T]} \Big\{ {{{\rm{e}}^{ - \lambda t}}\int_0^l {\left\| {\tilde \Delta {w_k}(x, t)} \right\|_{\rm{*}}^2{\rm{d}}x} } \Big\} {}\\ & \le& \mathop {\frac{1}{{{\tau ^2}}}\sup }\limits_{t \in [0, T]} \Big\{ {{{\rm{e}}^{ - \lambda t}}\int_0^l {{{\left\| {\tilde \Delta {w_k}(x, t)} \right\|}^2}{\rm{d}}x} } \Big\} {}\\ &\le &\frac{{{\sigma ^2}}}{{{\tau ^2}}}\frac{{1 - {{\rm{e}}^{ - (\lambda - 1)T}}}}{{\lambda - 1}}\frac{1}{{{\mu _1}}}\Big\{ {{c_1}{{\rm{e}}^{{c_2}T}}\frac{{1 - {{\rm{e}}^{ - \lambda T}}}}{\lambda }\mathop {\sup }\limits_{t \in [0, T]} \Big\{ {{{\rm{e}}^{ - \lambda t}}\int_0^l {\left\| {{\delta _k}(x, t)} \right\|_*^2{\rm{d}}x} } \Big\}} \Big\}\\ &&+ \frac{1}{{{\tau ^2}}}\frac{{1 - {{\rm{e}}^{ - (\lambda - 1)T}}}}{{\lambda - 1}}\frac{1}{{{\mu _1}}}4l{{\rm{e}}^{{c_2}T}}(N - 1)({\mu _2}\varepsilon _2^2 + E{I_2}\varepsilon _1^2) + \frac{1}{{{\tau ^2}}}4l{{\rm{e}}^T}(N - 1)\varepsilon _1^2. \end{eqnarray} $

$ \rm(3.16) $式代入$ \rm(3.7) $式,有

这里

$ \rm(3.6) $式可知$ 0 \le (1 + \varepsilon ){\bar \rho ^2} < 1 $,所以能选取足够大的$ \lambda $使得$ \mathord{\buildrel{\lower3pt\hbox{$ \frown$}} \over \rho } {\rm{ <1 }} $.根据引理$ \rm2.2 $,即得

进一步有

再由$ \rm(3.15) $式可得

于是

由此可知,任两个智能体之间于$ {L^2} $空间中的一致性误差有界;进一步,若

$ {\varepsilon _i}{\rm{ = }}0 $, $ i = 1, 2 $,我们可以得

定理3.1证毕.

4 仿真算例

考虑由四阶梁方程构建而成的如下四个智能体($ \mu (x) = EI(x) \equiv 1 $, $ F = B = 1 $)

$ (x, t) \in (0, 1) \times [0, 0.5] $,其网络拓扑结构如图 1,则邻接矩阵为

图 1

图 1   网络拓扑$ G $


显然对应的图$ G $存在生成树.当$ 0 < g < 1 $,能推得(3.2)式成立.由此,取$ g = 0.5 $,设置$ k $次迭代时的初、边值条件为: $ {w_{i, k}}(x, 0) = (1 + {\varepsilon _{1, k}}) \times 0.0001 \times i \times {x^2}{(1 - x)^2} $, $ \frac{{\partial {w_{i, k}}(x, 0)}}{{\partial t}} = {\varepsilon _{2, k}} $, $ x \in [0, 1] $; $ {w_{i, k}}(0, t) = {w_{i, k}}(1, t) = {\left. {\frac{{\partial {w_{i, k}}(x, t)}}{{\partial x}}} \right|_{x = 0}} = {\left. {\frac{{\partial {w_{i, k}}(x, t)}}{{\partial t}}} \right|_{t = 0}} \equiv 0 $, $ t \in [0, T] $; $ i = 1, 2, 3, 4 $.设置初始控制为: $ {u_{1, 0}}(x, t) = {u_{2, 0}}(x, t) $$ = {u_{3, 0}}(x, t) = {u_{4, 0}}(x, t) \equiv 0 $.在学习律(3.1)的作用下,有:当$ {\varepsilon _{1, k}} $, $ {\varepsilon _{2, k}} $$ \Big[ { - 5 \times {{10}^{ - 9}}, 5 \times {{10}^{ - 9}}} \Big] $上随机取值时, $ {\left\| {{\delta _{i, k}}} \right\|_{{L^2}, s}} $则的仿真结果如图 2,从图 2可看出,系统的一致性误差于$ {L^2} $空间中有界;当$ {\varepsilon _{1, k}} = {\varepsilon _{2, k}} = 0 $时,则$ {\left\| {{\delta _{i, k}}} \right\|_{{L^2}, s}} $的仿真结果如图 3,从图 3可看出,系统的一致性误差随着迭代学习次数的增加而趋于零.

图 2

图 2   有初始偏差时迭代系统的仿真结果($ k = 8 $)


图 3

图 3   无初始偏差时迭代系统的仿真结果($ k = 8 $)


5 结论

本文研究了一类四阶分布参数多智能体系统的迭代学习控制算法,构建了基于一致性的P型学习律.当P型学习律作用于系统时,任两个智能体之间于$ {L^2} $空间中的一致性误差有界,进一步,当无初始偏差时,任两个智能体之间的一致性误差能够沿着迭代轴方向收敛于零.仿真结果验证了理论分析.关于分布参数系统的控制设计,还有一类是边界控制[34],今后将进一步研究高阶偏微分多智能体系统的边界迭代学习控制问题.

参考文献

Arimoto S, Kawamura S, Miyazaki F. Bettering operation of Robots by learning. 1984, 1(2): 123-140

[本文引用: 2]

Zeungnam B , Dong-Hwan H , Sang-Rok O .

A nonlinear iterative learning method for robot path control

Robotica, 1991, 9 (4): 387- 392

DOI:10.1017/S0263574700000564     

Sun M , Wang D .

Iterative learning control with initial rectifying action

Automatica, 2002, 38 (7): 1177- 1182

DOI:10.1016/S0005-1098(02)00003-1     

Chen Y , Wen C , Gong Z , et al.

An iterative learning controller with initial state learning

IEEE Transactions on Automatic Control, 1999, 44 (2): 371- 376

DOI:10.1109/9.746269      [本文引用: 1]

Freeman C T , CaiZ L , Roers E , et al.

Iterative learning control for multiple point-to-point tracking application

IEEE Transactions on Control Systems Technology, 2011, 19 (3): 590- 600

DOI:10.1109/TCST.2010.2051670      [本文引用: 1]

Ruan X E , Bien Z , Wang Q .

Convergence characteristics of proportional-type iterative learning control in the sense of Lebesgue-p norm

IET Control Theory and Applications, 2012, 6 (5): 707- 714

DOI:10.1049/iet-cta.2010.0388     

Xu J X , Tan Y .

On the P-type and Newton-type ILC schemes for dynamic systems with non-affine-in-input factors

Automatica, 2002, 38 (7): 1237- 1242

DOI:10.1016/S0005-1098(02)00021-3      [本文引用: 1]

Bristow D A , Tharayil D , Alleyne A G .

A survey of iterative learning control:A learning-method for high-performance tracking control

IEEE Control Systems magazine, 2006, 26 (3): 96- 114

DOI:10.1109/MCS.2006.1636313      [本文引用: 1]

Guo W , Guo B Z .

Stabilization and regulator design for a one-dimensional unstable wave equation with harmonic disturbance

International Journal of Robust and Nonlinear Control, 2013, 23 (5): 514- 533

DOI:10.1002/rnc.1843      [本文引用: 1]

Orlov Y , Pisano A , Usai E .

Exponential stabilization of the uncertain wave equation via distributed dynamic input extension

IEEE Transactions on Automatic Control, 2011, 56 (1): 212- 217

URL     [本文引用: 1]

Fu Q , Gu W G , Gu P P , Wu J R .

Feedback control for a class of second order hyperbolic distributed parameter systems

Science China Information Sciences, 2016, 59 (9): 092206

DOI:10.1007/s11432-016-5554-4      [本文引用: 1]

Pisano A , Orlov Y , Usai E .

Tracking control of the uncertain heat and wave equation via power-fractional and sliding-mode techniques

SIAM Journal on Control and Optimization, 2011, 49 (2): 363- 382

DOI:10.1137/090781140      [本文引用: 1]

Fairweather G .

Galerkin methods for vibration problems in two space variables

SIAM Journal on Numerical Analysis, 1972, 9 (4): 702- 714

DOI:10.1137/0709059      [本文引用: 1]

Li B , Faiweather G , Bialecki B .

Discrete-time orthogonal spline collocation methods for vibration problem

SIAM Journal on Numerical Analysis, 2002, 39 (6): 2045- 2065

DOI:10.1137/S0036142900348729     

Haddadpour H .

An exact solution for variable coefficients fourth-order wave equation using the Adomian method

Mathematical and Computer Modelling, 2006, 44 (11/12): 1144- 1152

URL     [本文引用: 7]

Liu Y C , Xu R Z .

Fourth order wave equations with nonlinear strain and source terms

Journal of Mathematical Analysis and Applications, 2007, 331 (1): 585- 607

DOI:10.1016/j.jmaa.2006.09.010     

Zhang J Y .

Global existence for rough solutions of a fourth-order nonlinear wave equation

Journal of Mathematical Analysis and Applications, 2010, 369 (2): 635- 644

DOI:10.1016/j.jmaa.2010.04.003     

Wang Y J , Wang Y F .

On the initial-boundary problem for fourth order wave equations with damping, strain and source terms

Journal of Mathematical Analysis and Applications, 2013, 405 (1): 116- 127

URL    

He S R , Li H , Liu Y .

Analysis of mixed finite element methods for fourth-order wave equations

Computer and Mathematics with Applications, 2013, 65 (1): 1- 16

DOI:10.1016/j.camwa.2012.10.002      [本文引用: 2]

Fu Q , Gu P P , Wu J R .

Iterative learning control for one-dimensional fourth order distributed parameter systems

Science China Information Sciences, 2017, 60 (1): 012204

DOI:10.1007/s11432-015-1031-6      [本文引用: 2]

Ren W , Beard W . Distributed Consensus in Multi-vehicle Cooperative Cotrol. London: Springer, 2008

[本文引用: 1]

Lara B A , Alexandre S , Carlos C W .

Cooperative control design for time-varying formations of multi-agent systems

IEEE Transactions on Automatic Control, 2014, 59 (8): 2283- 2288

DOI:10.1109/TAC.2014.2303213      [本文引用: 1]

Su Y F , Huang J .

Cooperative output regulation of linear multi-agent systems

IEEE Transactions on Automatic Control, 2012, 57 (99): 1062- 1066

URL    

Liu L .

Robust cooperative output regulation problem for non-linear multi-agent systems

IET Control Theory and Applications, 2012, 6 (13): 2142- 2148

DOI:10.1049/iet-cta.2011.0575     

Shi P , Shen Q K .

Cooperative control of multi-agent systems with unknown state-dependent controlling effects

IEEE Transactions on Automation Science and Engineering, 2015, 12 (3): 827- 834

DOI:10.1109/TASE.2015.2403261      [本文引用: 1]

Reza O S , Richard M M .

Consensus problems in networks of agents with switching topology and timedelays

IEEE Transactions on Automatic Control, 2004, 49 (9): 1520- 1533

DOI:10.1109/TAC.2004.834113      [本文引用: 1]

Ma C Q , Zhang J F .

Necessary and sufficient conditions for consensusability of linear multi-agent systems

IEEE Transactions on Automatic Control, 2010, 55 (5): 1263- 1268

DOI:10.1109/TAC.2010.2042764     

Hu J , Lin Y S .

Consensus control for multi-agent systems with double-integrator dynamics and time-delays

IET Control Theory and Applications, 2010, 4 (1): 109- 118

DOI:10.1049/iet-cta.2008.0479     

Su S Z , Lin Z L .

Distributed consensus control of multi-agent systems with higher order agent dynamics and dynamically changing directed interaction topologies

IEEE Transactions on Automatic Control, 2016, 61 (2): 515- 519

URL     [本文引用: 1]

Fu Q , Du L L , Xu G Z , et al.

Consensus control for multi-agent systems with distributed parameter models via iterative learning algorithm

Journal of the Franklin Institute, 2018, 355, 4453- 4472

DOI:10.1016/j.jfranklin.2018.04.033      [本文引用: 7]

Dai X S , Wang C , Tian S P , et al.

Consensus control via iterative learning for distributed parameter models multi-agent systems with time-delay

Journal of the Franklin Institute, 2019, 356, 5240- 5259

DOI:10.1016/j.jfranklin.2019.05.015      [本文引用: 1]

Fu Q , Gu P P , Li X D , et al.

Iterative learning control approach for consensus of multi-agent systems with regular linear dynamics

Science China Information Sciences, 2017, 60, 079202:1- 079202:3

URL     [本文引用: 1]

Horn R A , Johnson C R . Matrix Analysis. Cambridge: Cambridge University Press, 1985

[本文引用: 1]

He C , Li J M .

Robust boundary iterative learning control for a class of nonlinear hyperbolic systems with unmatched uncertainties and disturbance

Neurocomputing, 2018, 321, 332- 345

DOI:10.1016/j.neucom.2018.09.020      [本文引用: 1]

/