确定热方程未知源问题的超阶正则化方法
A Super Order Regularization Method for Determination of an Unknown Source in the Heat Equation
通讯作者:
收稿日期: 2019-02-18
基金资助: |
|
Received: 2019-02-18
Fund supported: |
|
该文研究了热传导方程中未知源的确定问题.针对问题的不适定性,提出了一种结合超阶惩罚项的Tikhonov正则化方法.在由偏差原理选取正则化参数情况下,方法能够在不同光滑条件下获得最优收敛阶.计算过程不需要事先知道光滑度和精确解的先验界.数值试验表明,该方法是有效和稳定的.
关键词:
The problem for determining an unknown source in the heat equation is considered in this paper. We present a Tikhonov regularization method with a super order penalty term to deal with illposedness of the problem. The regularization parameter is chosen by a discrepancy principle and the order optimal error bounds can be obtained for various smooth conditions. The smoothness parameter and the a priori bound of exact solution are not needed in the numerical process. Numerical tests show that the proposed method is effective and stable.
Keywords:
本文引用格式
赵振宇, 林日光, 李志, 梅端.
Zhao Zhenyu, Lin Riguang, Li Zhi, Mei Duan.
1 引言
本文考虑如下热方程未知源问题[6]
其中
这里
对本文问题而言,利用傅里叶变换,可以得到问题(1.1)的解如下[6]:
这里
为g的傅里叶变换,其中
显而易见,
此处
其中
本文安排如下:第2节给出了带超阶罚项的吉洪诺夫正则化方法的构造及一些辅助结果.正则化参数的选取和相应的收敛结果可以在第3节中找到.第4节通过数值实验验证了该方法的有效性.
2 求解问题(1.1)的结合超阶罚项的吉洪诺夫正则化方法
定义
以及
令
其中
可以导出
可得
因此如果定义
则正则化解
本文借鉴了文献[12]推导高阶方法的过程来建立超阶方法的框架,首先给出一些辅助性结果.
引理2.1[12] 假设
那么我们有
以及
引理2.2[12] 对于任意
引理2.3 如果条件(1.6)成立,则
其中
证 由Parseval公式
以及
引理2.3证毕.
引理2.4[21] 如果
引理2.5 假设函数族
其中
证 可以证明存在一个常数
不失一般性,我们仅证明
则由三角不等式
现在我们分别来估计
对于第二项
引理2.5证毕.
定理2.1 假设条件(1.2), (1.6)成立,
其中
证 令
定义
进而
以及
令
如果选取
则有
由(2.13), (2.28), (2.29), (2.31)及(2.32)式,有
则存在常数
所以有
进一步由(1.2)式, (2.24)式及三角不等式得
由(2.36)式, (2.37)式及引理2.4即可得到结论.
3 数值例子
本文方法可以由快速傅里叶变换实现,考虑如下例子.
例[6] 容易验证函数对
为问题(1.1)当取
时的解.因为当
表 1 数值结果展示
M2 | M1 | |||
1e-1 | 9.18e-2 | 8.68e-2 | 8.90e-2 | 9.68e-2 |
1e-2 | 1.81e-2 | 1.54e-2 | 1.47e-2 | 1.41e-2 |
1e-3 | 2.91e-3 | 2.24e-3 | 1.98e-3 | 1.58e-3 |
1e-4 | 5.99e-4 | 2.81e-4 | 2.25e-4 | 1.75e-4 |
4 结论
本文提出了一种识别热方程未知源问题的吉洪诺夫方法,引入了新的罚项改进了以往方法的一些缺点.理论显示方法对于任意光滑度均是按阶最优的.数值实验进一步验证了方法的有效性.
参考文献
Determination of the unknown sources in the heat-conduction equation
,
Structural identification of an unknown source term in a heat equation
,
Uniqueness and stability of 3d heat sources
,DOI:10.1088/0266-5611/7/1/006 [本文引用: 1]
Numerical differentiation by a fourier extension method with super-order regularization
,DOI:10.1016/j.cam.2017.11.024 [本文引用: 1]
Conditional stability in determining a heat source
,
Optimal error bound and Fourier regularization for identifying an unknown source in the heat equation
,
On an inverse source problem for the heat equation. Application to a pollution detection problem
,
The boundary-element method for the determination of a heat source dependent on one variable
,DOI:10.1007/s10665-005-9023-0 [本文引用: 1]
Data compatibility and conditional stability for an inverse source problem in the heat equation
,
Identification of source locations in two-dimensional heat equations
,
Regularization in hilbert scales under general smoothing conditions
,
A sequential method of solving inverse natural convection problems
,
Inverse source problem and active shielding for composite domains
,DOI:10.1016/j.aml.2006.05.019 [本文引用: 1]
Conditional stability in determination of force terms of heat equations in a rectangle
,
The method of fundamental solutions for the inverse heat source problem
,DOI:10.1016/j.enganabound.2007.08.002 [本文引用: 1]
A meshless method for solving an inverse spacewise-dependent heat source problem
,
The truncation method for identifying an unknown source in the poisson equation
,
The modified regularization method for identifying the unknown source on poisson equation
,
Source term identification in 1-D IHCP
,DOI:10.1016/j.camwa.2002.11.025 [本文引用: 1]
A modified Tikhonov regularization method for identifying an unknown source in the heat equation
,
/
〈 | 〉 |