确定热方程未知源问题的超阶正则化方法
A Super Order Regularization Method for Determination of an Unknown Source in the Heat Equation
通讯作者:
收稿日期: 2019-02-18
基金资助: |
|
Received: 2019-02-18
Fund supported: |
|
该文研究了热传导方程中未知源的确定问题.针对问题的不适定性,提出了一种结合超阶惩罚项的Tikhonov正则化方法.在由偏差原理选取正则化参数情况下,方法能够在不同光滑条件下获得最优收敛阶.计算过程不需要事先知道光滑度和精确解的先验界.数值试验表明,该方法是有效和稳定的.
关键词:
The problem for determining an unknown source in the heat equation is considered in this paper. We present a Tikhonov regularization method with a super order penalty term to deal with illposedness of the problem. The regularization parameter is chosen by a discrepancy principle and the order optimal error bounds can be obtained for various smooth conditions. The smoothness parameter and the a priori bound of exact solution are not needed in the numerical process. Numerical tests show that the proposed method is effective and stable.
Keywords:
本文引用格式
赵振宇, 林日光, 李志, 梅端.
Zhao Zhenyu, Lin Riguang, Li Zhi, Mei Duan.
1 引言
本文考虑如下热方程未知源问题[6]
其中
这里
对本文问题而言,利用傅里叶变换,可以得到问题(1.1)的解如下[6]:
这里
为g的傅里叶变换,其中
显而易见,
此处
其中
本文安排如下:第2节给出了带超阶罚项的吉洪诺夫正则化方法的构造及一些辅助结果.正则化参数的选取和相应的收敛结果可以在第3节中找到.第4节通过数值实验验证了该方法的有效性.
2 求解问题(1.1)的结合超阶罚项的吉洪诺夫正则化方法
定义
以及
令
其中
可以导出
可得
因此如果定义
则正则化解
本文借鉴了文献[12]推导高阶方法的过程来建立超阶方法的框架,首先给出一些辅助性结果.
引理2.1[12] 假设
那么我们有
以及
引理2.2[12] 对于任意
引理2.3 如果条件(1.6)成立,则
其中
证 由Parseval公式
以及
引理2.3证毕.
引理2.4[21] 如果
引理2.5 假设函数族
其中
证 可以证明存在一个常数
不失一般性,我们仅证明
则由三角不等式
现在我们分别来估计
对于第二项
引理2.5证毕.
定理2.1 假设条件(1.2), (1.6)成立,
其中
证 令
定义
进而
以及
令
如果选取
则有
由(2.13), (2.28), (2.29), (2.31)及(2.32)式,有
则存在常数
所以有
进一步由(1.2)式, (2.24)式及三角不等式得
由(2.36)式, (2.37)式及引理2.4即可得到结论.
3 数值例子
本文方法可以由快速傅里叶变换实现,考虑如下例子.
例[6] 容易验证函数对
为问题(1.1)当取
时的解.因为当
表 1 数值结果展示
M2 | M1 | |||
1e-1 | 9.18e-2 | 8.68e-2 | 8.90e-2 | 9.68e-2 |
1e-2 | 1.81e-2 | 1.54e-2 | 1.47e-2 | 1.41e-2 |
1e-3 | 2.91e-3 | 2.24e-3 | 1.98e-3 | 1.58e-3 |
1e-4 | 5.99e-4 | 2.81e-4 | 2.25e-4 | 1.75e-4 |
4 结论
本文提出了一种识别热方程未知源问题的吉洪诺夫方法,引入了新的罚项改进了以往方法的一些缺点.理论显示方法对于任意光滑度均是按阶最优的.数值实验进一步验证了方法的有效性.
参考文献
Determination of the unknown sources in the heat-conduction equation
Structural identification of an unknown source term in a heat equation
Uniqueness and stability of 3d heat sources
DOI:10.1088/0266-5611/7/1/006 [本文引用: 1]
Numerical differentiation by a fourier extension method with super-order regularization
DOI:10.1016/j.cam.2017.11.024 [本文引用: 1]
Conditional stability in determining a heat source
Optimal error bound and Fourier regularization for identifying an unknown source in the heat equation
On an inverse source problem for the heat equation. Application to a pollution detection problem
The boundary-element method for the determination of a heat source dependent on one variable
DOI:10.1007/s10665-005-9023-0 [本文引用: 1]
Data compatibility and conditional stability for an inverse source problem in the heat equation
Identification of source locations in two-dimensional heat equations
Regularization in hilbert scales under general smoothing conditions
A sequential method of solving inverse natural convection problems
Inverse source problem and active shielding for composite domains
DOI:10.1016/j.aml.2006.05.019 [本文引用: 1]
Conditional stability in determination of force terms of heat equations in a rectangle
The method of fundamental solutions for the inverse heat source problem
DOI:10.1016/j.enganabound.2007.08.002 [本文引用: 1]
A meshless method for solving an inverse spacewise-dependent heat source problem
The truncation method for identifying an unknown source in the poisson equation
The modified regularization method for identifying the unknown source on poisson equation
Source term identification in 1-D IHCP
DOI:10.1016/j.camwa.2002.11.025 [本文引用: 1]
A modified Tikhonov regularization method for identifying an unknown source in the heat equation
/
〈 |
|
〉 |
