Loading [MathJax]/jax/element/mml/optable/BasicLatin.js

数学物理学报, 2020, 40(3): 705-716 doi:

论文

基于变分方法的脉冲微分方程耦合系统解的存在性和多重性

姚旺进,

Existence and Multiplicity of Solutions for a Coupled System of Impulsive Differential Equations via Variational Method

Yao Wangjin,

收稿日期: 2019-03-13  

Received: 2019-03-13  

作者简介 About authors

姚旺进,E-mail:13635262963@163.com , E-mail:13635262963@163.com

摘要

该文通过变分法研究一类带有p-Laplacian算子的脉冲耦合系统Dirichlet边值问题解的存在性和多重性.

关键词: 变分法 ; p-Laplace ; 脉冲耦合系统

Abstract

In this paper, we consider a class of coupled system of impulsive differential equations with p-Laplacian operator and obtain the existence and multiplicity of solutions of it with Dirichlet boundary conditions via variational method.

Keywords: Variational method ; p-Laplace ; Coupled system with impulses

PDF (321KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

姚旺进. 基于变分方法的脉冲微分方程耦合系统解的存在性和多重性. 数学物理学报[J], 2020, 40(3): 705-716 doi:

Yao Wangjin. Existence and Multiplicity of Solutions for a Coupled System of Impulsive Differential Equations via Variational Method. Acta Mathematica Scientia[J], 2020, 40(3): 705-716 doi:

1 引言

该文考虑如下带有p-Laplacian算子的脉冲耦合系统

{(Φp(u(t)))+g(t)Φp(u(t))=fu(u(t),v(t)), a.e.t[0,T],(Φp(v(t)))+h(t)Φp(v(t))=fv(u(t),v(t)), a.e.t[0,T],Δpu(tj)=ϕp(u(t+j))ϕp(u(tj))=Ij(u(tj)), j=1,2,,n,Δpv(tj)=ϕp(v(t+j))ϕp(v(tj))=Jj(v(tj)), j=1,2,,n,u(0)=u(T)=v(0)=v(T)=0,
(1.1)

其中Φp(x)=|x|p2x,p>1, 0=t0<t1<t2<<tn<tn+1=T,g,hL[0,T], fu,fv:R2R为连续函数,且函数Ij,Jj:RR, j=1,2,,n是连续的.

随着科学与技术的发展,越来越多的科学家发现由脉冲微分方程所建立的数学模型能更加精确的描述现实世界中事物发展的瞬时突变现象.由于脉冲现象的广泛存在,使得脉冲微分方程理论在生物学、医学、物理学等学科中都具有广泛的应用.对于脉冲微分方程的研究,已经有众多的学者做过深入的探讨,其中有许多经典的方法,如不动点理论,拓扑度理论和比较法(包含上下解法和单调迭代法)等.近20多年来,用变分法研究脉冲微分方程得到广泛的关注,具体可参考文献[1-4, 7-10, 12, 15-17].

对于带有p-Laplacian算子的微分方程的研究可以追溯到上世纪80年代,最早研究的是Esteban-Vazquez[5]和Herrero-Vazquez[6],研究结果所归结的模型为

{(Φp(u))=q(t)f(t,u,u),u(0)=a,u(1)=b

{(Φp(u))=q(t)f(t,u,u),u(0)=a,u(1)=b.

此后,关于带有p-Laplacian算子的问题的研究备受数学家们的重视并不断发展.最早用变分法研究带有p-Laplacian算子的脉冲微分方程是田雨和葛渭高教授,在文献[13]中,他们研究了一类带有Sturm-Liouville边界的脉冲微分方程,通过变分法证明方程至少存在两个正解.之后, Nieto-O'Regan[10]用变分法研究了一类二阶脉冲微分方程的线性问题和非线性问题,对这一领域的发展做出了标志性的贡献.此后,变分法作为一种新的方法研究非连续的问题(如脉冲问题)得到迅速发展,并取得了丰富的成果,具体如下:

在文献[2]中, Chen-Tang研究了如下带有p-Laplacian算子的脉冲微分方程

{(|u(t)|p2u(t))+g(t)|u(t)|p2u(t)=f(t,u(t)), a.e.t[0,T],u(tj)=|u(t)|p2u(t+j)|u(tj)|p2u(tj)=Ij(u(tj)), j=1,,n,u(0)=u(T)=0,
(1.2)

其中p2, 0=t0<t1<t2<<tn<tn+1=T, f:[0,T]×RR是连续的, gL[0,T], Ij:RR,j=1,2,,n是连续的.他们通过临界点理论得到问题(1.2)存在一个非平凡解,至少存在一个非平凡解和有无穷多解.

在文献[14]中, Wu-Liu第一次研究了如下脉冲微分方程的耦合系统

{u(t)+g(t)u(t)=fu(u(t),v(t)), a.e.t[0,T],v(t)+h(t)v(t)=fv(u(t),v(t)), a.e.t[0,T],u(0)=u(T)=v(0)=v(T)=0,Δu(tj)=u(t+j)u(tj)=Ij(u(tj)), j=1,,n,Δv(tj)=v(t+j)v(tj)=Jj(v(tj)), j=1,,n,
(1.3)

其中0=t0<t1<t2<<tn<tn+1=T, g,hL[0,T], fu,fv:R2R是连续函数,并且函数Ij,Jj:RR,j=1,2,,n是连续函数, u(t+j),v(t+j)分别表示u,vtj处的右极限, u(tj),v(tj)分别表示u,vtj处的左极限, j=1,2,,n.作者通过极小化方法证明问题(1.3)至少存在一个解.

在硕士论文[18]中,张然在第一部分研究一类带有p-Laplacian算子的脉冲耦合系统的边值问题

{(Φp(u(t)))+λΦp(u(t))=fu(u(t),v(t)), a.e.t[0,T],(Φp(v(t)))+λΦp(v(t))=fv(u(t),v(t)), a.e.t[0,T],u(0)=u(T)=v(0)=v(T)=0,Δpu(tj)=ϕp(u(t+j))ϕp(u(tj))=Ij(u(tj)), j=1,,n,Δpv(tj)=ϕp(v(t+j))ϕp(v(tj))=Jj(v(tj)), j=1,,n,
(1.4)

其中0=t0<t1<t2<<tn<tn+1=T,Φp(x)=|x|p2x, p>1, fu,fv:R2R为连续函数,且函数Ij,Jj:RR是连续的.作者通过对称山路引理证明问题(1.4)有无穷多个弱解.

受到以上文献启发,该文研究问题(1.1),考虑脉冲函数满足两类不同的超线性条件时,通过山路引理和对称山路引理,证明问题(1.1)弱解的存在性和多重性.

接下来建立如下条件:

(H1) (ⅰ)对所有的xR, Ij (j=1,2,,n)满足Ij(x)x0, (Jj(x)x0);

(ⅱ)对所有的xR{0},存在常数vj>0, δj>0, j=1,2,,n,使得x0Ij(s)dsδj|x|vj, (x0Jj(s)dsδj|x|vj);

(ⅲ)对所有的xR{0}, Ij(x)xvjx0Ij(s)ds, (Jj(x)xvjx0Jj(s)ds);

(H1)' (ⅰ)存在常数μ>p,使得Ij(x)xμx0Ij(s)ds<0, (Jj(x)xμx0Jj(s)ds<0);

(ⅱ)存在常数δj>0,使得x0Ij(s)dsδj|x|μ, (x0Jj(s)dsδj|x|μ),其中j=1,2,,n;

(H2) fs(s,t),ft(s,t)=o(|s|p1+|t|p1),当|s|+|t|0.

(H3)存在c>0,M>0且有β>θ>p,使得

|s|+|t|M, f(s,t)c(|s|β+|t|β),

以及

θf(s,t)sfs(s,t)+tft(s,t);

(H3)'存在c>0,M>0且有β>μ>p,使得

|s|+|t|M, f(s,t)c(|s|β+|t|β),

以及

μf(s,t)sfs(s,t)+tft(s,t);

(H4) fs(s,t)ft(s,t)分别关于s,t为奇函数, Ij(x)Jj(x)分别关于x为奇函数, j=1,2,,n.

在该文中,总假设γ>λ1,其中γ=min,且 \lambda_{1} 是如下Dirichlet问题的第一特征值

\left\{\begin{array}{lll} -(\Phi_{p}(u'(t)))'+\lambda\Phi_{p}(u(t)) = 0,~ t\in[0, T], \\ u(0) = u(T) = 0. \end{array}\right.
(1.5)

由以上条件,得到如下结论:

定理1.1  假设条件(H1), (H2), (H3)成立,则问题(1.1)至少存在一个弱解.

定理1.2  假设条件(H1), (H2), (H3), (H4)成立,则问题(1.1)有无穷多个弱解.

定理1.3  假设条件(H1)', (H2), (H3)'成立,则问题(1.1)至少存在一个弱解.

定理1.4  假设条件(H1)', (H2), (H3)', (H4)成立,则问题(1.1)有无穷多个弱解.

2 预备知识

这部分,先介绍下面需要用到的一些定义和引理.

定义2.1[11] ((PS)条件)  设 E 是一个实自反Banach空间,对于任意序列 \{u_{k}\}\subset E ,若 \varphi(u_{k}) 有界且 \varphi'(u_{k})\rightarrow 0, (k\rightarrow +\infty) ,则 \{u_{k}\} 有收敛子列,则称 \varphi 满足Palais-Smale(PS)条件.

引理2.1[11] (山路引理)  设 E 是实Banach空间, \varphi\in C^{1}(E, \mathbb{R} ) 且满足Palais-Smale条件, \varphi(0) = 0 ,若 \varphi 满足如下条件:

(1)存在常数 \rho , \alpha >0 ,使得 \varphi|_{\partial B_{\rho}}\geq \alpha ;

(2)存在 e\in E\backslash B_{\rho} ,使得 \varphi(e)\leq 0 .

那么 \varphi 有临界值 c\geq \alpha

c = \inf \limits_{g\in \Gamma}\max \limits_{s\in [0, 1]}I(g(s)),

其中

\Gamma = \{g\in C([0, T], E)|g(0) = 0, g(T) = e\}.

引理2.2[11] (对称山路引理)  设 E 是一个无限维实Banach空间, \varphi\in C^{1}(E, \mathbb{R}) 是一个满足Palais-Smale的偶泛函,其中 \varphi(0) = 0 ,若 E = V\bigoplus X ,其中 V 是有限维的,且 \varphi 满足:

(1)存在 \rho > 0 \alpha > 0 ,使得对于满足 \|u\| = \rho 的任意 u\in X \varphi(u)\geq \alpha ;

(2)对于 E 中的任意有限维子空间 W ,存在常数 R = R(W) 使得在 W\backslash B_{R(W)} 上有 \varphi(u)\leq 0 .

那么 \varphi 有一个无界的临界值序列.

C[0, T] , L^{p}[0, T] 空间和Sobolev空间 W_{0}^{1, p}(0, T) 上,分别定义如下范数:

\|u\|_{\infty} = \max\limits_{t\in[0, T]}|u(t)|,~ \|u\|_{p} = \bigg(\int_{0}^{T}|u(t)|^{p}\bigg)^{\frac{1}{p}},

\|u\|_{W_{0}^{1, p}(0, T)} = \bigg(\int_{0}^{T}|u'(t)|^{p}+g(t)|u(t)|^{p}{\rm d}t\bigg)^{\frac{1}{p}}.

假设空间 X = W_{0}^{1, p}(0, T)\times W_{0}^{1, p}(0, T) ,则在 X 上的范数定义为

\|(u, v)\|_{X}^{p} = \|u\|_{W_{0}^{1, p}(0, T)}^{p}+\|v\|_{W_{0}^{1, p}(0, T)}^{p}.

接下来,介绍Poincaré不等式:对任意 u\in W_{0}^{1, p}(0, T) ,

\int_{0}^{T}|u'(t)|^{p}{\rm d}t\geq \lambda_{1}\int_{0}^{T}|u(t)|^{p}{\rm d}t,

其中 \lambda_{1} 是问题(1.5)的第一特征值.

引理2.3[2]  如果 g\in L^{\infty}[0, T] , \mathop{{\rm ess}\inf}\limits_{t\in [0, T]}g(t) = d > -\lambda_{1} .则范数 \|\cdot\|_{p} 和范数 \|\cdot\|_{W_{0}^{1, p}(0, T)} 是等价的.

由引理2.3可得如下引理.

引理2.4  假设 \gamma > -\lambda_{1} , \gamma = \min\{\mathop{{\rm ess}\inf}\limits_{t\in[0, T]}g(t), \mathop{{\rm ess}\inf}\limits_{t\in[0, T]}h(t)\} ,则范数 \|\cdot\|_{X} 和范数 \|\cdot\| 在空间 X 上等价,其中 \|(u, v)\|^{p} = \|u\|_{p}^{p}+\|v\|_{p}^{p}.

引理2.5[18]  对 \forall(u, v)\in X ,存在常数 c_{1} > 0 ,使得

\|u\|_{\infty}, \|v\|_{\infty}\leq c_{1}\|(u, v)\|_{X}.

(\varphi, \psi)\in X ,同时乘以

-(\Phi_{p}(u'(t)))'+g(t)\Phi_{p}(u(t)) = f_{u}(u(t), v(t))

-(\Phi_{p}(v'(t)))'+h(t)\Phi_{p}(v(t)) = f_{v}(u(t), v(t))

左右两边,从 0 T 上作积分,可得

\begin{eqnarray*} -\int_{0}^{T}(\Phi_{p}(u'(t)))'\varphi(t){\rm d}t+\int_{0}^{T}g(t)\Phi_{p}(u(t))\varphi(t){\rm d}t = \int_{0}^{T}f_{u}(u(t), v(t))\varphi(t){\rm d}t \end{eqnarray*}

\begin{eqnarray*} -\int_{0}^{T}(\Phi_{p}(v'(t)))'\psi(t){\rm d}t+\int_{0}^{T}h(t)\Phi_{p}(v(t))\psi(t){\rm d}t = \int_{0}^{T}f_{v}(u(t), v(t))\psi(t){\rm d}t, \end{eqnarray*}

其中

\begin{eqnarray*} && \int_{0}^{T}(\Phi_{p}(u'(t)))'\varphi(t){\rm d}t = \sum \limits_{j = 0}^{n}\int_{t_{j}}^{t_{j+1}}(\Phi_{p}(u'(t)))'\varphi(t){\rm d}t\\ & = &\sum \limits_{j = 0}^{n}\left(\Phi_{p}(u'(t_{j+1}^{-})\varphi(t_{j+1}^{-})-\Phi_{p}(u'(t_{j}^{+})\varphi(t_{j}^{+})-\int_{t_{j}}^{t_{j+1}}\Phi_{p}(u'(t))\varphi'(t){\rm d}t\right)\\ & = &\Phi_{p}(u'(T))\varphi(T)-\Phi_{p}(u'(0))\varphi(0)-\sum \limits_{j = 1}^{n}\left(\Phi_{p}(u'(t_{j}^{+}))-\Phi_{p}(u'(t_{j}^{-}))\right)\varphi(t_{j})\\ &&-\int_{0}^{T}\Phi_{p}(u'(t))\varphi'(t){\rm d}t\\ & = &-\sum \limits_{j = 1}^{n}I_{j}(u(t_{j}))\varphi(t_{j})-\int_{0}^{T}\Phi_{p}(u'(t))\varphi'(t){\rm d}t. \end{eqnarray*}

同理可得

\int_{0}^{T}(\Phi_{p}(v'(t)))'\psi(t){\rm d}t = -\sum \limits_{j = 1}^{n}J_{j}(v(t_{j}))\psi(t_{j})-\int_{0}^{T}\Phi_{p}(v'(t))\psi'(t){\rm d}t.

综上可得

\begin{eqnarray} && \int_{0}^{T}\Phi_{p}(u'(t))\varphi'(t){\rm d}t+\int_{0}^{T}g(t)\Phi_{p}(u(t))\varphi(t){\rm d}t +\sum \limits_{j = 1}^{n}I_{j}(u(t_{j}))\varphi(t_{j})\\ & = &\int_{0}^{T}f_{u}(u(t), v(t))\varphi(t){\rm d}t \end{eqnarray}
(2.1)

\begin{eqnarray} && \int_{0}^{T}\Phi_{p}(v'(t))\psi'(t){\rm d}t+\int_{0}^{T}h(t)\Phi_{p}(v(t))\psi(t){\rm d}t +\sum \limits_{j = 1}^{n}J_{j}(v(t_{j}))\psi(t_{j})\\ & = &\int_{0}^{T}f_{v}(u(t), v(t))\psi(t){\rm d}t. \end{eqnarray}
(2.2)

由(2.1)–(2.2)式可得

\begin{eqnarray*} &&\int_{0}^{T}\Phi_{p}(u'(t))\varphi'(t){\rm d}t+\int_{0}^{T}\Phi_{p}(v'(t))\psi'(t){\rm d}t+\int_{0}^{T}g(t)\Phi_{p}(u(t))\varphi(t){\rm d}t\\ &&+\int_{0}^{T}h(t)\Phi_{p}(v(t))\psi(t){\rm d}t+\sum \limits_{j = 1}^{n}I_{j}(u(t_{j}))\varphi(t_{j})+\sum \limits_{j = 1}^{n}J_{j}(v(t_{j}))\psi(t_{j})\\ & = &\int_{0}^{T}f_{u}(u(t), v(t))\varphi(t){\rm d}t+\int_{0}^{T}f_{v}(u(t), v(t))\psi(t){\rm d}t. \end{eqnarray*}

若对于任意的 (\varphi, \psi)\in X ,上式成立,则称 (u, v)\in X 是问题(1.1)的弱解.

定义泛函 \Phi 如下:

\begin{eqnarray} \Phi(u, v)& = &\frac{1}{p}\int_{0}^{T}|u'(t)|^{p}+g(t)|u(t)|^{p}{\rm d}t+\frac{1}{p}\int_{0}^{T}|v'(t)|^{p}+h(t)|v(t)|^{p}{\rm d}t\\ &&+\sum \limits_{j = 1}^{n}\int_{0}^{u(t_{j})}I_{j}(t){\rm d}t+\sum \limits_{j = 1}^{n}\int_{0}^{v(t_{j})}J_{j}(t){\rm d}t-\int_{0}^{T}f(u(t), v(t)){\rm d}t\\ & = &\frac{1}{p}\|(u, v)\|_{X}^{p}+\sum \limits_{j = 1}^{n}\int_{0}^{u(t_{j})}I_{j}(t){\rm d}t+\sum \limits_{j = 1}^{n}\int_{0}^{v(t_{j})}J_{j}(t){\rm d}t-\int_{0}^{T}f(u(t), v(t)){\rm d}t. \end{eqnarray}
(2.3)

f_{u}, f_{v}, I_{j} J_{j}, j = 1, 2, \cdots, n 的连续性可知, \Phi\in C^{1}(X, \mathbb{R}) .对于任意的 (\varphi, \psi)\in X ,可得

\begin{eqnarray} \Phi'(u, v)(\varphi, \psi)& = &\int_{0}^{T}\Phi_{p}(u'(t))\varphi'(t){\rm d}t+\int_{0}^{T}\Phi_{p}(v'(t))\psi'(t){\rm d}t+\int_{0}^{T}g(t)\Phi_{p}(u(t))\varphi(t){\rm d}t\\ &&+\int_{0}^{T}h(t)\Phi_{p}(v(t))\psi(t){\rm d}t+\sum \limits_{j = 1}^{n}I_{j}(u(t_{j}))\varphi(t_{j})+\sum \limits_{j = 1}^{n}J_{j}(v(t_{j}))\psi(t_{j})\\ &&-\int_{0}^{T}f_{u}(u(t), v(t))\varphi(t){\rm d}t-\int_{0}^{T}f_{v}(u(t), v(t))\psi(t){\rm d}t. \end{eqnarray}
(2.4)

所以问题(1.1)的弱解就是泛函 \Phi 对应的临界点.

引理2.6  假设条件(H1), (H2), (H3)成立,则泛函\Phi 满足(PS)条件.

  令 \theta>\max\{v_{1}, v_{2}, \cdots , v_{n}\},由(2.3)–(2.4)式可知

\begin{eqnarray*} &&\theta\Phi(u_{k}, v_{k})-\Phi'(u_{k}, v_{k})(u_{k}, v_{k})\\ & = &(\frac{\theta}{p}-1)\|(u_{k}, v_{k})\|_{X}^{p}+(\theta\sum \limits_{j = 1}^{n}\int_{0}^{u_{k}(t_{j})}I_{j}(t){\rm d}t-\sum \limits_{j = 1}^{n}I_{j}(u_{k}(t_{j}))u_{k}(t_{j}))\\ &&+(\theta\sum \limits_{j = 1}^{n}\int_{0}^{v_{k}(t_{j})}J_{j}(t){\rm d}t-\sum \limits_{j = 1}^{n}J_{j}(v_{k}(t_{j}))v_{k}(t_{j}))\\ &&+\int_{0}^{T}(f_{u}(u_{k}, v_{k})u_{k}+f_{v}(u_{k}, v_{k})v_{k}-\theta f(u_{k}, v_{k})){\rm d}t. \end{eqnarray*}

由条件(H1), (H3)可知

\theta\sum \limits_{j = 1}^{n}\int_{0}^{u_{k}(t_{j})}I_{j}(t){\rm d}t-\sum \limits_{j = 1}^{n}I_{j}(u_{k}(t_{j}))u_{k}(t_{j})\geq 0,

\theta\sum \limits_{j = 1}^{n}\int_{0}^{v_{k}(t_{j})}J_{j}(t){\rm d}t-\sum \limits_{j = 1}^{n}J_{j}(v_{k}(t_{j}))v_{k}(t_{j})\geq 0,

\int_{0}^{T}(f_{u}(u_{k}, v_{k})u_{k}+f_{v}(u_{k}, v_{k})v_{k}-\theta f(u_{k}, v_{k})){\rm d}t\geq 0.

所以

\theta\Phi(u_{k}, v_{k})-\Phi(u_{k}, v_{k})(u_{k}, v_{k})\geq(\frac{\theta}{p}-1)\|(u_{k}, v_{k})\|_{X}^{p}.

因为 \theta > p ,所以序列\{(u_{k}, v_{k})\} 是有界的.所以存在 \{(u_{k}, v_{k})\}的子序列(仍记为 \{(u_{k}, v_{k})\} )使得

\begin{eqnarray*} &&(u_{k}, v_{k})\rightharpoonup (u, v), \; \; \mbox{在$X$中, }\\ &&(u_{k}, v_{k})\rightarrow (u, v), \; \; \mbox{在$C[0, T]$中,当$k\rightarrow +\infty$时.} \end{eqnarray*}

因此

\begin{equation} (\Phi'(u_{k}, v_{k})-\Phi'(u, v))(u_{k}-u, v_{k}-v)\rightarrow 0, \end{equation}
(2.5)

\begin{equation} \sum \limits_{j = 1}^{n}(I_{j}(u_{k}(t_{j}))-I_{j}(u(t_{j})))(u_{k}(t_{j})-u(t_{j}))\rightarrow 0, \end{equation}
(2.6)

\begin{equation} \sum \limits_{j = 1}^{n}(J_{j}(v_{k}(t_{j}))-J_{j}(v(t_{j})))(v_{k}(t_{j})-v(t_{j}))\rightarrow 0, \end{equation}
(2.7)

\begin{equation} \int_{0}^{T}(f_{u}(u, v)-f_{u}(u_{k}, v_{k}))(u_{k}-u){\rm d}t\rightarrow 0, \end{equation}
(2.8)

\begin{equation} \mbox{当$k\rightarrow +\infty$时}, \ \int_{0}^{T}(f_{v}(u, v)-f_{v}(u_{k}, v_{k}))(v_{k}-v){\rm d}t\rightarrow 0. \end{equation}
(2.9)

所以

\begin{eqnarray} &&(\Phi'(u_{k}, v_{k})-\Phi'(u, v))(u_{k}-u, v_{k}-v)\\ & = &\int_{0}^{T}(\Phi_{p}(u_{k}')-\Phi_{p}(u'))(u_{k}'-u'){\rm d}t+\int_{0}^{T}g(t)(\Phi_{p}(u_{k})-\Phi_{p}(u))(u_{k}-u){\rm d}t\\ &&+\int_{0}^{T}(\Phi_{p}(v_{k}')-\Phi_{p}(v'))(v_{k}'-v'){\rm d}t+\int_{0}^{T}h(t)(\Phi_{p}(v_{k})-\Phi_{p}(v))(v_{k}-v){\rm d}t\\ &&+\sum\limits_{j = 1}^{n}(I_{j}(u_{k}(t_{j}))-I_{j}(u(t_{j})))(u_{k}(t_{j})-u(t_{j}))\\ &&+\sum\limits_{j = 1}^{n}(J_{j}(v_{k}(t_{j}))-J_{j}(v(t_{j})))(v_{k}(t_{j})-v(t_{j}))\\ &&+\int_{0}^{T}(f_{u}(u, v)-f_{u}(u_{k}, v_{k}))(u_{k}-u){\rm d}t+\int_{0}^{T}(f_{v}(u, v)-f_{v}(u_{k}, v_{k}))(v_{k}-v){\rm d}t. \end{eqnarray}
(2.10)

可知,当 p\geq2 时,对任意的 x,y\in \mathbb{R} ,存在 c_{p}>0 使得

(|x|^{p-2}x-|y|^{p-2}y)(x-y)\geq c_{p}|x-y|^{p}.

由(2.10)式可得

\begin{eqnarray} c_{p}\|u_{k}-u,v_{k}-v\|^{p} &\leq &\left\|\Phi'(u_{k},v_{k})-\Phi'(u,v)\right\|\|u_{k}-u,v_{k}-v\|\\ &&-\sum\limits_{j = 1}^{n}(I_{j}(u_{k}(t_{j}))-I_{j}(u(t_{j})))(u_{k}(t_{j})-u(t_{j}))\\ &&-\sum\limits_{j = 1}^{n}(J_{j}(v_{k}(t_{j}))-J_{j}(v(t_{j})))(v_{k}(t_{j})-v(t_{j}))\\ &&-\int_{0}^{T}(f_{u}(u,v)-f_{u}(u_{k},v_{k}))(u_{k}-u){\rm d}t\\ &&-\int_{0}^{T}(f_{v}(u,v)-f_{v}(u_{k},v_{k}))(v_{k}-v){\rm d}t. \end{eqnarray}
(2.11)

由(2.5)–(2.11)式可知:当 p\geq 2,\; k\rightarrow+\infty 时, (u_{k},v_{k})\rightarrow (u,v) ,即在 X 中, (u_{k},v_{k}) 强收敛到 (u,v) .

1<p<2 时,根据文献[1]的结果可知:存在 d_{p}>0 使得

\begin{eqnarray*} &&\int_{0}^{T}(\Phi_{p}(u_{k}')-\Phi_{p}(u'))(u_{k}'-u'){\rm d}t+\int_{0}^{T}g(t)(\Phi_{p}(u_{k})-\Phi_{p}(u))(u_{k}-u){\rm d}t\\ &&+\int_{0}^{T}(\Phi_{p}(v_{k}')-\Phi_{p}(v'))(v_{k}'-v'){\rm d}t+\int_{0}^{T}h(t)(\Phi_{p}(v_{k})-\Phi_{p}(v))(v_{k}-v){\rm d}t\\ &\geq& d_{p}\left(\frac{2^{p-2}\|u_{k}-u\|^{2}}{(\|u_{k}\|+\|u\|)^{2-p}}+\frac{2^{p-2}\|v_{k}-v\|^{2}}{(\|v_{k}\|+\|v\|)^{2-p}}\right). \end{eqnarray*}

类似可得,在 X 中, (u_{k},v_{k})\rightarrow (u,v) ,所以泛函 \Phi 满足(PS)条件.

3 主要定理及证明

首先先证明定理1.1.

  由条件(H2)可知

f(u,v) = o(|u|^{p}+|v|^{p}),\; \mbox{当}\ |u|+|v|\rightarrow 0.

\forall\varepsilon>0 , \exists\delta>0 ,对于空间 X 中的 (u,v) ,当 |u|,|v|<\delta 时,有

\begin{eqnarray} |f(u,v)|\leq \varepsilon(|u|^{p}+|v|^{p}). \end{eqnarray}
(3.1)

由Sobolev嵌入定理可知: \forall(u,v)\in X ,存在 c_{2}>0 ,使得

\begin{eqnarray} \|(u,v)\|^{p}\leq c_{2}\|(u,v)\|_{X}^{p}. \end{eqnarray}
(3.2)

\varepsilon = \frac{1}{2pc_{2}} , \forall (u,v)\in X ,其中 \|(u,v)\|_{X}\leq \frac{\delta}{c_{1}} , \|u\|_{\infty}\leq\delta 以及 \|v\|_{\infty}\leq\delta ,由条件(H1)和(2.3), (3.1), (3.2)式可知

\begin{eqnarray*} \Phi(u,v)& = &\frac{1}{p}\|(u,v)\|_{X}^{p}+\sum \limits_{j = 1}^{n}\int_{0}^{u(t_{j})}I_{j}(t){\rm d}t+\sum \limits_{j = 1}^{n}\int_{0}^{v(t_{j})}J_{j}(t){\rm d}t-\int_{0}^{T}f(u,v){\rm d}t\\ &\geq & \frac{1}{p}\|(u,v)\|_{X}^{p}-\int_{0}^{T}f(u,v){\rm d}t\\ &\geq & \frac{1}{p}\|(u,v)\|_{X}^{p}-\varepsilon\int_{0}^{T}(|u|^{p}+|v|^{p}){\rm d}t\\ & = &\frac{1}{p}\|(u,v)\|_{X}^{p}-\varepsilon(\|u\|_{p}^{p}+\|v\|_{p}^{p})\\ &\geq & \frac{1}{p}\|(u,v)\|_{X}^{p}-\frac{1}{2p}\|(u,v)\|_{X}^{p}\\ & = &\frac{1}{2p}\|(u,v)\|_{X}^{p}. \end{eqnarray*}

\alpha = \frac{\delta^{p}}{2p(c_{1})^{p}} , \rho = \frac{\delta}{c_{1}} 时,则 \Phi(u,v)\geq \alpha, \forall u\in X\bigcap \partial B_{\rho}. 满足山路引理条件(1),接下来,证明山路引理条件(2),由条件(H2), (H3)可知,对任意的 (u,v)\in \mathbb{R} ^{2} ,存在 c_{3}>0 ,使得

\begin{eqnarray} f(u,v)\geq c(|u|^{\beta}+|v|^{\beta})-c_{3}. \end{eqnarray}
(3.3)

因此

\begin{eqnarray*} \Phi(u,v)& = &\frac{1}{p}\|(u,v)\|_{X}^{p}+\sum \limits_{j = 1}^{n}\int_{0}^{u(t_{j})}I_{j}(t){\rm d}t+\sum \limits_{j = 1}^{n}\int_{0}^{v(t_{j})}J_{j}(t){\rm d}t-\int_{0}^{T}f(u,v)\\ &\leq& \frac{1}{p}\|(u,v)\|_{X}^{p}+\delta_{j}\sum \limits_{j = 1}^{n}|u|^{v_{j}}+\delta_{j}\sum \limits_{j = 1}^{n}|v|^{v_{j}}-\int_{0}^{T}c(|u|^{\beta}+|v|^{\beta})-c_{3}{\rm d}t\\ &\leq& \frac{1}{p}\|(u,v)\|_{X}^{p}+\delta_{j}\sum \limits_{j = 1}^{n}\|u\|_{\infty}^{v_{j}}+\delta_{j}\sum \limits_{j = 1}^{n}\|v\|_{\infty}^{v_{j}}-c\int_{0}^{T}(|u|^{\beta}+|v|^{\beta}){\rm d}t+c_{3}T\\ &\leq& \frac{1}{p}\|(u,v)\|_{X}^{p}+2c_{1}^{v_{j}}\delta_{j}\sum \limits_{j = 1}^{n}\|(u,v)\|_{X}^{v_{j}}-c\|u\|_{\beta}^{\beta}-c\|v\|_{\beta}^{\beta}+c_{3}T. \end{eqnarray*}

\|u\|_{W_{0}^{1,p}(0,T)} = \|v\|_{W_{0}^{1,p}(0,T)} = 1 , \delta = \max\{\delta_{1},\delta_{2},\cdots ,\delta_{n}\} ,则

\begin{eqnarray*} \Phi(Nu,Nv)&\leq& \frac{1}{p}\|(Nu,Nv)\|_{X}^{p}+2nc_{1}^{v_{j}}\delta\|(Nu,Nv)\|_{X}^{v_{j}}-c\|Nu\|_{\beta}^{\beta}-c\|Nv\|_{\beta}^{\beta}+c_{3}T\\ &\leq&\frac{2}{p}N^{p}+4nc_{1}^{v_{j}}\delta N^{v_{j}}-cN^{\beta}\|u\|_{\beta}^{\beta}-cN^{\beta}\|v\|_{\beta}^{\beta}+c_{3}T\\ &\leq&\frac{2}{p}N^{p}+4nc_{1}^{\theta}\delta N^{\theta}-cN^{\beta}\|u\|_{\beta}^{\beta}-cN^{\beta}\|v\|_{\beta}^{\beta}+c_{3}T. \end{eqnarray*}

因为 \beta>\theta>p , \|u\|_{\beta}^{\beta}>0,\; \|v\|_{\beta}^{\beta}>0 ,当 N\rightarrow +\infty 时, \Phi(Nu,Nv)\rightarrow-\infty .所以存在 N_{0}>\rho ,使得 \Phi(N_ {0}u,N_ {0}v)\leq 0 ,满足山路引理条件(2),即泛函 \Phi 至少存在一个临界点,所以问题(1.1)至少存在一个弱解.

接下来证明定理1.2.

  显然, \Phi(0,0) = 0 .由条件(H4)可知,由于 f_{s}(s,t) f_{t}(s,t) 分别关于 s,t 为奇函数, I_{j}(x) J_{j}(x) 分别关于 x 为奇函数,所以泛函 \Phi 是偶的.对于对称山路引理条件(1)的验证,由于其证明过程与定理1.1的证明类似,这里省略.接下来证明对称山路引理的条件(2).由特征值问题(1.5)可知,该问题所有特征值均为正的,且记为 \lambda_{n}(p)\ (n = 1,2,3,\cdots ) (参见文献[18,引理2.2.3]).设 E_{n} 分别表示 \lambda_{n}(p) 相对应的特征空间,则Sobolev空间 W_{0}^{1,p}(0,T) = \overline{\bigoplus\limits_{i\in \mathbb{N}}E_{i}} ,由此可知, X = W_{0}^{1,p}(0,T)\times W_{0}^{1,p}(0,T) = \overline{\bigoplus\limits_{i\in \mathbb{N}}E_{i}\times E_{i}} . W = \bigoplus\limits_{i = 1}^{2}E_{i}\times E_{i} ,并且 V = \overline{\bigoplus\limits_{i = 3}^{+\infty}E_{i}\times E_{i}} ,则 X = V+W ,其中 W 是有限维的.因为有限维空间的范数等价,所以对 \forall(u,v)\in W ,存在 c_{4}>0 ,使得

\begin{eqnarray} c_{4}\|(u,v)\|_{X}^{\beta}\leq \|(u,v)\|^{\beta} = \|u\|_{\beta}^{\beta}+\|v\|_{\beta}^{\beta}. \end{eqnarray}
(3.4)

由(2.3), (3.3)和(3.4)式可知

\begin{eqnarray*} \Phi(u,v)& = &\frac{1}{p}\|(u,v)\|_{X}^{p}+\sum \limits_{j = 1}^{n}\int_{0}^{u(t_{j})}I_{j}(t){\rm d}t+\sum \limits_{j = 1}^{n}\int_{0}^{v(t_{j})}J_{j}(t){\rm d}t-\int_{0}^{T}f(u,v)\\ &\leq& \frac{1}{p}\|(u,v)\|_{X}^{p}+\delta_{j}\sum \limits_{j = 1}^{n}|u|^{v_{j}}+\delta_{j}\sum \limits_{j = 1}^{n}|v|^{v_{j}}-\int_{0}^{T}[c(|u|^{\beta}+|v|^{\beta})-c_{3}]{\rm d}t\\ &\leq &\frac{1}{p}\|(u,v)\|_{X}^{p}+\delta_{j}\sum \limits_{j = 1}^{n}\|u\|_{\infty}^{v_{j}}+\delta_{j}\sum \limits_{j = 1}^{n}\|v\|_{\infty}^{v_{j}}-c\int_{0}^{T}(|u|^{\beta}+|v|^{\beta}){\rm d}t+c_{3}T\\ & = & \frac{1}{p}\|(u,v)\|_{X}^{p}+\delta_{j}\sum \limits_{j = 1}^{n}\|u\|_{\infty}^{v_{j}}+\delta_{j}\sum \limits_{j = 1}^{n}\|v\|_{\infty}^{v_{j}}-c(\|u\|_{\beta}^{\beta}+\|v\|_{\beta}^{\beta})+c_{3}T\\ &\leq& \frac{1}{p}\|(u,v)\|_{X}^{p}+2nc_{1}^{v_{j}}\delta\|(u,v)\|_{X}^{v_{j}}-cc_{4}\|(u,v)\|_{X}^{\beta}+c_{3}T. \end{eqnarray*}

因为 \beta>\theta>p ,当 \|(u,v)\|_{X}\rightarrow +\infty 时, \Phi(u,v)\leq0 ,所以对于 X 中的任意有限维子空间 W ,存在常数 R = R(W) ,使得在 W\backslash B_{R(W)} 上有 \varphi(u)\leq 0 .那么, \varphi 有一列无界临界点,所以问题(1.1)有无穷多个弱解.

接下来,证明定理1.3和1.4.显然,根据类似的方法,当满足条件(H1)', (H2), (H3)'时,可证得 \Phi 满足(PS)条件.先证明定理1.3.

  显然, \Phi(0,0) = 0 . \delta = \max\{\delta_{1},\delta_{2},\cdots ,\delta_{n}\} , \varepsilon = \frac{1}{2pc_{2}} ,由(2.3), (3.1), (3.2)式和条件(H1)', (H2), (H3)'可知

\begin{eqnarray*} \Phi(u,v)& = &\frac{1}{p}\|(u,v)\|_{X}^{p}+\sum \limits_{j = 1}^{n}\int_{0}^{u(t_{j})}I_{j}(t){\rm d}t+\sum \limits_{j = 1}^{n}\int_{0}^{v(t_{j})}J_{j}(t){\rm d}t-\int_{0}^{T}f(u,v){\rm d}t\\ &\geq & \frac{1}{p}\|(u,v)\|_{X}^{p}-\sum \limits_{j = 1}^{n}\delta_{j}|u|^{\mu}-\sum \limits_{j = 1}^{n}\delta_{j}|v|^{\mu}-\int_{0}^{T}f(u,v){\rm d}t\\ &\geq & \frac{1}{p}\|(u,v)\|_{X}^{p}-n\delta\|u\|_{\infty}^{^\mu}-n\delta\|v\|_{\infty}^{^\mu}-\varepsilon \int_{0}^{T}(|u|^{p}+|v|^{p}){\rm d}t\\ &\geq & \frac{1}{p}\|(u,v)\|_{X}^{p}-2nc_{1}^{\mu}\delta\|(u,v)\|_{X}^{\mu}-\frac{1}{2pc_{2}}(\|u\|_{p}^{p}+\|v\|_{p}^{p})\\ &\geq & \frac{1}{p}\|(u,v)\|_{X}^{p}-2nc_{1}^{\mu}\delta\|(u,v)\|_{X}^{\mu}-\frac{1}{2p}\|(u,v)\|_{X}^{p}\\ & = &\frac{1}{2p}\|(u,v)\|_{X}^{p}-2nc_{1}^{\mu}\delta\|(u,v)\|_{X}^{\mu}. \end{eqnarray*}

因为 \mu>p ,所以当 \|(u,v)\|_{X} 取足够小时, \Phi(u,v)>0 ,满足山路引理条件(1).接下来证明山路引理条件(2),由(2.3)式和条件(H1)'可知

\begin{eqnarray*} \Phi(u,v)& = &\frac{1}{p}\|(u,v)\|_{X}^{p}+\sum \limits_{j = 1}^{n}\int_{0}^{u(t_{j})}I_{j}(t){\rm d}t+\sum \limits_{j = 1}^{n}\int_{0}^{v(t_{j})}J_{j}(t){\rm d}t-\int_{0}^{T}f(u,v)\\ &\leq& \frac{1}{p}\|(u,v)\|_{X}^{p}-\int_{0}^{T}[c(|u|^{\beta}+|v|^{\beta})-c_{3}]{\rm d}t\\ &\leq& \frac{1}{p}\|(u,v)\|_{X}^{p}-c\int_{0}^{T}(|u|^{\beta}+|v|^{\beta}){\rm d}t+c_{3}T\\ &\leq& \frac{1}{p}\|(u,v)\|_{X}^{p}-c\|u\|_{\beta}^{\beta}-c\|u\|_{\beta}^{\beta}+c_{3}T. \end{eqnarray*}

\|u\|_{W_{0}^{1,p}(0,T)} = \|v\|_{W_{0}^{1,p}(0,T)} = 1 ,所以

\begin{eqnarray*} \Phi(Nu,Nv)&\leq& \frac{1}{p}\|(Nu,Nv)\|_{X}^{p}-c\|Nu\|_{\beta}^{\beta}-c\|Nv\|_{\beta}^{\beta}+c_{3}T\\ &\leq&\frac{2}{p}N^{p}-cN^{\beta}\|u\|_{\beta}^{\beta}-cN^{\beta}\|v\|_{\beta}^{\beta}+c_{3}T\\ &\leq&\frac{2}{p}N^{p}-cN^{\beta}\|u\|_{\beta}^{\beta}-cN^{\beta}\|v\|_{\beta}^{\beta}+c_{3}T. \end{eqnarray*}

因为 \beta>p ,所以当 N\rightarrow+\infty 时, \Phi(Nu,Nv)\rightarrow-\infty .类似可得,存在 N_{0}>\rho ,使得 \Phi(N_ {0}u,N_ {0}v)\leq 0 ,满足山路引理条件(2),即泛函 \Phi 至少存在一个临界点,所以问题(1.1)至少存在一个弱解.

最后证明定理1.4.

  显然, \Phi(0,0) = 0 ,泛函 \Phi 满足条件(H4)时, \Phi 是偶的.运用对称山路引理可以得到解的多重性.对于对称山路引理条件(1)的验证和定理1.3的证明过程类似,这里省略.接下来证明对称山路引理的条件(2),由条件(H1)', (2.3)和(3.4)式可知

\begin{eqnarray*} \Phi(u,v)& = &\frac{1}{p}\|(u,v)\|_{X}^{p}+\sum \limits_{j = 1}^{n}\int_{0}^{u(t_{j})}I_{j}(t){\rm d}t+\sum \limits_{j = 1}^{n}\int_{0}^{v(t_{j})}J_{j}(t){\rm d}t-\int_{0}^{T}f(u,v){\rm d}t\\ &\leq& \frac{1}{p}\|(u,v)\|_{X}^{p}-\int_{0}^{T}[c(|u|^{\beta}+|v|^{\beta})-c_{3}]{\rm d}t\\ &\leq& \frac{1}{p}\|(u,v)\|_{X}^{p}-c\int_{0}^{T}(|u|^{\beta}+|v|^{\beta}){\rm d}t+c_{3}T\\ &\leq& \frac{1}{p}\|(u,v)\|_{X}^{p}-cc_{4}\|(u,v)\|_{X}^{\beta}+c_{3}T. \end{eqnarray*}

因为 \beta>p ,当 \|(u,v)\|_{X}\rightarrow +\infty 时, \Phi(u,v)\rightarrow-\infty ,所以对于 X 中的任意有限维子空间 W ,存在常数 R = R(W) ,使得在 W\backslash B_{R(W)} 上有 \Phi\leq 0 .所以泛函 \Phi(u,v) 存在无穷多个临界点,即问题(1.1)有无穷多个弱解.

参考文献

Bai L , Dai B X .

Three solutions for a p-Laplacian boundary value problem with impulsive effects

Appl Math Comput, 2011, 217 (24): 9895- 9904

URL     [本文引用: 1]

Chen P , Tang X H .

Existence and multiplicity of solutions for second-order impulsive differential equations with Dirichlet problems

Appl Math Comput, 2012, 218 (24): 11775- 11789

[本文引用: 2]

Dong W , Xu J F .

Existence of weak solutions for a p-Laplacian problem involving Dirichlet boundary condition

Appl Math Comput, 2014, 248, 511- 518

URL    

Dong W , Xu J F , Zhang X Y .

Weak solutions for a p-Laplacian impulsive differential equation

Abstr Appl Anal, 2013, 2013 (3): 547- 566

URL     [本文引用: 1]

Esteban J R , Vazquez J L .

On the equation of turbulent filtration in one-dimensional porous media

Nonlinear Anal:TMA, 1986, 10 (11): 1303- 1325

DOI:10.1016/0362-546X(86)90068-4      [本文引用: 1]

Herrero M A , Vazquez J L .

On the propagation properties of a nonlinear degenerate parabolic equation

Commun Part Differ Equa, 1982, 7 (12): 1381- 1402

URL     [本文引用: 1]

Liu J , Zhao Z Q .

An application of variational methods to second-order impulsive differential equation with derivative dependence

Electron J Differ Equa, 2014, 2014, 62

DOI:10.1186/1687-1847-2014-62      [本文引用: 1]

Liu Z S , Chen H B , Zhou T J .

Variational methods to the second-order impulsive differential equation with Dirichlet boundary value problem

Comput Math Appl, 2011, 61 (6): 1687- 1699

DOI:10.1016/j.camwa.2011.01.042     

Nieto J J .

Variational formulation of a damped Dirichlet impulsive problem

Appl Math Lett, 2010, 23 (8): 940- 942

DOI:10.1016/j.aml.2010.04.015     

Nieto J J , O'Regan D .

Variational approach to impulsive differential equations

Nonlinear Anal:RWA, 2009, 10 (2): 680- 690

DOI:10.1016/j.nonrwa.2007.10.022      [本文引用: 2]

Rabinowitz P H. Minimax Methods in Critical Point Theory with Applications to Differential Equations. Providence, RI: American Mathematical Society, 1986

[本文引用: 3]

Shi H X , Chen H B , Zhang Q .

Infinitely many solutions for a p-Laplacian boundary value problem with impulsive effects

J Appl Math Comput, 2014, 46 (1/2): 93- 106

[本文引用: 1]

Tian Y , Ge W G .

Applications of variational methods to boundary-value problem for impulsive differential equations

Proc Edinburgh Math Soc, 2008, 51 (2): 509- 527

DOI:10.1017/S0013091506001532      [本文引用: 1]

Wu Y Q , Liu W B .

Variational approach to impulsive differential system

Adv Differ Equ, 2015, 2015 (1): 1- 10

[本文引用: 1]

Zhang D .

Multiple solutions of nonlinear impulsive differential equations with Dirichlet boundary conditions via variational method

Results Math, 2013, 63 (1/2): 611- 628

URL     [本文引用: 1]

Zhang D , Dai B X .

Existence of solutions for nonlinear impulsive differential equations with Dirichlet boundary conditions

Math Comput Model, 2011, 53 (5/6): 1154- 1161

Zhou J J , Chen H B , Almuaalemi B O M .

Existence and multiplicity of solutions for some damped Dirichlet nonlinear impulsive differential equations

Differ Equ Dyn Syst, 2016, 24 (2): 135- 148

DOI:10.1007/s12591-016-0273-2      [本文引用: 1]

张然.几类脉冲耦合系统边值问题弱解的存在性研究[D].江苏:中国矿业大学, 2017

[本文引用: 2]

Zhang R. Existence of Weak Solutions of Boundary Value Problems for Several Classes of Coupled Systems with Impulses[D]. Jiangsu: China University of Mining and Technology, 2017

[本文引用: 2]

/