数学物理学报, 2020, 40(3): 684-693 doi:

论文

一个二阶椭圆混合问题的三棱柱元

赵中建,1, 陈绍春2

A Triangular Prism Finite Element for the Second-Order Elliptic Mixed Problem

Zhao Zhongjian,1, Chen Shaochun2

通讯作者: 赵中建, E-mail: zhaozhongjian@ncwu.edu.cn

收稿日期: 2019-03-12  

基金资助: 国家自然科学基金.  11371331

Received: 2019-03-12  

Fund supported: the NSFC.  11371331

摘要

二阶椭圆混合问题的有限元方法已有很多研究,包括三角形元、矩形元、四面体元和立方体元.但对三棱柱元的研究却很少,三棱柱元兼顾三角形和矩形的优点,更加适合柱形区域,尤其是截面复杂的柱形区域.该文对二阶椭圆混合问题构造一个低阶的三棱柱元,证明了它的适定性和收敛性,给出了最优的误差估计.

关键词: 二阶椭圆问题 ; 混合元 ; BB条件 ; 三棱柱元

Abstract

There are many researches on the finite element method for second-order elliptic mixed problem, including triangular element, rectangular element, tetrahedral element and cubic element. However, there are few researches on the triangular prism element. The triangular prism element has the advantages of triangular and rectangular elements, and it is more suitable for cylindrical region, especially for the cylindrical region with complex cross-section. In this paper, a lower-order conforming triangular prism element is constructed for the second-order elliptic mixed problem. Its well-posedness and convergence are proved, and the optimal error estimate is given too.

Keywords: The second-order elliptic problem ; Mixed finite element ; BB-conditions ; Triangular prism element

PDF (304KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

赵中建, 陈绍春. 一个二阶椭圆混合问题的三棱柱元. 数学物理学报[J], 2020, 40(3): 684-693 doi:

Zhao Zhongjian, Chen Shaochun. A Triangular Prism Finite Element for the Second-Order Elliptic Mixed Problem. Acta Mathematica Scientia[J], 2020, 40(3): 684-693 doi:

1 引言

二维有限元的类型主要是三角形元和矩形元,相应地,三维有限元的类型主要是四面体元和立方体元.这些种类的单元在各种问题中的应用已有很多研究,可以参考文献[1-5, 15].三维有限元中有一类特殊单元即三棱柱单元,它对截面复杂的柱体区域比四面体元和立方体元有更好的适应性,因而有很好的应用前景.但研究的并不多,三棱柱单元的上下底面是三角形,三个侧面是矩形,构造有一定难度.三棱柱单元最近的研究可以参考文献[6-8].

二阶椭圆问题混合有限元的研究已经有很多[9],例如Raviart-Thomas,三角形元和矩形元[10],四面体元和立方体元[11], BDM[12]元和BDDF[13]元.包括三角形元、四面体元、矩形元、立方体元.但对三棱柱元的研究并不多,对截面复杂的柱体区域,三棱柱元比四面体元和立方体元都具有优势,文献[14]中构造了散度空间的三棱柱协调元,由于其构造过于复杂,没有在二阶混合问题中得到应用,该文构造一个形式简单的低阶三棱柱元,证明了它的正定性,收敛性,给出了误差估计,达到最优阶.

2 二阶椭圆混合变分问题

$ \Omega \subset \mathbb{R}^{3} $是有界的凸多边形区域, $ \partial\Omega $为其边界, $ f \in L^{2}(\Omega) $为已知函数.

考虑二阶椭圆混合变分问题[9]:求$ (\underline{\psi}, u)\in H \times M $,使得

$ \begin{equation} \left \{ \begin{array}{ll} a(\underline{\psi}, \underline{\varphi}) + b(\underline{\varphi}, u ) = 0, & \forall \underline{\varphi}\ \in H, \\ b(\underline{\psi}, \nu) = G(\nu), & \forall \nu \in M, \end{array} \right. \end{equation} $

其中

$ a(\cdot, \cdot) $, $ b(\cdot, \cdot) $分别是$ H\times H $, $ H\times M $上连续双线性型. $ G(\cdot) $是连续线性型, $ f \in L^{2}(\Omega). $

引理1[9]  因为混合变分问题(2.1)满足如下条件:

(1) $ a(\cdot, \cdot) $$ Z \times Z $上是正定的,即存在常数$ \alpha > 0 $,使得

其中$ Z = \{ v\in H; b(v, q) = 0, \forall q \in M \} $$ H $的闭子空间;

(2) $ b(\cdot, \cdot) $满足$ BB $条件,即存在$ \beta > 0 $,使得

则混合变分问题(2.1)存在唯一解.

将区域$ \Omega $剖分成有限个子区域$ T $,剖分记为$ T_{h} $,设$ H_{h} $, $ M_{h} $分别是$ H $, $ M $的逼近空间,如果$ H_{h}\subset H, M_{h} \subset M $,则称为协调元空间,否则称为非协调元空间.

对于协调元空间,则混合问题(2.1)的离散问题为:求$ (\underline{\psi_{h}}, u_{h})\in H_{h} \times M_{h} $,使得

$ \begin{equation} \left \{ \begin{array}{ll} a(\underline{\psi_{h}}, \underline{\varphi_{h}}) + b(\underline{\varphi_{h}}, u _{h}) = 0, & \forall \underline{\varphi_{h}}\ \in H_{h} , \\ b(\underline{\psi_{h}}, \nu_{h}) = G(\nu_{h}), & \forall \nu_{h} \in M_{h}. \end{array} \right . \end{equation} $

引理2[9]  如果离散问题(2.2)满足如下条件:

(1) $ a(\cdot, \cdot) $$ Z_{h}\times Z_{h} $上强制,即存在常数$ \alpha > 0 $,使得

其中$ Z_{h} = \{ v_{h}\in H_{h}; b(v_{h}, q_{h}) = 0, \forall q_{h} \in M_{h} \} $$ H_{h} $的闭子空间;

(2) $ b(\cdot, \cdot) $连续且满足离散的$ BB $条件,即存在$ \beta > 0 $,使得

则离散问题(2.2)存在唯一解,并且下面的误差估计成立

$ \begin{equation} \begin{array}{l} \| \underline{\psi} - \underline{\psi_{h}} \|_{H} + \| u - u_{h} \|_{M} \leq c \Big (\inf\limits_{\underline{\varphi_{h}} \in H_{h} }\| \underline{\psi} - \underline{\varphi_{h}} \|_{H} + \inf\limits_{ \nu_{h} \in M_{h} }\| u - \nu_{h}\|_{M}\Big). \end{array} \end{equation} $

3 三棱柱元

$ T_{h} $$ \Omega $的三棱柱剖分, $ \Omega = \bigcup\limits_{T\in T_{h}}T $是一个柱体区域, $ T $是其中一个三棱柱,满足网格的正则性条件.

设参考元$ \hat{T} $如下图, 6个顶点分别为

记三棱柱的5个面分别为$ \widehat{S}_{i} $, $ 1\leq i \leq 5 $,其中四边形$ \hat{a}_{1}\hat{a}_{2}\hat{a}_{5}\hat{a}_{4} $记为$ \widehat{S}_{1} $,四边形$ \hat{a}_{1}\hat{a}_{3}\hat{a}_{6}\hat{a}_{4} $记为$ \widehat{S}_{2} $,三边形$ \hat{a}_{4}\hat{a}_{5}\hat{a}_{6} $记为$ \widehat{S}_{3} $,三边形$ \hat{a}_{1}\hat{a}_{2}\hat{a}_{3} $记为$ \widehat{S}_{4} $,四边形$ \hat{a}_{2}\hat{a}_{3}\hat{a}_{6}\hat{a}_{5} $记为$ \widehat{S}_{5} $.

$ \widehat{T} $的形函数空间定义为

其中$ \dim P(\widehat{T}) = 5 $, $ P(\widehat{T}) $中元素$ \widehat{\underline{\varphi}} = (\hat{\varphi}_{1}, \hat{\varphi}_{2}, \hat{\varphi}_{3}) $的自由度$ \widehat{\Sigma} $定义为

下面证明单元构造的适定性.

引理3  自由度能唯一确定形函数空间$ P (\widehat{T}) $中的元素,即单元构造是适定的.

  只需证明,当$ \widehat{\underline{\varphi}}\in P(\widehat{T}) $,且$ \widehat{\underline{\varphi}} $的自由度为0,则$ \widehat{\underline{\varphi}} = 0 $,设

由于$ \widehat{\underline{\varphi}}\in P(\widehat{T}) $,设$ \widehat{\underline{\varphi}} = \left(\begin{array}{c} a+\alpha \hat{x}+ \beta \hat{x} \\ b+ \alpha \hat{y}+ \beta \hat{y} \\ c+ \alpha \hat{z}-2 \beta \hat{z} \end{array} \right) $,其中$ a, b, c, \alpha, \beta $均为常数.

$ \underline{\hat{n}}^{(i)} $是面$ \widehat{S}_{i} $上单位外法向量, $ 1\leq i \leq 5 $,则有

通过计算,可以得到

$ \underline{\widehat{\varphi}} \cdot \underline{\hat{n}}^{(i)}|_{\widehat{S_{i}}} = $常数, $ 1\leq i \leq 5. $

意味着

$ \begin{eqnarray} \underline{\widehat{\varphi}} \cdot \underline{\hat{n}}^{(i)}|_{\widehat{S_{i}}} = 0, 1\leq i \leq 5, \end{eqnarray} $

即可得

$ \widehat{\underline{\varphi}} = 0 $,引理证明完毕.

从参考元$ \widehat{T} $到一般单元$ T $,如下图:

一般单元$ T $的6个顶点分别为$ a_{1}(x_{1}, y_{1}, z_{1}), a_{2}(x_{2}, y_{2}, z_{1}), a_{3}(x_{3}, y_{3}, z_{1}), $$ a_{4}(x_{1}, y_{1}, z_{1}+h_{3}), $$ a_{5}(x_{2}, y_{2}, z_{1}+ h_{3}), a_{6}(x_{3}, y_{3}, z_{1} + h_{3}) $,三棱柱的5个面分别记为$ S_{i}, 1\leq i \leq 5 $.

四边形$ {a}_{1}{a}_{2}{a}_{5}{a}_{4} $记为$ {S}_{1} $,四边形$ {a}_{1}{a}_{3}{a}_{6}{a}_{4} $记为$ {S}_{2} $,三边形$ {a}_{4}{a}_{5}{a}_{6} $记为$ {S}_{3} $,三边形$ {a}_{1}{a}_{2}{a}_{3} $记为$ {S}_{4} $,四边形$ {a}_{2}{a}_{3}{a}_{6}{a}_{5} $记为$ {S}_{5} $.

从参考元到一般单元的变换记为

其中

从参考元到一般单元,标量函数记为

对于向量函数,采用Piola变换,由$ \underline{x} = F (\underline{ \hat{x}}) $,有

相对于参考元,一般单元$ T $上的形函数空间定义为

$ \begin{eqnarray} P({T}) = P^{3}_{0}+ \left( \begin{array}{rrr} {x} \\ {y} \\ {z} \\ \end{array} \right) P_{0} + \left( \begin{array}{rrr} {x} \\ {y} \\ -2{z} \\ \end{array} \right) P_{0}, \end{eqnarray} $

其中$ P({T}) $上元素的自由度$ \Sigma_{T} $定义为

$ \begin{eqnarray} \int_{{S}} \underline{{\varphi}} \cdot \underline{{n}}, \forall{S} \subset \partial {T}. \end{eqnarray} $

引理4  有限元$ (T, P(T), \Sigma_{T}) $$ (\widehat{T}, P(\widehat{T}), \widehat{\Sigma}) $在Piola变换下仿射等价,所以自由度(3.3)能唯一确定$ P({T}) $中的元素.

  在仿射变换下,显然$ \widehat{T}\longleftrightarrow T, $

$ B \underline{\hat{x}} = \underline{x}-\underline{b} $,可以得到

反之也正确.

因此$ P(\widehat{T}) $仿射等价于$ P({T}) $,即

下面考虑自由度.

假设$ \underline{{n}}^{(i)} $是面$ {S}_{i} $上的外法向量, $ \mid S_{i} \mid $是面$ {S}_{i} $的面积, $ 1\leq i \leq 5 $,

其中

显然

$ \begin{equation} \begin{array}{l} \underline{\varphi}(x)\cdot \underline{n}^{i}|_{S_{i}} =常数, 1\leq i \leq 5. \end{array} \end{equation} $

由于

则有

同理可得,对$ i = 2, 3, 4, 5 $上式也成立,即得到

$ \begin{eqnarray} \int_{S_{i}} \underline{\varphi}\underline{{n}}^{(i)} & = & \frac{\mid {S}_{i}\mid}{\mid \widehat{S}_{i} \mid}\int_{\widehat{S}_{i}}(\det B )^{-1} B \underline{\widehat{\varphi}} \cdot \bigg (\frac{\mid \widehat{S}_{i}\mid}{\mid S_{i} \mid} \det B \bigg) B^{-T}\underline{\widehat{n}}^{(i)} \\ & = & \int_{\widehat{S}_{i}}(B^{-T} B )\underline{\widehat{\varphi}} \cdot \underline{\widehat{n}}^{(i)} \\ & = & \int_{\widehat{S}_{i}}\underline{\widehat{\varphi}} \cdot \underline{\widehat{n}}^{(i)}, 1 \leq i \leq 5 . \end{eqnarray} $

进而可以推断出$ P(T) $上的自由度和$ P(\widehat{T}) $上自由度仿射等价.

因此,任意有限元$ (T, P(T), \Sigma_{T}) $仿射等价于$ (\widehat{T}, P(\widehat{T}), \widehat{\Sigma}) $,引理证明完毕.

4 误差分析

由单元构造,相应的有限元空间$ H_{h} $, $ M_{h} $定义为

在空间$ H_{h} $定义中,只考虑内测面$ S $,结合(3.1), (3.3), (3.4)和(3.5)式,可知$ \underline{\varphi}_{h}\cdot \underline{n} $跨过单元边界连续,即$ [\underline{\varphi}_{h}\cdot \underline{n}]\mid_{S} = 0, \forall S \subset \partial T, \forall T \ \in T_{h} $,意味着

又显然$ M_{h}\subset M = L^{2}(\Omega) $,则$ H_{h} $$ M_{h} $对于二阶问题(2.1)是协调元空间,在离散格式(2.2)中,由于$ \forall \underline{\varphi}_{h} \in H_{h}, \text{div}\underline{\varphi}_{h}\mid_{T} \in P_{0}, $所以

那么

因此得出$ a(\cdot, \cdot) $$ Z_{h} $上强制.

定义插值算子$ \widehat{\Pi}:H^{1}(\hat{T})\rightarrow P(\hat{T}) $$ \Pi_{T}: H^{1}(T)\rightarrow P(T) $分别满足

由引理4可知,在$ Piola $变换下$ \Pi_{T} $$ \widehat{\Pi} $仿射等价,即

由文献[1]中定理2.5知

因此

$ \begin{eqnarray} \|\widehat{\Pi} \underline{\hat{\nu }}\|_{H(\text{div})} \leq \hat{c}\sum \limits_{ \hat{l}_{i} \subset \partial \hat{T} } \bigg| \int_{\hat{l}_{i}} \underline{\hat{\nu }} \cdot \underline{\hat{n}}\bigg| \leq \hat{c} \| \underline{\hat{v}\hat{n}} \|_{-\frac{1}{2}, \partial \hat{T}} \leq \hat{c} \| \underline{\hat{v}}\|_{H(\text{div})}. \end{eqnarray} $

同时

$ \begin{eqnarray} \text{div}\underline{\widehat{\varphi}} = \widehat{\bigtriangledown}\underline{\widehat{\varphi}} = B^{T}\bigtriangledown\cdot\underline{\widehat{\varphi}} = \bigtriangledown \cdot B \underline{\widehat{\varphi}} = (\det B)\bigtriangledown\cdot\underline{\varphi} = (\det B)\text{div}\underline{\varphi}, \end{eqnarray} $

整体插值算子$ \Pi_{h}:H(\text{div})\rightarrow H_{h} $定义为: $ \Pi_{h}\mid_{T} = \Pi_{T}, \forall T \in T_{h}. $

根据(4.1)和(4.2)式,借助Piola尺度变换,即可推断出

$ \begin{eqnarray} \|\Pi_{h}\underline{\varphi}\|_{H(\text{div})}\leq c \|\underline{\varphi}\|_{H(\text{div})}. \end{eqnarray} $

引理5   $ b(\cdot, \cdot) $满足离散$ BB $条件.

  利用插值条件和Green公式,可以得到

$ \begin{eqnarray} b(\underline{\varphi}- \Pi_{T} \underline{\varphi}, q_{h}) & = & \sum \limits_{ T }\int_{T} q_{h} \cdot \text{div}(\underline{\varphi}- \Pi_{T}\underline{\varphi})\\ & = & \sum \limits_{ T }\int_{\partial T} q_{h} (\underline{\varphi}- \Pi_{T}\underline{\varphi})\cdot \underline{n}-\sum \limits_{ T }\int_{T} (\underline{\varphi}- \Pi_{T}\underline{\varphi})\cdot \bigtriangledown q_{h}\\ & = & \sum \limits_{ T }q_{h}\int_{\partial T} (\underline{\varphi}- \Pi_{T}\underline{\varphi})\cdot \underline{n}-0 = 0, \forall q_{h} \in M_{h}. \end{eqnarray} $

由(4.3)式, (4.4)式和Fortin准则[9],引理容易证明.

定理1  假设$ (\underline{\psi}, u) $$ (\underline{\psi}_{h}, u_{h}) $分别是问题(2.1)和(2.2)的解,则存在一个常数c,使得下面的误差估计成立:

其中$ h = \max h_{T} $, $ h_{T} $$ T $的直径, $ c $是一个与$ h $无关的常数.

  已知$ a(\cdot, \cdot) $$ Z_{h} $上强制,由引理5知$ b(\cdot, \cdot) $满足离散$ BB $条件,由混合元理论[9]和方程(2.3)得

其中$ \Pi_{h} $$ I_{h} $分别是$ H_{h} $$ M_{h} $的插值算子,则有

因为$ H_{h} $$ M_{h} $包含完整的零次多项式,借助于插值理论,可以得到

由于$ \text{div} \Pi_{h}\underline{\psi}\in P_{0} $,由插值条件

所以

其中$ P_{h}:L^{2}(\Omega)\rightarrow M_{h} $$ L^{2} $上的投影算子,由此可得

因此

定理证明完毕.

参考文献

Girault V, Raviart P A. Finite Element Methods for Navier-Stokes Equations. Theory and Algorithms. Berlin-Heidelberg: Springer-Verlag, 1986

[本文引用: 2]

Rannacher R , Turek S .

Simple nonconforming quadrilateral stokes element

Numer Methods for Partial Differential Equations, 1992, 82, 97- 111

URL    

Ciarlet P G. The Finite Element Method for Elliptic Problems. Amsterdam: North-Holland, 1978

Brenner S, Scott L R. The Mathematical Theory of Finite Element Methods. Berlin: Springer, 1994

Chen Z , Douglas J Jr .

Prismatic mixed finite elements for second order elliptic problems

Calcolo, 1989, 26, 135- 148

DOI:10.1007/BF02575725      [本文引用: 1]

Chen H R , Chen S C , Qiao Z H .

C0-Nonconforming triangular prism elements for the three-dimensional fourth order elliptic problem

J Sci Comput, 2013, 55, 645- 658

DOI:10.1007/s10915-012-9652-1      [本文引用: 1]

Hu J, Ma R. Conforming mixed triangular prism and nonconforming mixed retrahedral elements for the linear elasticity problem.2016, arXiv: 1604.07903v1[math.NA]

Chen H R , Chen S C , Xiao L C .

Uniformly convergent C0-Nonconforming triangular prism element for fourth-order elliptic singular perturbation problem

Numerical Methods for Partial Differential Equations, 2015, 30, 1785- 1796

URL     [本文引用: 1]

Brezzi F, Fortin M. Mixed and Hybrid Finite Element Methods. New York: Springer-Verlag, 1991

[本文引用: 6]

Brezzi F , Douglas J Jr , Marini L D .

Two families of mixed finite element for second order elliptic problems

Numerical Mathematics, 1985, 47, 217- 235

DOI:10.1007/BF01389710      [本文引用: 1]

Nédélec J C .

Mixed finite element in ${{\mathbb{R}}^{3}}$

Numerische Mathematik, 1980, 35, 315- 341

DOI:10.1007/BF01396415      [本文引用: 1]

Brezzi F , Fortin M , Marini L D .

Mixed finite element methods with continuous stresses

Mathematical Models and Methods in Applied Science, 1993, 6, 275- 287

[本文引用: 1]

Brezzi F , Douglas J , Duran R , Fortin M .

Mixed finite elements for second order elliptic problems in three variables

Numerische Mathematik, 1987, 51, 237- 250

DOI:10.1007/BF01396752      [本文引用: 1]

Nédélec J C .

A new family of mixed finite element in ${{\mathbb{R}}^{3}}$

Numerische Mathematik, 1986, 50, 57- 81

DOI:10.1007/BF01389668      [本文引用: 1]

Shi D Y , Liao X , Wang L L .

A nonconforming quadrilateral finite element approximation to nonlinear Schrödinger equation

Acta Mathematica Scientia, 2017, 37B (3): 584- 592

[本文引用: 1]

/