数学物理学报, 2020, 40(3): 556-568 doi:

论文

无限级Laplace-Stieltjes变换所表示的整函数的增长性与逼近

徐洪焱,1,2, 刘三阳2

The Approximation and Growth of Entire Function Represented by Laplace-Stieltjes Transform with Infinite Order

Xu Hongyan,1,2, Liu Sanyang2

通讯作者: 徐洪焱,E-mail: xhyhhh@126.com

收稿日期: 2019-04-23  

基金资助: 国家自然科学基金.  11561033
国家自然科学基金.  61877046
江西省自然科学基金.  20181BAB201001
江西省教育厅科学技术项目.  GJJ180734
江西省教育厅科学技术项目.  GJJ180735

Received: 2019-04-23  

Fund supported: the NSFC.  11561033
the NSFC.  61877046
the NSF of Jiangxi Province .  20181BAB201001
the Foundation of Education Department of Jiangxi .  GJJ180734
the Foundation of Education Department of Jiangxi .  GJJ180735

摘要

通过引入双下q-型的概念,讨论了具有非正规增长的全平面收敛的Laplace-Stieltjes变换的增长性与逼近,得到了Laplace-Stieltjes变换的尾项与双下q-型,An*以及λn的关系定理,推广了罗茜,孔荫莹,Singhal与Srivastava等的结果.

关键词: Laplace-Stieltjes变换 ; 逼近 ; q-非正规增长

Abstract

The main purpose of this article is to investigate the growth and approximation of Laplace-Stieltjes transform with irregular growth converges in the whole plane, by introducing the concept of the double lower q-type. We obtain some relation theorems concerning the double lower q-type, the error, An* and λn, which are extension and improvement of the previous theorems given by Luo-Kong, Singhal-Srivastava.

Keywords: Laplace-Stieltjes transform ; Approximation ; Double lower q-type

PDF (368KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

徐洪焱, 刘三阳. 无限级Laplace-Stieltjes变换所表示的整函数的增长性与逼近. 数学物理学报[J], 2020, 40(3): 556-568 doi:

Xu Hongyan, Liu Sanyang. The Approximation and Growth of Entire Function Represented by Laplace-Stieltjes Transform with Infinite Order. Acta Mathematica Scientia[J], 2020, 40(3): 556-568 doi:

1 引言与相关结果

Laplace-Stieltjes变换(以下简称L-S变换)

$ \begin{equation} G(s) = \int_0^{+\infty}e^{-sx}{\rm d}\alpha(x), s = \sigma+{\rm i}t, \end{equation} $

其中$ \alpha(x) $为区间$ [0, Y](0<Y<+\infty) $上的有界变差函数, $ \sigma, t $为实数.若选取$ \{\lambda_n\}_0^{\infty} $满足

$ \begin{equation} 0\leq \lambda_1<\lambda_2<\cdots<\lambda_n<\cdots, \lambda_n\rightarrow\infty, \; \; n\rightarrow\infty \end{equation} $

那么

上述级数被称为Dirichlet级数.若$ a_n, \lambda_n, n $满足某些特定条件, $ f(s) $于全平面或半平面内解析.过去的几十年间, Dirichlet级数所表示的整函数的增长性与值分布研究经典而有趣,出现了许多重要的成果(参见文献[3, 13-14, 17, 20-21, 27-28]).

1963年,余家荣[26]首次介绍了全平面内收敛的L-S变换所表示的整函数的``最大模" $ M_u(\sigma, G) $、``最大项" $ \mu(\sigma, G) $、Borel线以及级等概念,并分析了它们的性质,同时证明了L-S变换的收敛横坐标,绝对收敛横坐标以及一致收敛横坐标的Valiron-Knopp-Bohr公式.

定理A[26]  若L-S变换(0.1)满足条件(0.2),且

$ \begin{equation} \limsup\limits_{n\rightarrow+\infty}(\lambda_{n+1}-\lambda_n) = h<+\infty, \; \; \limsup\limits_{n\rightarrow+\infty}\frac{\log n}{\lambda_n} = D<+\infty, \end{equation} $

这里$ \sigma_u^G $$ G(s) $一致收敛横坐标,

随后,国内外许多学者对L-S变换所表示的解析函数的增长性与值分布等问题投入了大量的关注,得到了很多有意义的结果(参见文献[1, 4, 9, 12]).文献[5-6, 8]讨论了零级,有限级以及无限级L-S变换所表示解析函数的增长性,获得了L-S变换具有各种增长级的等价关系;文献[15-16, 22-23, 29]研究了L-S变换的值分布性质,得到了L-S变换具有Borel点与Borel线等各种奇异方向的条件.

2012年与2014年,罗茜,刘兴臻以及孔荫莹[10-11]讨论了形式与变换(1.1)不同的L-S变换

$ \begin{equation} F(s) = \int_0^{+\infty}e^{sx}{\rm d}\alpha(x), s = \sigma+{\rm i}t, \end{equation} $

其中$ \alpha(x) $如(0.1)式所述, $ \{\lambda_n\} $满足条件(1.2)和(1.3).若

$ \begin{equation} \limsup\limits_{n\rightarrow+\infty}\frac{\log A_n^\ast}{\lambda_n} = -\infty, \end{equation} $

这里

利用文献[26]中的讨论,易得$ \sigma_u^F = +\infty $,即, $ F(s) $为整函数.为简便,记$ \overline{L}_\beta $为形如(1.4)式并于半平面$ \Re s<\beta(-\infty <\beta<\infty) $内收敛,以及序列$ \{\lambda_n\} $满足条件(0.2)与(0.3); $ L_\infty $为形如(1.4)式并于全平面$ \Re s<+\infty $内收敛,以及序列$ \{\lambda_n\} $满足条件(0.2), (0.3)和(0.5).这样,若$ F(s)\in L_\infty $,则$ F(s)\in \overline{L}_\beta $,对$ -\infty<\beta<+\infty $.

在叙述文献[10-11]结果前,先介绍L-S变换的级,下级,型与下型的概念如下(参见文献[10-11, 24]).

定义1.1  若L-S变换$ F(s)\in L_\infty $满足

则称$ \rho $$ F(s) $的级,这里$ \log^+x = \max\{\log x, 0\} $.如果$ \rho\in (0, +\infty) $,则称$ F(s) $为有限级整函数. $ F(s) $的下级定义为

注1.1  若$ \rho = \mu $,则称$ F(s) $具有正规增长;若$ \rho\neq\mu $,则称$ F(s) $具有非正规增长.

定义1.2  若L-S变换$ F(s)\in L_\infty $具有级$ \rho (0<\rho<\infty) $,那么L-S变换$ F(s) $的型与下型分别定义为

根据文献[7, 10, 24, 26],我们容易得到L-S变换(1.4)的级,下级,型与下型的相关结果.

定理B[10]  若L-S变换$ F(s)\in L_\infty $,其级为$ \rho (0<\rho<\infty) $,则

定理C[24]  若L-S变换$ F(s)\in L_\infty $,其级为$ \rho (0<\rho<\infty) $,型为$ T $,则

进一步,若$ F(s) $的下级为$ \mu $,下型为$ \tau $,且$ \lambda_n\sim\lambda_{n+1} $,函数

关于$ n(>n_0) $非减,则

此外,文献[11]与[25]讨论了慢增长L-S变换(1.4)的增长性,证明了变换的$ h $ -级,对数级,对数型与$ A_n^* $, $ \lambda_n $的几个关系定理.然而,较少有涉及无限级L-S变换(1.4)的文献.本文第一个目的是通过引入$ q $ -级,下$ q $ -级, $ q $ -型,下$ q $ -型以及双下$ q $ -型等概念,讨论无限级L-S变换(1.4)的增长性.

定义1.3  令$ q\geq 1 $, $ q\in {\Bbb N}_+ $,定义L-S变换$ F(s)\in L_\infty $$ q $ -级$ \rho_q $

如果$ \rho_q\in (0, +\infty) $,则称$ F(s) $为具有有限$ q $ -级的整函数.此外,定义$ F(s) $的下$ q $ -级为

注1.2  显然,若$ q = 1 $,有$ \rho_q = \rho $, $ \mu_q = \mu $;若$ q\geq 2 $, $ \rho_q\in (0, +\infty) $,则$ \rho = \infty $.如无特别说明,本文约定$ q\geq 2 $.

注1.3  若$ \rho_q = \mu_q $,则称$ F(s) $具有$ q $ -正规增长,否则,称$ F(s) $$ q $ -非正规增长.

定义1.4  若L-S变换$ F(s)\in L_\infty $,具有有限$ q $ -级$ \rho_q (0<\rho_q<\infty) $,定义$ F(s) $$ q $ -型$ T_q $,下$ q $ -型$ \tau_q $分别为

类似定理B与定理C,对于有限$ q $ -级L-S变换(1.4),这里不加证明的给出下列结果.

定理1.1  若L-S变换$ F(s)\in L_\infty $,具有有限$ q $ -级$ \rho_q (0<\rho_q<\infty) $$ q $ -型$ T_q $,则

进一步,若$ F(s) $具有下$ q $ -级$ \mu_q $与下$ q $ -型$ \tau_q $,且函数$ \psi(n) $关于$ n(>n_0) $非减,以及当$ n\rightarrow+\infty $时, $ \log_{q-1}\lambda_n\sim\log_{q-1}\lambda_{n+1} $,则

问题  注意下$ q $ -型定义,若$ e^{\sigma\rho_q} $$ e^{\mu_q\sigma} $替换,情况会怎样呢?因此,先给出如下定义:

定义1.5  若L-S变换$ F(s)\in L_\infty $,具有有限$ q $ -级$ \rho_q (0<\rho_q<\infty) $与下$ q $ -级$ \mu_q(0<\mu_q<\infty) $,且$ \mu_q\neq \rho_q $,定义$ F(s) $的双下$ q $ -型$ \tau_{\mu_q} $

注1.4  显然, $ \tau_{\mu_q}\geq \tau_q $.不过,很难确定是否$ \tau_{\mu_q}\geq T_q $$ \tau_{\mu_q}\leq T_q $.

对L-S变换的$ q $ -非正规增长,我们得到:

定理1.2  若L-S变换$ F(s)\in L_\infty $,具有有限$ q $ -级$ \rho_q $,下$ q $ -级$ \mu_q $,且$ 0\leq \mu_q\neq \rho_q<\infty $,则

$ \begin{equation} \tau_q = \liminf\limits_{\sigma\rightarrow+\infty}\frac{\log_q M(\sigma, F)}{e^{\rho_q\sigma}} = \liminf\limits_{\sigma\rightarrow+\infty}\frac{\log_q\mu(\sigma, F)}{e^{\rho_q\sigma}} = \liminf\limits_{\sigma\rightarrow+\infty}\frac{\log_{q-1}N(\sigma, F)}{e^{\rho_q\sigma}} = 0. \end{equation} $

定理1.3  若L-S变换$ F(s)\in L_\infty $,具有有限$ q $ -级$ \rho_q $,下$ q $ -级$ \mu_q $,且$ 0\leq \mu_q\neq \rho_q<\infty $,如果当$ n\rightarrow+\infty $时, $ \log_q\lambda_n\sim\log_q\lambda_{n+1} $,则

$ \begin{equation} \tau_{\mu_q}\geq \liminf\limits_{n\rightarrow\infty}(A^*_n)^{\frac{\mu_q}{\lambda_n}}\log_{q-1}\left(\frac{\lambda_n}{e\mu_q}\right), \; \; \; \; (0\leq \tau_{\mu_q}\leq \infty). \end{equation} $

进一步,存在正整数$ n_0 $使得

关于$ n(>n_0) $非减,则

$ \begin{equation} \tau_{\mu_q} = \liminf\limits_{n\rightarrow\infty}(A^*_n)^{\frac{\mu_q}{\lambda_n}}\log_{q-1}\left(\frac{\lambda_n}{e\mu_q}\right), \; \; \; \; (0\leq \tau_{\mu_q}\leq \infty). \end{equation} $

2017年, Singhal-Srivastava[18]讨论了有限级L-S变换(1.4)的逼近,得到

定理D[18]  若L-S变换$ F(s)\in L_\infty $,具有有限级$ \rho (0<\rho<\infty) $与型$ T $,则对任意实数$ \beta(-\infty<\beta<+\infty) $,有

进一步,若$ F(s) $具有下级$ \mu $与下型$ \tau $,且$ \lambda_n\sim\lambda_{n+1} $以及函数$ \psi(n) $关于$ n(>n_0) $非减,则

注1.5  

其中

注1.6  若L-S变换(1.4)满足$ n\geq k+1 $时, $ A^*_n = 0 $$ A^*_k\neq0 $,则称$ F(s) $为阶为$ k $的指数型多项式,记为$ p_k $,即, $ p_k(s) = \int^{\lambda_k}_0\exp(sy){\rm d}\alpha(y) $.若选取适合的$ \alpha(y) $,函数$ p_k(s) $可简化为$ \exp(s\lambda_i) $项的多项式,即, $ \sum\limits_{i = 1}^kb_i\exp(s\lambda_i) $.

受文献[18, 24-25]启发,本文将讨论逼近算子$ E_n(F, \beta) $与双下$ q $ -型$ \tau_{\lambda_q} $的内在关系,证明了下述结果.

定理1.4  若L-S变换$ F(s)\in L_\infty $,具有下$ q $ -级$ \lambda_q (0\leq \mu_q\neq \rho_q<\infty) $,若$ \log_q\lambda_n\sim\log_q\lambda_{n+1} $,则对任意的实数$ \beta(-\infty<\beta<+\infty) $,有

$ \begin{equation} \tau_{\mu_q}\geq \liminf\limits_{n\rightarrow\infty}(E_{n-1}(F, \beta)\exp(-\beta\lambda_n))^{\frac{\mu_q}{\lambda_n}}\log_{q-1}\left(\frac{\lambda_n}{e\mu_q}\right), \; \; \; \; (0\leq \tau_{\mu_q}\leq \infty). \end{equation} $

进一步,若函数$ \psi(n) $关于$ n(>n_0) $非减,则

$ \begin{equation} \exp(\beta\mu_q)\tau_{\mu_q} = \liminf\limits_{n\rightarrow\infty}\log_{q-1}\left(\frac{\lambda_n}{e\mu_q}\right)(E_{n-1}(F, \beta))^{\frac{\mu_q}{\lambda_n}}. \end{equation} $

2 定理1.2与1.3的证明

为证明定理1.2与1.3,需要以下两引理.

引理2.1[10]  若L-S变换$ F(s)\in L_\infty $,则对任意的$ \sigma(-\infty<\sigma<+\infty) $$ \varepsilon(>0) $,有

这里$ K $为常数.

引理2.2[11]  若L-S变换$ F(s)\in L_\infty $,则对$ \sigma_0>0 $,有

定理1.2的证明  由$ F(s) $的下$ q $ -级为$ \mu_q $$ \rho_q>\mu_q>0 $,则对任意小的$ \varepsilon\ (0<\varepsilon<\rho_q-\mu_q) $,存在常数$ \sigma_0 $,使得当$ \sigma>\sigma_0 $时,有

$ \begin{equation} \log_q M_u(\sigma, F)>\exp\{(\mu_q-\varepsilon)\sigma\}, \end{equation} $

以及趋于无穷的一序列$ \{\sigma_k\} $,使得

$ \begin{equation} \log_q M_u(\sigma_k, F)<\exp\{(\mu_q+\varepsilon)\sigma_k\}. \end{equation} $

那么,当$ k\rightarrow+\infty $时,有

结合$ 0<\varepsilon<\rho_q-\mu_q $,可得

$ \begin{equation} \liminf\limits_{\sigma\rightarrow+\infty}\frac{\log_q M_u(\sigma, F)}{\exp(\rho\sigma)} = 0. \end{equation} $

再根据引理2.1与引理2.2,有

类似于(2.3)式的证明,易得

故定理1.2证毕.

定理1.3的证明  分两情形证明定理1.3.

情形2.1   $ q = 2 $.

于是,对任意的$ \varepsilon>0 $,存在整数$ n_0(\varepsilon) $使得当$ n>n_0(\varepsilon) $时,有

$ \begin{equation} \log A_n^*>\frac{\lambda_n}{\mu_2}\log\left\{(\vartheta-\varepsilon)\left(\log \frac{\lambda_n}{e\mu_2}\right)^{-1}\right\}. \end{equation} $

依据引理2.1与(2.4)式,对$ n>n_0(\varepsilon) $,可得

$ \begin{eqnarray} \frac{\log_2 M_u(\sigma, F)}{e^{\mu_2\sigma}}&\geq& \frac{\log(\log A_n^*+\lambda_n\sigma-\log 2)}{e^{\mu_2\sigma}} \nonumber\\ & >&e^{-\mu_2\sigma}\log\left\{\frac{\lambda_n}{\mu_2}\log\left\{(\vartheta-\varepsilon)\left(\log \frac{\lambda_n}{e\mu_2}\right)^{-1}\right\}+\lambda_n\sigma-\log2\right\}. \end{eqnarray} $

选取

于是,根据(2.5)式得

$ \begin{equation} \frac{\log_2 M_u(\sigma, F)}{e^{\mu_2\sigma}} \geq\frac{\vartheta\log\left\{\frac{\lambda_n}{\mu_2}\left[\log\frac{\vartheta-\varepsilon}{\vartheta} +\frac{1}{\log\frac{\lambda_n}{e\mu_2}}\right]-\log2\right\}} {\log\left(\frac{\lambda_{n+1}}{e\mu_2}\right)\exp\left(\frac{1}{\log\frac{\lambda_n}{e\mu_2}}\right)}. \end{equation} $

又因为当$ n\rightarrow+\infty $时, $ \lambda_n\sim\lambda_{n+1} $$ \lambda_n\rightarrow+\infty $,那么

$ \begin{equation} \log\frac{\lambda_{n+1}}{\log\frac{\lambda_n}{e\mu_2}} \sim\log\left(\frac{\lambda_n}{\mu_2}\right), \; \; \; e^{\frac{1}{\log\frac{\lambda_n}{e\mu_2}}}\rightarrow1, \; \; n\rightarrow+\infty. \end{equation} $

$ \varepsilon\rightarrow0 $$ n\rightarrow+\infty $,由(2.6)与(2.7)式,易得$ \tau_{\mu_2}\geq \vartheta. $

$ \vartheta = 0 $,显然有$ \tau_{\mu_q}\geq \vartheta $;若$ \vartheta = \infty $,类似上述讨论可得$ \tau_{\mu_2}\geq \vartheta $.于是, (1.7)式成立.

接下来证明(0.8)式对$ q = 2 $成立.令$ \mu(\sigma, F) $$ \Re s = \sigma, -\infty<t<+\infty $$ F(s) $的最大项.由

关于$ n(>n_0) $非减,若$ \psi(n-1)\leq \sigma<\psi(n) $,有

$ \tau_{\mu_2}<\infty $,根据定理1.2的证明,对任意小的$ \varepsilon>0 $,以及$ \sigma>\sigma_0 $,对满足$ \psi(n-1)\leq \sigma<\psi(n) $的所有$ n $,有

$ \begin{equation} \log \mu(\sigma, F) = \log A_n^*+\lambda_n\sigma\geq (\tau_{\mu_2}-\varepsilon)\exp(\mu_2\sigma). \end{equation} $

$ A_{n_1}^*\exp(\sigma\lambda_{n_1}) $$ A_{n_2}^*\exp(\sigma\lambda_{n_2}) $$ \Re s = \sigma(>\sigma_0) $的两个连续最大项,这里$ n_1>n_0, $$ \psi(n-1)>\sigma_0 $以及$ n_2-1\geq n_1 $.这样,由(1.8)式,对于所有的$ \sigma>\sigma_0 $且满足$ \psi(n_2-1)\leq \sigma<\psi(n_2) $,有

$ n_1\leq n\leq n_2-1 $,有

以及当$ \sigma = \psi(n) $时,有$ A_n^*\exp(\lambda_n\sigma) = A_{n_2}^*\exp(\lambda_{n_2}\sigma) $.因此,存在正整数$ n_1' $使得当$ n>n_1' = \max\{n_0, n_1\} $, $ \sigma>\sigma_0 $时,有

于是

$ \begin{equation} (A_n^*)^{\frac{\mu_2}{\lambda_n}} >\exp\left\{\frac{\mu_2}{\lambda_n} \exp\exp\left[\log(\tau_{\mu_2}-\varepsilon)+\mu_2\sigma\right]-\mu_2\sigma\right\}. \end{equation} $

那么

$ \begin{eqnarray} (A_n^*)^{\frac{\mu_2}{\lambda_n}} &>&\exp\left\{\frac{\mu_2}{\lambda_n}\exp\exp\left[\log\frac{\tau_{\mu_2}-\varepsilon}{\tau_{\mu_2}} +\log\log(\frac{\lambda_n}{e\mu_2})+o(\frac{1}{\log\lambda_n})\right]\right.\\ & &\left.-\log\log(\frac{\lambda_n}{e\mu_2})-o(\frac{1}{\log\lambda_n})\right\}\\ &>& \exp\left\{\frac{1}{e}\exp\exp\left[\log\frac{\tau_{\mu_2}-\varepsilon}{\tau_{\mu_2}}+o(\frac{1}{\log\lambda_n})\right] +\log\frac{\tau_{\mu_2}}{\log(\frac{\lambda_n}{e\mu_2})}-o(\frac{1}{\log\lambda_n})\right\}. \end{eqnarray} $

上式让$ \varepsilon\rightarrow0 $$ n\rightarrow+\infty $,结合对任意$ x>0 $$ e^x\geq ex $成立,则

$ \begin{equation} \vartheta = \liminf\limits_{n\rightarrow\infty}(A_n^*)^{\frac{\mu_2}{\lambda_n}}\log\left(\frac{\lambda_n}{e\mu_2}\right)\geq \tau_{\mu_2}. \end{equation} $

这样,结合(0.7)与(1.11)式,即(0.8)式当$ q = 2 $时成立.

情形2.2   $ q\geq 3 $.

于是,对任意的$ \varepsilon>0 $,存在正整数$ n_0(\varepsilon) $,使得当$ n>n_0(\varepsilon) $时,有

$ \begin{equation} \log A_n^*>\frac{\lambda_n}{\mu_q}\log\left[ (\vartheta_1-\varepsilon)\left(\log_{q-1}\left(\frac{\lambda_n}{e\mu_q}\right)\right)^{-1}\right]. \end{equation} $

那么,对$ n>n_0(\varepsilon) $,由(1.12)式与引理2.1,有

$ \begin{eqnarray} \frac{\log_{q} M_u(\sigma, F)}{e^{\mu_q\sigma}} & \geq &\frac{\log_{q-1}(\log A_n^*+\lambda_n\sigma-\log 2)}{e^{\mu_q\sigma}} \\ &>&e^{-\mu_q\sigma}\log_{q-1}\left\{\frac{\lambda_n}{\mu_q}\log\left\{(\vartheta_1-\varepsilon)\left(\log_{q-1} \frac{\lambda_n}{e\mu_q}\right)^{-1}\right\}+\lambda_n\sigma-\log2\right\}.\end{eqnarray} $

于是

类似情形2.1可得$ \tau_{\mu_q}\geq \vartheta_1 $.

另一方面,类似情形2.1,存在正整数$ n_3 $,使得当$ n>n_3 $, $ \sigma>\sigma_0 $时,有

这里$ \exp_0(x) = x, \exp_1x = e^x $, $ \exp_p(x) = \exp(\exp_{p-1}(x)) $.于是,有

$ \begin{equation} (A_n^*)^{\frac{\mu_q}{\lambda_n}} >\exp\left\{\frac{\mu_q}{\lambda_n} \exp_q\left[\log(\tau_{\mu_q}-\varepsilon)+\mu_q\sigma\right]-\mu_q\sigma\right\}. \end{equation} $

类似(2.10)式的讨论易得$ \vartheta_1\geq \mu_q $,即(0.8)式对$ q\geq 3 $时也成立.

定理1.3证毕.

3 定理1.4的证明

分两种情形证明定理1.4.

情形3.1   $ q = 2 $.

由上式知,对任意小的$ \varepsilon>0 $,存在正整数$ n_0(\varepsilon) $,使得当$ n>n_0(\varepsilon) $时,有

$ \begin{equation} \log (E_{n-1}(F, \beta)\exp(-\beta\lambda_n))>\frac{\lambda_n}{\mu_2}\log\left[ (\vartheta_2-\varepsilon)\left(\log\left(\frac{\lambda_n}{e\mu_2}\right)\right)^{-1}\right]. \end{equation} $

因为$ F(s)\in L_\infty $,即,对$ \beta(-\infty<\beta<+\infty) $, $ F(s)\in \overline{L}_\beta $.于是

$ \begin{eqnarray} E_n(F, \beta) &\leq&\parallel F-p_n\parallel_\beta\leq |F(\beta+{\rm i}t)-p_n(\beta+{\rm i}t)|\\ &\leq &\left|\int_0^{+\infty}\exp\{(\beta+{\rm i}t)y\}{\rm d}\alpha(y)-\int_0^{\lambda_n}\exp\{(\beta+{\rm i}t)y\}{\rm d}\alpha(y)\right|\\ & = &\left|\int_{\lambda_n}^\infty\exp\{(\beta+{\rm i}t)y\}{\rm d}\alpha(y)\right|, \end{eqnarray} $

$ I_{j+k}(b;{\rm i}t) = \int_{\lambda_{j+k}}^b\exp\{{\rm i}ty\}{\rm d}\alpha(y) $, $ \lambda_{j+k}<b\leq \lambda_{j+k+1} $,那么$ |I_{j+k}(b;{\rm i}t)|\leq A_{j+k}^* $

上式$ b\rightarrow+\infty $时,得

$ \begin{equation} \left|\int_{\lambda_{k}}^\infty\exp\{(\beta+{\rm i}t)y\}{\rm d}\alpha(y)\right|\leq 2\sum\limits_{n = k}^{+\infty}A_n^*\exp\{\beta\lambda_{n+1}\}. \end{equation} $

又因为对任意的$ \sigma(\beta<\sigma<+\infty) $, $ A_n^*\leq 2 M_u(\sigma, F)e^{-\sigma\lambda_n} $.于是,由(3.2)与(3.3)式,得

$ \begin{equation} E_n(F, \beta)\leq 2\sum\limits_{k = n+1}^\infty A_{k-1}^*\exp\{\beta\lambda_k\}\leq 4M_u(\sigma, F)\sum\limits_{k = n+1}^\infty\exp\{(\beta-\sigma)\lambda_k\}. \end{equation} $

选取$ h'(0<h'<h) $,使得对$ n\geq0 $, $ (\lambda_{n+1} -\lambda_n)\geq h' $,再结合(3.4)式,对$ \sigma\geq \beta+1 $,可得

$ \begin{equation} E_{n-1}(F, \beta)\leq KM_u(\sigma, F)\exp\{\lambda_{n}(\beta-\sigma)\}, \end{equation} $

这里$ K $是常数.令

$ \begin{equation} \gamma_n = E_{n-1}(F, \beta)\exp(-\beta\lambda_n), \; n = 1, 2, \cdots. \end{equation} $

由(3.1), (3.5)和(3.6)式,对$ n>n_0(\varepsilon) $,有

类似情形2.1易得$ \tau_{\mu_2}\geq \vartheta_2 $.

另一方面,由

关于$ n(>n_0) $非减,类似定理1.3,存在正整数$ n_4 $,使得当$ n>n_4 $, $ \sigma>\sigma_0 $时,有

$ \begin{equation} \log A_n^*>\exp\left\{(\tau_{\mu_2}-\varepsilon)e^{\mu_2\sigma}\right\}-\lambda_n\sigma. \end{equation} $

又因为对$ \beta<+\infty $,有

以及由$ \Pi_{n-1} $定义知,存在$ p_1\in \Pi_{n-1} $使得

$ \begin{equation} \|F-p_1\|_\beta\leq 2E_{n-1}(F, \beta). \end{equation} $

那么,对任意的$ p\in \Pi_{n-1} $,有

$ \begin{equation} A_n^*\exp\{\beta\lambda_n\}\leq |F(\beta+{\rm i}t)-p(\beta+{\rm i}t)|\leq \|F-p\|_\beta, \end{equation} $

结合(3.8)式可得

这样,对任意$ \beta<+\infty $$ F(s)\in L_\infty $,再结合$ \gamma_n $的定义,得

$ \begin{equation} \gamma_n\geq \frac{A_n^*}{2}. \end{equation} $

结合(3.7)与(3.10)式得

$ \begin{equation} (\gamma_n)^{\frac{\mu_2}{\lambda_n}} >\exp\left\{\frac{\mu_2}{\lambda_n} \exp\exp\left[\log(\tau_{\mu_2}-\varepsilon)+\mu_2\sigma\right]-\mu_2\sigma-\frac{\mu_2\log 2}{\lambda_n}\right\}. \end{equation} $

又由$ x>0 $, $ e^x\geq ex $成立.这样,类似情形2.1易得, $ \tau_{\mu_2}\leq \vartheta_2 $.

这样,对$ q = 2 $, $ \tau_{\mu_q} = \vartheta_2 $成立.

情形3.2   $ q\geq3 $.类似情形2.2与情形3.1,有

又由$ [\exp(-\beta\lambda_n)]^{\frac{\mu_q}{\lambda_n}} = \exp(-\beta\mu_q) $,故(0.10)式得证.

定理1.4证毕.

参考文献

Batty C .

Tauberian theorem for the Laplace-Stieltjes transform

Trans Amer Math Soc, 1990, 322 (2): 783- 804

DOI:10.1090/S0002-9947-1990-1013326-6      [本文引用: 1]

Ding X Q , Yu J R .

Picard points of random Dirichlet series

Bull Sci Math, 2000, 124 (3): 225- 238

DOI:10.1016/S0007-4497(00)00134-2     

Huo Y Y , Kong Y Y .

On generalized orders and generalized types of Dirichlet series in the right half-plane

Acta Math Sci, 2014, 34B (1): 175- 182

URL     [本文引用: 1]

Knopp K .

Über die Konvergenzabszisse des Laplace-integrals

Math Zeits, 1951, 54, 291- 296

DOI:10.1007/BF01574830      [本文引用: 1]

孔荫莹.

半平面解析的无穷级Laplace-Stieltjes变换

数学学报, 2012, 55A (1): 141- 148

URL     [本文引用: 1]

Kong Y Y .

Laplace-Stieltjes transform of infinite order in the right half-plane

Acta Math Sinica, 2012, 55A (1): 141- 148

URL     [本文引用: 1]

孔荫莹, 霍颖莹.

右半平面解析的Laplace-Stieltjes变换的广义级与型

数学学报, 2016, 59A, 91- 98

DOI:10.3969/j.issn.1005-3085.2016.01.009      [本文引用: 1]

Kong Y Y , Huo Y Y .

On generalized orders and types of Laplace-Stieltjes transformas analytic in the right half-plane

Acta Math Sinica, 2016, 59A, 91- 98

DOI:10.3969/j.issn.1005-3085.2016.01.009      [本文引用: 1]

Kong Y Y , Hong Y . On the Growth of Laplace-Stieltjes Transforms and the Singuar Direction of Complex Analysis. Jinan: Jinan University Press, 2010

[本文引用: 1]

Kong Y Y , Sun D C .

On the growth of zero order Laplace-Stieltjes transform convergent in the right half-plane

Acta Math Sci, 2008, 28B (2): 431- 440

URL     [本文引用: 1]

Kong Y Y , Yang Y .

On the growth properties of the Laplace-Stieltjes transform

Complex Variables and Elliptic Equations, 2014, 59, 553- 563

DOI:10.1080/17476933.2013.766174      [本文引用: 1]

罗茜, 刘兴臻, 孔荫莹.

在全平面上解析的Laplace-Stieltjes变换的正规增长性

数学杂志, 2014, 34, 1181- 1186

URL     [本文引用: 6]

Luo X , Liu X Z , Kong Y Y .

The regular growth of Laplace-Stieltjes transforms

J of Math, 2014, 34, 1181- 1186

URL     [本文引用: 6]

罗茜, 孔荫莹.

全平面上慢增长的Laplace-Stieltjes变换的级与型

数学物理学报, 2012, 32A, 601- 607

DOI:10.3969/j.issn.1003-3998.2012.03.016      [本文引用: 5]

Luo X , Kong Y Y .

On the order and type of Laplace-Stieltjes transforms of slow growth

Acta Math Sci, 2012, 32A, 601- 607

DOI:10.3969/j.issn.1003-3998.2012.03.016      [本文引用: 5]

Mishkelyavichyus A .

A Tauberian theorem for the Laplace-Stieltjes integral and the Dirichlet series (Russian)

Litovsk Mast Sb, 1989, 29 (4): 745- 753

URL     [本文引用: 1]

Oskolkov V A , Kalinichenko L I .

Growth of entire functions represented by Dirichlet series

Sbornik:Mathematics, 1996, 187, 1545- 1560

DOI:10.1070/SM1996v187n10ABEH000168      [本文引用: 1]

Shang L N , Gao Z S .

Entire functions defined by Dirichlet series

J Math Anal Appl, 2008, 339, 853- 862

URL     [本文引用: 1]

尚丽娜, 高宗升.

Laplace-Stieltjes变换所定义的无限级整函数的增长性

数学物理学报, 2007, 27A (6): 1035- 1043

URL     [本文引用: 1]

Shang L N , Gao Z S .

The growth of entire functions of infinite order represented by Laplace-Stieltjes transformation

Acta Math Sci, 2007, 27A (6): 1035- 1043

URL     [本文引用: 1]

尚丽娜, 高宗升.

Laplace-Stieltjes变换所表示的解析函数的值分布

数学学报, 2008, 51A (5): 993- 1000

DOI:10.3321/j.issn:0583-1431.2008.05.019      [本文引用: 1]

Shang L N , Gao Z S .

The value distribution of analytic functions defined by Laplace-Stieltjes transforms

Acta Math Sinica, 2008, 51A (5): 993- 1000

DOI:10.3321/j.issn:0583-1431.2008.05.019      [本文引用: 1]

Sheremeta M N , Fedynyak S I .

On the derivative of a Dirichlet series

Siberian Mathematical Journal, 1998, 39 (1): 181- 197

DOI:10.1007/BF02732373      [本文引用: 1]

Singhal C, Srivastava G S. On the growth and approximation of entire functions represented by Laplace-Stieltjes transformation. Ann Univ Ferrara, 2017, 59(1): 1-12

URL     [本文引用: 3]

Sun D C .

On the distribution of values of random Dirichlet series II

Chinese Ann Math, 1990, 11B (1): 33- 44

URL    

Tian F J, Sun D C, Yu J R. Sur les séries aléatoires de Dirichlet. C R Acad Sci Paris Ser I, 1998, 326: 427-431

[本文引用: 1]

Vakarchuk S B, Zhir S I. On some problems of polynomial approximation of entire transcendental functions. Ukrainian Math J, 2002, 54(9): 1393-1401

URL     [本文引用: 1]

Xu H Y, Xuan Z X. The growth and value distribution of Laplace-Stieltjes transformations with infinite order in the right half-plane. Journal of Inequalities and Applications, 2013, 2013: Article 273

URL     [本文引用: 1]

Xu H Y, Xuan Z X. The singular points of analytic functions with finite X-order defined by Laplace-Stieltjes transformations. Journal of Function Spaces 2015, Article ID: 865069

URL     [本文引用: 1]

Xu H Y, Liu S Y. The approximation of Laplace-Stieltjes transforms with finite order. Journal of Inequalities and Applications 2017, 2017: Artcile 164

URL     [本文引用: 4]

徐洪焱, 刘三阳.

慢增长的Laplace-Stieltjes变换的逼近

数学学报, 2019, 62A (3): 457- 468

DOI:10.3969/j.issn.0583-1431.2019.03.011      [本文引用: 2]

Xu H Y , Liu S Y .

The approximation of Laplace-Stieltjes transforms with slow growth

Acta Math Sinica, 2019, 62A (3): 457- 468

DOI:10.3969/j.issn.0583-1431.2019.03.011      [本文引用: 2]

余家荣.

Laplace-Stieltjes变換所定义的整函数之Borel线

数学学报, 1963, 13, 471- 484

URL     [本文引用: 4]

Yu J R .

Borel's line of entire functions represented by Laplace-Stieltjes transformation

Acta Math Sinica, 1963, 13, 471- 484

URL     [本文引用: 4]

余家荣. 狄利克雷级数与随机狄得克雷级数. 北京: 科学出版社, 1997

[本文引用: 1]

Yu J R . Dirichlet Series and the Random Dirichlet Series. Beijing: Science Press, 1997

[本文引用: 1]

Yu J R .

Sur les droites de Borel de certaines fonction entières

Annales École Norm Sup, 1951, 68 (3): 65- 104

URL     [本文引用: 1]

张洪申, 孙道椿.

右半平面上Laplace-Stieltjes变换的值分布

数学学报, 2012, 55A (3): 535- 542

URL     [本文引用: 1]

Zhang H S , Sun D C .

The value distribution of Laplace-Stieltjes transforms in the right half plane

Acta Math Sinica, 2012, 55A (3): 535- 542

URL     [本文引用: 1]

/