Processing math: 2%

数学物理学报, 2020, 40(3): 556-568 doi:

论文

无限级Laplace-Stieltjes变换所表示的整函数的增长性与逼近

徐洪焱,1,2, 刘三阳2

The Approximation and Growth of Entire Function Represented by Laplace-Stieltjes Transform with Infinite Order

Xu Hongyan,1,2, Liu Sanyang2

通讯作者: 徐洪焱,E-mail: xhyhhh@126.com

收稿日期: 2019-04-23  

基金资助: 国家自然科学基金.  11561033
国家自然科学基金.  61877046
江西省自然科学基金.  20181BAB201001
江西省教育厅科学技术项目.  GJJ180734
江西省教育厅科学技术项目.  GJJ180735

Received: 2019-04-23  

Fund supported: the NSFC.  11561033
the NSFC.  61877046
the NSF of Jiangxi Province .  20181BAB201001
the Foundation of Education Department of Jiangxi .  GJJ180734
the Foundation of Education Department of Jiangxi .  GJJ180735

摘要

通过引入双下q-型的概念,讨论了具有非正规增长的全平面收敛的Laplace-Stieltjes变换的增长性与逼近,得到了Laplace-Stieltjes变换的尾项与双下q-型,An*以及λn的关系定理,推广了罗茜,孔荫莹,Singhal与Srivastava等的结果.

关键词: Laplace-Stieltjes变换 ; 逼近 ; q-非正规增长

Abstract

The main purpose of this article is to investigate the growth and approximation of Laplace-Stieltjes transform with irregular growth converges in the whole plane, by introducing the concept of the double lower q-type. We obtain some relation theorems concerning the double lower q-type, the error, An* and λn, which are extension and improvement of the previous theorems given by Luo-Kong, Singhal-Srivastava.

Keywords: Laplace-Stieltjes transform ; Approximation ; Double lower q-type

PDF (368KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

徐洪焱, 刘三阳. 无限级Laplace-Stieltjes变换所表示的整函数的增长性与逼近. 数学物理学报[J], 2020, 40(3): 556-568 doi:

Xu Hongyan, Liu Sanyang. The Approximation and Growth of Entire Function Represented by Laplace-Stieltjes Transform with Infinite Order. Acta Mathematica Scientia[J], 2020, 40(3): 556-568 doi:

1 引言与相关结果

Laplace-Stieltjes变换(以下简称L-S变换)

G(s)=+0esxdα(x),s=σ+it,
(1.1)

其中α(x)为区间[0,Y](0<Y<+)上的有界变差函数, σ,t为实数.若选取{λn}0满足

0λ1<λ2<<λn<,λn,n
(1.2)

α(x)={a1+a2++an,λnx<λn+1,0,x=0,α(x+)+α(x)2,x>0,

那么

G(s)=+0esxdα(x)=+n=0anesλn:=f(s),

上述级数被称为Dirichlet级数.若an,λn,n满足某些特定条件, f(s)于全平面或半平面内解析.过去的几十年间, Dirichlet级数所表示的整函数的增长性与值分布研究经典而有趣,出现了许多重要的成果(参见文献[3, 13-14, 17, 20-21, 27-28]).

1963年,余家荣[26]首次介绍了全平面内收敛的L-S变换所表示的整函数的``最大模" Mu(σ,G)、``最大项" μ(σ,G)、Borel线以及级等概念,并分析了它们的性质,同时证明了L-S变换的收敛横坐标,绝对收敛横坐标以及一致收敛横坐标的Valiron-Knopp-Bohr公式.

定理A[26]  若L-S变换(0.1)满足条件(0.2),且

lim sup
(1.3)

\limsup\limits_{n\rightarrow+\infty}\frac{\log B_n^\ast}{\lambda_n}\leq \sigma_u^G\leq \limsup\limits_{n\rightarrow+\infty}\frac{\log B_n^\ast}{\lambda_n}+\limsup\limits_{n\rightarrow+\infty}\frac{\log n}{\lambda_n},

这里 \sigma_u^G G(s) 一致收敛横坐标,

B_n^* = \sup\limits_{\lambda_n<x\leq \lambda_{n+1}, -\infty<t<+\infty}\left|\int_{\lambda_n}^xe^{-{\rm i}ty}{\rm d}\alpha(y)\right|.

随后,国内外许多学者对L-S变换所表示的解析函数的增长性与值分布等问题投入了大量的关注,得到了很多有意义的结果(参见文献[1, 4, 9, 12]).文献[5-6, 8]讨论了零级,有限级以及无限级L-S变换所表示解析函数的增长性,获得了L-S变换具有各种增长级的等价关系;文献[15-16, 22-23, 29]研究了L-S变换的值分布性质,得到了L-S变换具有Borel点与Borel线等各种奇异方向的条件.

2012年与2014年,罗茜,刘兴臻以及孔荫莹[10-11]讨论了形式与变换(1.1)不同的L-S变换

\begin{equation} F(s) = \int_0^{+\infty}e^{sx}{\rm d}\alpha(x), s = \sigma+{\rm i}t, \end{equation}
(1.4)

其中 \alpha(x) 如(0.1)式所述, \{\lambda_n\} 满足条件(1.2)和(1.3).若

\begin{equation} \limsup\limits_{n\rightarrow+\infty}\frac{\log A_n^\ast}{\lambda_n} = -\infty, \end{equation}
(1.5)

这里

A_n^* = \sup\limits_{\lambda_n<x\leq \lambda_{n+1}, -\infty<t<+\infty}\left|\int_{\lambda_n}^xe^{{\rm i}ty}{\rm d}\alpha(y)\right|,

利用文献[26]中的讨论,易得 \sigma_u^F = +\infty ,即, F(s) 为整函数.为简便,记 \overline{L}_\beta 为形如(1.4)式并于半平面 \Re s<\beta(-\infty <\beta<\infty) 内收敛,以及序列 \{\lambda_n\} 满足条件(0.2)与(0.3); L_\infty 为形如(1.4)式并于全平面 \Re s<+\infty 内收敛,以及序列 \{\lambda_n\} 满足条件(0.2), (0.3)和(0.5).这样,若 F(s)\in L_\infty ,则 F(s)\in \overline{L}_\beta ,对 -\infty<\beta<+\infty .

M_u(\sigma, F) = \sup\limits_{0<x<+\infty, -\infty<t<+\infty}\left|\int_0^xe^{(\sigma+{\rm i}t)y}{\rm d}\alpha(y)\right|,

\mu(\sigma, F) = \max\limits_{n\in N}\{A_n^*e^{\lambda_n\sigma}\}, N(\sigma, F) = \max\{\lambda_n: \; A_n^*e^{\lambda_n\sigma} = \mu(\sigma, F)\}.

在叙述文献[10-11]结果前,先介绍L-S变换的级,下级,型与下型的概念如下(参见文献[10-11, 24]).

定义1.1  若L-S变换 F(s)\in L_\infty 满足

\limsup\limits_{\sigma\rightarrow+\infty}\frac{\log^+\log^+M_u(\sigma, F)}{\sigma} = \rho,

则称 \rho F(s) 的级,这里 \log^+x = \max\{\log x, 0\} .如果 \rho\in (0, +\infty) ,则称 F(s) 为有限级整函数. F(s) 的下级定义为

\liminf\limits_{\sigma\rightarrow+\infty}\frac{\log^+\log^+M_u(\sigma, F)}{\sigma} = \mu.

注1.1  若 \rho = \mu ,则称 F(s) 具有正规增长;若 \rho\neq\mu ,则称 F(s) 具有非正规增长.

定义1.2  若L-S变换 F(s)\in L_\infty 具有级 \rho (0<\rho<\infty) ,那么L-S变换 F(s) 的型与下型分别定义为

\limsup\limits_{\sigma\rightarrow+\infty}\frac{\log^+M_u(\sigma, F)}{e^{\sigma\rho}} = T, \; \; \; \; \liminf\limits_{\sigma\rightarrow+\infty}\frac{\log^+M_u(\sigma, F)}{e^{\sigma\rho}} = \tau.

根据文献[7, 10, 24, 26],我们容易得到L-S变换(1.4)的级,下级,型与下型的相关结果.

定理B[10]  若L-S变换 F(s)\in L_\infty ,其级为 \rho (0<\rho<\infty) ,则

\rho = \limsup\limits_{n\rightarrow+\infty}\frac{\lambda_n\log\lambda_n}{-\log A_n^*}.

定理C[24]  若L-S变换 F(s)\in L_\infty ,其级为 \rho (0<\rho<\infty) ,型为 T ,则

T = \limsup\limits_{n\rightarrow+\infty}\frac{\lambda_n}{\rho e}(A_n^*)^{\frac{\rho}{\lambda_n}}.

进一步,若 F(s) 的下级为 \mu ,下型为 \tau ,且 \lambda_n\sim\lambda_{n+1} ,函数

\psi(n) = \frac{\log A^*_n-\log A^*_{n+1}}{\lambda_{n+1}-\lambda_n}

关于 n(>n_0) 非减,则

\mu = \liminf\limits_{n\rightarrow+\infty}\frac{\lambda_n\log\lambda_n}{-\log A_n^*}, \; \; \; \tau = \liminf\limits_{n\rightarrow+\infty}\frac{\lambda_n}{\rho e}(A_n^*)^{\frac{\rho}{\lambda_n}}.

此外,文献[11]与[25]讨论了慢增长L-S变换(1.4)的增长性,证明了变换的 h -级,对数级,对数型与 A_n^* , \lambda_n 的几个关系定理.然而,较少有涉及无限级L-S变换(1.4)的文献.本文第一个目的是通过引入 q -级,下 q -级, q -型,下 q -型以及双下 q -型等概念,讨论无限级L-S变换(1.4)的增长性.

定义1.3  令 q\geq 1 , q\in {\Bbb N}_+ ,定义L-S变换 F(s)\in L_\infty q -级 \rho_q

\limsup\limits_{\sigma\rightarrow+\infty}\frac{\log_{q+1} M_u(\sigma, F)}{\sigma} = \rho_q, \; \; \rho_q\in [0, +\infty].

如果 \rho_q\in (0, +\infty) ,则称 F(s) 为具有有限 q -级的整函数.此外,定义 F(s) 的下 q -级为

\liminf\limits_{\sigma\rightarrow+\infty}\frac{\log_{q+1}M_u(\sigma, F)}{\sigma} = \mu_q.

注1.2  显然,若 q = 1 ,有 \rho_q = \rho , \mu_q = \mu ;若 q\geq 2 , \rho_q\in (0, +\infty) ,则 \rho = \infty .如无特别说明,本文约定 q\geq 2 .

注1.3  若 \rho_q = \mu_q ,则称 F(s) 具有 q -正规增长,否则,称 F(s) q -非正规增长.

定义1.4  若L-S变换 F(s)\in L_\infty ,具有有限 q -级 \rho_q (0<\rho_q<\infty) ,定义 F(s) q -型 T_q ,下 q -型 \tau_q 分别为

\limsup\limits_{\sigma\rightarrow+\infty}\frac{\log_{q}M_u(\sigma, F)}{e^{\sigma\rho_q}} = T_q, \; \; \; \; \liminf\limits_{\sigma\rightarrow+\infty}\frac{\log_{q}M_u(\sigma, F)}{e^{\sigma\rho_q}} = \tau_q.

类似定理B与定理C,对于有限 q -级L-S变换(1.4),这里不加证明的给出下列结果.

定理1.1  若L-S变换 F(s)\in L_\infty ,具有有限 q -级 \rho_q (0<\rho_q<\infty) q -型 T_q ,则

\rho_q = \limsup\limits_{n\rightarrow+\infty}\frac{\lambda_n\log_q\lambda_n}{-\log A_n^*}, \; \; \; T_q = \limsup\limits_{n\rightarrow+\infty}\log_{q-1}\left[\frac{\lambda_n}{e\rho_q}\right](A_n^*)^{\frac{\rho_q}{\lambda_n}}.

进一步,若 F(s) 具有下 q -级 \mu_q 与下 q -型 \tau_q ,且函数 \psi(n) 关于 n(>n_0) 非减,以及当 n\rightarrow+\infty 时, \log_{q-1}\lambda_n\sim\log_{q-1}\lambda_{n+1} ,则

\mu_q = \liminf\limits_{n\rightarrow+\infty}\frac{\lambda_n\log_q\lambda_n}{-\log A_n^*}, \; \; \; \tau_q = \liminf\limits_{n\rightarrow+\infty}\log_{q-1}\left[\frac{\lambda_n}{e\rho_q }\right](A_n^*)^{\frac{\rho_q}{\lambda_n}}.

问题  注意下 q -型定义,若 e^{\sigma\rho_q} e^{\mu_q\sigma} 替换,情况会怎样呢?因此,先给出如下定义:

定义1.5  若L-S变换 F(s)\in L_\infty ,具有有限 q -级 \rho_q (0<\rho_q<\infty) 与下 q -级 \mu_q(0<\mu_q<\infty) ,且 \mu_q\neq \rho_q ,定义 F(s) 的双下 q -型 \tau_{\mu_q}

\liminf\limits_{\sigma\rightarrow+\infty}\frac{\log_qM_u(\sigma, F)}{e^{\sigma\mu_q}} = \tau_{\mu_q}.

注1.4  显然, \tau_{\mu_q}\geq \tau_q .不过,很难确定是否 \tau_{\mu_q}\geq T_q \tau_{\mu_q}\leq T_q .

对L-S变换的 q -非正规增长,我们得到:

定理1.2  若L-S变换 F(s)\in L_\infty ,具有有限 q -级 \rho_q ,下 q -级 \mu_q ,且 0\leq \mu_q\neq \rho_q<\infty ,则

\begin{equation} \tau_q = \liminf\limits_{\sigma\rightarrow+\infty}\frac{\log_q M(\sigma, F)}{e^{\rho_q\sigma}} = \liminf\limits_{\sigma\rightarrow+\infty}\frac{\log_q\mu(\sigma, F)}{e^{\rho_q\sigma}} = \liminf\limits_{\sigma\rightarrow+\infty}\frac{\log_{q-1}N(\sigma, F)}{e^{\rho_q\sigma}} = 0. \end{equation}
(1.6)

定理1.3  若L-S变换 F(s)\in L_\infty ,具有有限 q -级 \rho_q ,下 q -级 \mu_q ,且 0\leq \mu_q\neq \rho_q<\infty ,如果当 n\rightarrow+\infty 时, \log_q\lambda_n\sim\log_q\lambda_{n+1} ,则

\begin{equation} \tau_{\mu_q}\geq \liminf\limits_{n\rightarrow\infty}(A^*_n)^{\frac{\mu_q}{\lambda_n}}\log_{q-1}\left(\frac{\lambda_n}{e\mu_q}\right), \; \; \; \; (0\leq \tau_{\mu_q}\leq \infty). \end{equation}
(1.7)

进一步,存在正整数 n_0 使得

\psi(n) = \frac{\log A^*_n-\log A^*_{n+1}}{\lambda_{n+1}-\lambda_n}

关于 n(>n_0) 非减,则

\begin{equation} \tau_{\mu_q} = \liminf\limits_{n\rightarrow\infty}(A^*_n)^{\frac{\mu_q}{\lambda_n}}\log_{q-1}\left(\frac{\lambda_n}{e\mu_q}\right), \; \; \; \; (0\leq \tau_{\mu_q}\leq \infty). \end{equation}
(1.8)

2017年, Singhal-Srivastava[18]讨论了有限级L-S变换(1.4)的逼近,得到

定理D[18]  若L-S变换 F(s)\in L_\infty ,具有有限级 \rho (0<\rho<\infty) 与型 T ,则对任意实数 \beta(-\infty<\beta<+\infty) ,有

\rho = \limsup\limits_{n\rightarrow+\infty}\frac{\lambda_n\log\lambda_n}{-\log E_{n-1}(F, \beta)\exp(-\beta\lambda_n)} = \limsup\limits_{n\rightarrow+\infty}\frac{\lambda_n\log\lambda_n}{-\log E_{n-1}(F, \beta)}

T = \limsup\limits_{n\rightarrow+\infty}\frac{\lambda_n}{\rho e}(E_{n-1}(F, \beta)\exp(-\beta\lambda_n))^{\frac{\rho}{\lambda_n}} = \limsup\limits_{n\rightarrow+\infty}\frac{\lambda_n}{\rho\exp(\rho\beta+1)}(E_{n-1}(F, \beta))^{\frac{\rho}{\lambda_n}}.

进一步,若 F(s) 具有下级 \mu 与下型 \tau ,且 \lambda_n\sim\lambda_{n+1} 以及函数 \psi(n) 关于 n(>n_0) 非减,则

\mu = \liminf\limits_{n\rightarrow+\infty}\frac{\lambda_n\log\lambda_n}{-\log E_{n-1}(F, \beta)}, \; \; \; \tau = \liminf\limits_{n\rightarrow+\infty}\frac{\lambda_n}{\rho \exp(\rho\beta+1)}(E_{n-1}(F, \beta))^{\frac{\rho}{\lambda_n}}.

注1.5  

E_n(F, \beta) = \inf\limits_{p\in\Pi_n}\parallel F-p\parallel_\beta, n = 1, 2, \cdots ,

其中

\parallel F-p\parallel_\beta = \max\limits_{-\infty<t<+\infty}|F(\beta+{\rm i}t)-p(\beta+{\rm i}t)|,

\Pi_k = \left\{\sum\limits_{j = 1}^k b_je^{\lambda_js}: (b_1, b_2, \cdots , b_k)\in {\Bbb C}^k\right\}.

注1.6  若L-S变换(1.4)满足 n\geq k+1 时, A^*_n = 0 A^*_k\neq0 ,则称 F(s) 为阶为 k 的指数型多项式,记为 p_k ,即, p_k(s) = \int^{\lambda_k}_0\exp(sy){\rm d}\alpha(y) .若选取适合的 \alpha(y) ,函数 p_k(s) 可简化为 \exp(s\lambda_i) 项的多项式,即, \sum\limits_{i = 1}^kb_i\exp(s\lambda_i) .

受文献[18, 24-25]启发,本文将讨论逼近算子 E_n(F, \beta) 与双下 q -型 \tau_{\lambda_q} 的内在关系,证明了下述结果.

定理1.4  若L-S变换 F(s)\in L_\infty ,具有下 q -级 \lambda_q (0\leq \mu_q\neq \rho_q<\infty) ,若 \log_q\lambda_n\sim\log_q\lambda_{n+1} ,则对任意的实数 \beta(-\infty<\beta<+\infty) ,有

\begin{equation} \tau_{\mu_q}\geq \liminf\limits_{n\rightarrow\infty}(E_{n-1}(F, \beta)\exp(-\beta\lambda_n))^{\frac{\mu_q}{\lambda_n}}\log_{q-1}\left(\frac{\lambda_n}{e\mu_q}\right), \; \; \; \; (0\leq \tau_{\mu_q}\leq \infty). \end{equation}
(1.9)

进一步,若函数 \psi(n) 关于 n(>n_0) 非减,则

\tau_{\mu_q} = \liminf\limits_{n\rightarrow\infty}(E_{n-1}(F, \beta)\exp(-\beta\lambda_n))^{\frac{\mu_q}{\lambda_n}}\log_{q-1}\left(\frac{\lambda_n}{e\mu_q}\right), \; \; \; \; (0\leq \tau_{\mu_q}\leq \infty),

\begin{equation} \exp(\beta\mu_q)\tau_{\mu_q} = \liminf\limits_{n\rightarrow\infty}\log_{q-1}\left(\frac{\lambda_n}{e\mu_q}\right)(E_{n-1}(F, \beta))^{\frac{\mu_q}{\lambda_n}}. \end{equation}
(1.10)

2 定理1.2与1.3的证明

为证明定理1.2与1.3,需要以下两引理.

引理2.1[10]  若L-S变换 F(s)\in L_\infty ,则对任意的 \sigma(-\infty<\sigma<+\infty) \varepsilon(>0) ,有

\frac{1}{2}\mu(\sigma, F)\leq M_u(\sigma, F)\leq K\mu((1+2\varepsilon)\sigma, F),

这里 K 为常数.

引理2.2[11]  若L-S变换 F(s)\in L_\infty ,则对 \sigma_0>0 ,有

\log \mu(\sigma, F) = \log \mu(\sigma_0, F)+\int_{\sigma_0}^\sigma N(t, F){\rm d}t.

定理1.2的证明  由 F(s) 的下 q -级为 \mu_q \rho_q>\mu_q>0 ,则对任意小的 \varepsilon\ (0<\varepsilon<\rho_q-\mu_q) ,存在常数 \sigma_0 ,使得当 \sigma>\sigma_0 时,有

\begin{equation} \log_q M_u(\sigma, F)>\exp\{(\mu_q-\varepsilon)\sigma\}, \end{equation}
(2.1)

以及趋于无穷的一序列 \{\sigma_k\} ,使得

\begin{equation} \log_q M_u(\sigma_k, F)<\exp\{(\mu_q+\varepsilon)\sigma_k\}. \end{equation}
(2.2)

那么,当 k\rightarrow+\infty 时,有

\exp\{(\mu_q-\varepsilon-\rho_q)\sigma_k\}\leq \frac{\log_q M_u(\sigma, F)}{\exp(\rho_q\sigma_k)} \leq \exp\{(\mu_q+\varepsilon-\rho_q)\sigma_k\}.

结合 0<\varepsilon<\rho_q-\mu_q ,可得

\begin{equation} \liminf\limits_{\sigma\rightarrow+\infty}\frac{\log_q M_u(\sigma, F)}{\exp(\rho\sigma)} = 0. \end{equation}
(2.3)

再根据引理2.1与引理2.2,有

\rho_q = \limsup\limits_{\sigma\rightarrow+\infty}\frac{\log_{q+1} M_u(\sigma, F)}{\sigma} = \limsup\limits_{\sigma\rightarrow+\infty}\frac{\log_{q+1} \mu(\sigma, F)}{\sigma} = \limsup\limits_{\sigma\rightarrow+\infty}\frac{\log_{q} N(\sigma, F)}{\sigma}

\mu_q = \liminf\limits_{\sigma\rightarrow+\infty}\frac{\log_{q+1} M_u(\sigma, F)}{\sigma} = \liminf\limits_{\sigma\rightarrow+\infty}\frac{\log_{q+1} \mu(\sigma, F)}{\sigma} = \liminf\limits_{\sigma\rightarrow+\infty}\frac{\log_{q} N(\sigma, F)}{\sigma}.

类似于(2.3)式的证明,易得

\liminf\limits_{\sigma\rightarrow+\infty}\frac{\log_q \mu(\sigma, F)}{\exp(\rho_q\sigma)} = \liminf\limits_{\sigma\rightarrow+\infty}\frac{\log_{q-1}N(\sigma, F)}{\exp(\rho_q\sigma)} = 0.

故定理1.2证毕.

定理1.3的证明  分两情形证明定理1.3.

情形2.1    q = 2 .

\vartheta = \liminf\limits_{n\rightarrow+\infty}(A_n^*)^{\frac{\mu_2}{\lambda_n}}\log \frac{\lambda_n}{e\mu_2}, \; \; \; (0<\vartheta<+\infty).

于是,对任意的 \varepsilon>0 ,存在整数 n_0(\varepsilon) 使得当 n>n_0(\varepsilon) 时,有

\begin{equation} \log A_n^*>\frac{\lambda_n}{\mu_2}\log\left\{(\vartheta-\varepsilon)\left(\log \frac{\lambda_n}{e\mu_2}\right)^{-1}\right\}. \end{equation}
(2.4)

依据引理2.1与(2.4)式,对 n>n_0(\varepsilon) ,可得

\begin{eqnarray} \frac{\log_2 M_u(\sigma, F)}{e^{\mu_2\sigma}}&\geq& \frac{\log(\log A_n^*+\lambda_n\sigma-\log 2)}{e^{\mu_2\sigma}} \nonumber\\ & >&e^{-\mu_2\sigma}\log\left\{\frac{\lambda_n}{\mu_2}\log\left\{(\vartheta-\varepsilon)\left(\log \frac{\lambda_n}{e\mu_2}\right)^{-1}\right\}+\lambda_n\sigma-\log2\right\}. \end{eqnarray}
(2.5)

\frac{1}{\mu_2}\left[\log\frac{\log\frac{\lambda_n}{e\mu_2}}{\vartheta} \right] \leq \sigma<\frac{1}{\mu_2}\left[\log\frac{\log\frac{\lambda_{n+1}}{e\mu_2}}{\vartheta} +\frac{1}{\log\frac{\lambda_n}{e\mu_2}}\right],

选取

\sigma = \frac{1}{\mu_2}\left[\log \frac{\log\left(\frac{\lambda_n}{e\mu_2}\right)}{\vartheta} +\frac{1}{\log\frac{\lambda_n}{e\mu_2}}\right].

于是,根据(2.5)式得

\begin{equation} \frac{\log_2 M_u(\sigma, F)}{e^{\mu_2\sigma}} \geq\frac{\vartheta\log\left\{\frac{\lambda_n}{\mu_2}\left[\log\frac{\vartheta-\varepsilon}{\vartheta} +\frac{1}{\log\frac{\lambda_n}{e\mu_2}}\right]-\log2\right\}} {\log\left(\frac{\lambda_{n+1}}{e\mu_2}\right)\exp\left(\frac{1}{\log\frac{\lambda_n}{e\mu_2}}\right)}. \end{equation}
(2.6)

又因为当 n\rightarrow+\infty 时, \lambda_n\sim\lambda_{n+1} \lambda_n\rightarrow+\infty ,那么

\begin{equation} \log\frac{\lambda_{n+1}}{\log\frac{\lambda_n}{e\mu_2}} \sim\log\left(\frac{\lambda_n}{\mu_2}\right), \; \; \; e^{\frac{1}{\log\frac{\lambda_n}{e\mu_2}}}\rightarrow1, \; \; n\rightarrow+\infty. \end{equation}
(2.7)

\varepsilon\rightarrow0 n\rightarrow+\infty ,由(2.6)与(2.7)式,易得 \tau_{\mu_2}\geq \vartheta.

\vartheta = 0 ,显然有 \tau_{\mu_q}\geq \vartheta ;若 \vartheta = \infty ,类似上述讨论可得 \tau_{\mu_2}\geq \vartheta .于是, (1.7)式成立.

接下来证明(0.8)式对 q = 2 成立.令 \mu(\sigma, F) \Re s = \sigma, -\infty<t<+\infty F(s) 的最大项.由

\psi(n) = \frac{\log A^*_n-\log A^*_{n+1}}{\lambda_{n+1}-\lambda_n}

关于 n(>n_0) 非减,若 \psi(n-1)\leq \sigma<\psi(n) ,有

\log \mu(\sigma, F) = \log A_n^*+\lambda_n\sigma.

\tau_{\mu_2}<\infty ,根据定理1.2的证明,对任意小的 \varepsilon>0 ,以及 \sigma>\sigma_0 ,对满足 \psi(n-1)\leq \sigma<\psi(n) 的所有 n ,有

\begin{equation} \log \mu(\sigma, F) = \log A_n^*+\lambda_n\sigma\geq (\tau_{\mu_2}-\varepsilon)\exp(\mu_2\sigma). \end{equation}
(2.8)

A_{n_1}^*\exp(\sigma\lambda_{n_1}) A_{n_2}^*\exp(\sigma\lambda_{n_2}) \Re s = \sigma(>\sigma_0) 的两个连续最大项,这里 n_1>n_0, \psi(n-1)>\sigma_0 以及 n_2-1\geq n_1 .这样,由(1.8)式,对于所有的 \sigma>\sigma_0 且满足 \psi(n_2-1)\leq \sigma<\psi(n_2) ,有

\log(\log A_{n_2}^*+\lambda_{n_2}\sigma)\geq (\tau_{\mu_2}-\varepsilon)\exp(\mu_2\sigma);

n_1\leq n\leq n_2-1 ,有

\psi(n_1) = \psi(n_1+1) = \cdots = \psi(n) = \cdots = \psi(n_2-1),

以及当 \sigma = \psi(n) 时,有 A_n^*\exp(\lambda_n\sigma) = A_{n_2}^*\exp(\lambda_{n_2}\sigma) .因此,存在正整数 n_1' 使得当 n>n_1' = \max\{n_0, n_1\} , \sigma>\sigma_0 时,有

A_n^*>\exp\left\{\exp\left\{(\tau_{\mu_2}-\varepsilon)e^{\mu_2\sigma}\right\}-\lambda_n\sigma\right\}.

于是

\begin{equation} (A_n^*)^{\frac{\mu_2}{\lambda_n}} >\exp\left\{\frac{\mu_2}{\lambda_n} \exp\exp\left[\log(\tau_{\mu_2}-\varepsilon)+\mu_2\sigma\right]-\mu_2\sigma\right\}. \end{equation}
(2.9)

\sigma = \frac{1}{\mu_2}\left[\log\frac{\log(\frac{\lambda_n}{e\mu_2})}{\tau_{\mu_2}}+o(\frac{1}{\log\lambda_n})\right],

那么

\begin{eqnarray} (A_n^*)^{\frac{\mu_2}{\lambda_n}} &>&\exp\left\{\frac{\mu_2}{\lambda_n}\exp\exp\left[\log\frac{\tau_{\mu_2}-\varepsilon}{\tau_{\mu_2}} +\log\log(\frac{\lambda_n}{e\mu_2})+o(\frac{1}{\log\lambda_n})\right]\right.\\ & &\left.-\log\log(\frac{\lambda_n}{e\mu_2})-o(\frac{1}{\log\lambda_n})\right\}\\ &>& \exp\left\{\frac{1}{e}\exp\exp\left[\log\frac{\tau_{\mu_2}-\varepsilon}{\tau_{\mu_2}}+o(\frac{1}{\log\lambda_n})\right] +\log\frac{\tau_{\mu_2}}{\log(\frac{\lambda_n}{e\mu_2})}-o(\frac{1}{\log\lambda_n})\right\}. \end{eqnarray}
(2.10)

上式让 \varepsilon\rightarrow0 n\rightarrow+\infty ,结合对任意 x>0 e^x\geq ex 成立,则

\begin{equation} \vartheta = \liminf\limits_{n\rightarrow\infty}(A_n^*)^{\frac{\mu_2}{\lambda_n}}\log\left(\frac{\lambda_n}{e\mu_2}\right)\geq \tau_{\mu_2}. \end{equation}
(2.11)

这样,结合(0.7)与(1.11)式,即(0.8)式当 q = 2 时成立.

情形2.2    q\geq 3 .

\vartheta_1 = \liminf\limits_{n\rightarrow+\infty}(A_n^*)^{\frac{\mu_q}{\lambda_n}}\log_{q-1}\left(\frac{\lambda_n}{e\mu_q}\right), \; \; \; (0<\vartheta<+\infty).

于是,对任意的 \varepsilon>0 ,存在正整数 n_0(\varepsilon) ,使得当 n>n_0(\varepsilon) 时,有

\begin{equation} \log A_n^*>\frac{\lambda_n}{\mu_q}\log\left[ (\vartheta_1-\varepsilon)\left(\log_{q-1}\left(\frac{\lambda_n}{e\mu_q}\right)\right)^{-1}\right]. \end{equation}
(2.12)

那么,对 n>n_0(\varepsilon) ,由(1.12)式与引理2.1,有

\begin{eqnarray} \frac{\log_{q} M_u(\sigma, F)}{e^{\mu_q\sigma}} & \geq &\frac{\log_{q-1}(\log A_n^*+\lambda_n\sigma-\log 2)}{e^{\mu_q\sigma}} \\ &>&e^{-\mu_q\sigma}\log_{q-1}\left\{\frac{\lambda_n}{\mu_q}\log\left\{(\vartheta_1-\varepsilon)\left(\log_{q-1} \frac{\lambda_n}{e\mu_q}\right)^{-1}\right\}+\lambda_n\sigma-\log2\right\}.\end{eqnarray}
(2.13)

\frac{1}{\mu_q}\left[\log\frac{\log_{q-1}\frac{\lambda_n}{e\mu_q}}{\vartheta_1} \right] \leq \sigma<\frac{1}{\mu_q}\left[\log\frac{\log_{q-1}\frac{\lambda_{n+1}}{e\mu_q}}{\vartheta_1} +\frac{1}{\log_{q-1}\lambda_n}\right],

\sigma = \frac{1}{\mu_q}\left[\log \frac{\log_{q-1}\left(\frac{\lambda_n}{e\mu_q}\right)}{\vartheta} +\frac{1}{\log_{q-1}\lambda_n}\right].

于是

\frac{\log_{q} M_u(\sigma, F)}{e^{\mu_q\sigma}} \geq\frac{\vartheta_1\log\left\{\frac{\lambda_n}{\mu_q}\left[\log\frac{\vartheta_1-\varepsilon}{\vartheta_1} +\frac{1}{\log_{q-1}\lambda_n}\right]-\log2\right\}} {\log_{q-1}\left(\frac{\lambda_{n+1}}{e\mu_q}\right)\exp\left(\frac{1}{\log_{q-1}\lambda_n}\right)}.

类似情形2.1可得 \tau_{\mu_q}\geq \vartheta_1 .

另一方面,类似情形2.1,存在正整数 n_3 ,使得当 n>n_3 , \sigma>\sigma_0 时,有

A_n^*>\exp\left\{\exp_{p-1}\left\{(\tau_{\mu_q}-\varepsilon)e^{\mu_q\sigma}\right\}-\lambda_n\sigma\right\},

这里 \exp_0(x) = x, \exp_1x = e^x , \exp_p(x) = \exp(\exp_{p-1}(x)) .于是,有

\begin{equation} (A_n^*)^{\frac{\mu_q}{\lambda_n}} >\exp\left\{\frac{\mu_q}{\lambda_n} \exp_q\left[\log(\tau_{\mu_q}-\varepsilon)+\mu_q\sigma\right]-\mu_q\sigma\right\}. \end{equation}
(2.14)

\sigma = \frac{1}{\mu_q}\left[\log\frac{\log_{q-1}(\frac{\lambda_n}{e\mu_q})}{\tau_{\mu_q}}+o(\frac{1}{\log_{q-1}\lambda_n})\right],

类似(2.10)式的讨论易得 \vartheta_1\geq \mu_q ,即(0.8)式对 q\geq 3 时也成立.

定理1.3证毕.

3 定理1.4的证明

分两种情形证明定理1.4.

情形3.1    q = 2 .

\vartheta_2 = \liminf\limits_{n\rightarrow\infty}\log\left(\frac{\lambda_n}{e\mu_2}\right)(E_{n-1}(F, \beta)\exp(-\beta\lambda_n))^{\frac{\mu_2}{\lambda_n}} , \; \; \; \; (0<\vartheta_1<+\infty).

由上式知,对任意小的 \varepsilon>0 ,存在正整数 n_0(\varepsilon) ,使得当 n>n_0(\varepsilon) 时,有

\begin{equation} \log (E_{n-1}(F, \beta)\exp(-\beta\lambda_n))>\frac{\lambda_n}{\mu_2}\log\left[ (\vartheta_2-\varepsilon)\left(\log\left(\frac{\lambda_n}{e\mu_2}\right)\right)^{-1}\right]. \end{equation}
(3.1)

因为 F(s)\in L_\infty ,即,对 \beta(-\infty<\beta<+\infty) , F(s)\in \overline{L}_\beta .于是

\begin{eqnarray} E_n(F, \beta) &\leq&\parallel F-p_n\parallel_\beta\leq |F(\beta+{\rm i}t)-p_n(\beta+{\rm i}t)|\\ &\leq &\left|\int_0^{+\infty}\exp\{(\beta+{\rm i}t)y\}{\rm d}\alpha(y)-\int_0^{\lambda_n}\exp\{(\beta+{\rm i}t)y\}{\rm d}\alpha(y)\right|\\ & = &\left|\int_{\lambda_n}^\infty\exp\{(\beta+{\rm i}t)y\}{\rm d}\alpha(y)\right|, \end{eqnarray}
(3.2)

\left|\int_{\lambda_{k}}^\infty\exp\{(\beta+{\rm i}t)y\}{\rm d}\alpha(y)\right| = \lim\limits_{b\rightarrow+\infty}\left|\int_{\lambda_{k}}^b\exp\{(\beta+{\rm i}t)y\}{\rm d}\alpha(y)\right|.

I_{j+k}(b;{\rm i}t) = \int_{\lambda_{j+k}}^b\exp\{{\rm i}ty\}{\rm d}\alpha(y) , \lambda_{j+k}<b\leq \lambda_{j+k+1} ,那么 |I_{j+k}(b;{\rm i}t)|\leq A_{j+k}^*

\begin{eqnarray*} & &\left|\int_{\lambda_{k}}^b\exp\{(\beta+{\rm i}t)y\}{\rm d}\alpha(y)\right|\\ & = &\left|\sum\limits_{j = k}^{n+k-1}\int_{\lambda_j}^{\lambda_{j+1}}\exp\{\beta y\}{\rm d}_yI_j(y;{\rm i}t)+ \int_{\lambda_{n+k}}^b\exp\{\beta y\}{\rm d}_yI_{n+k}(y;{\rm i}t)\right|\\ & = &\left|\left[\sum\limits_{j = k}^{n+k-1}e^{\lambda_{j+1}\beta}I_j(\lambda_{j+1};{\rm i}t)-\beta\int_{\lambda_j}^{\lambda_{j+1}}e^{\beta y}I_j(y;{\rm i}t){\rm d}y\right]\right.\\ & &\left.+e^{\beta b}I_{n+k}(b;{\rm i}t)-\beta\int_{\lambda_{n+k}}^{b}e^{\beta y}I_j(y;{\rm i}t){\rm d}y\right|\\ &\leq&\sum\limits_{j = k}^{n+k-1}\left[A_j^*e^{\lambda_{j+1}\beta}+A_j^*(e^{\lambda_{j+1}\beta}-e^{\lambda_{j}\beta})\right] +2e^{\beta\lambda_{n+k+1}}A_{n+k}^*-e^{\beta\lambda_{n+k}}A_{n+k}^*\\ & \leq&2\sum\limits_{j = k}^{n+k} A_n^*e^{\beta\lambda_{n+1}}. \end{eqnarray*}

上式 b\rightarrow+\infty 时,得

\begin{equation} \left|\int_{\lambda_{k}}^\infty\exp\{(\beta+{\rm i}t)y\}{\rm d}\alpha(y)\right|\leq 2\sum\limits_{n = k}^{+\infty}A_n^*\exp\{\beta\lambda_{n+1}\}. \end{equation}
(3.3)

又因为对任意的 \sigma(\beta<\sigma<+\infty) , A_n^*\leq 2 M_u(\sigma, F)e^{-\sigma\lambda_n} .于是,由(3.2)与(3.3)式,得

\begin{equation} E_n(F, \beta)\leq 2\sum\limits_{k = n+1}^\infty A_{k-1}^*\exp\{\beta\lambda_k\}\leq 4M_u(\sigma, F)\sum\limits_{k = n+1}^\infty\exp\{(\beta-\sigma)\lambda_k\}. \end{equation}
(3.4)

选取 h'(0<h'<h) ,使得对 n\geq0 , (\lambda_{n+1} -\lambda_n)\geq h' ,再结合(3.4)式,对 \sigma\geq \beta+1 ,可得

\begin{eqnarray*} E_n(F, \beta) &\leq& 4M_u(\sigma, F)\exp\{\lambda_{n+1}(\beta-\sigma)\}\sum\limits_{k = n+1}^\infty \exp\{(\lambda_k-\lambda_{n+1})(\beta-\sigma)\}\\ &\leq& 4M_u(\sigma, F)\exp\{\lambda_{n+1}(\beta-\sigma)\}\exp\{h'(n+1)\}\sum\limits_{k = n+1}^\infty (\exp\{-h'k\})\\ & = &4M_u(\sigma, F)\exp\{\lambda_{n+1}(\beta-\sigma)\}\left(1-\exp\{h'\}\right)^{-1}, \end{eqnarray*}

\begin{equation} E_{n-1}(F, \beta)\leq KM_u(\sigma, F)\exp\{\lambda_{n}(\beta-\sigma)\}, \end{equation}
(3.5)

这里 K 是常数.令

\begin{equation} \gamma_n = E_{n-1}(F, \beta)\exp(-\beta\lambda_n), \; n = 1, 2, \cdots. \end{equation}
(3.6)

由(3.1), (3.5)和(3.6)式,对 n>n_0(\varepsilon) ,有

\begin{eqnarray*} \nonumber \frac{\log_2 M_u(\sigma, F)}{e^{\mu_2\sigma}}&\geq& \frac{\log(\log \gamma_n+\lambda_n\sigma-\log K)}{e^{\mu_2\sigma}} \\ & >&e^{-\mu_2\sigma}\log\left\{\frac{\lambda_n}{\mu_2}\log\left\{(\vartheta_2-\varepsilon)\left(\log \frac{\lambda_n}{e\mu_2}\right)^{-1}\right\}+\lambda_n\sigma-\log K\right\}. \end{eqnarray*}

\sigma = \frac{1}{\mu_2}\left[\log \frac{\log\left(\frac{\lambda_n}{e\mu_2}\right)}{\vartheta_2} +\frac{1}{\log\frac{\lambda_n}{e\mu_2}}\right],

类似情形2.1易得 \tau_{\mu_2}\geq \vartheta_2 .

另一方面,由

\psi(n) = \frac{\log A^*_n-\log A^*_{n+1}}{\lambda_{n+1}-\lambda_n}

关于 n(>n_0) 非减,类似定理1.3,存在正整数 n_4 ,使得当 n>n_4 , \sigma>\sigma_0 时,有

\begin{equation} \log A_n^*>\exp\left\{(\tau_{\mu_2}-\varepsilon)e^{\mu_2\sigma}\right\}-\lambda_n\sigma. \end{equation}
(3.7)

又因为对 \beta<+\infty ,有

\begin{eqnarray*} \nonumber A_n^*\exp\{\beta\lambda_n\}& = &\sup\limits_{\lambda_n<x\leq\lambda_{n+1}, -\infty<t<+\infty}\left|\int_{\lambda_n}^x\exp\{{\rm i}ty\}{\rm d}\alpha(y)\right|\exp\{\beta\lambda_n\}\\ &\leq& \sup\limits_{\lambda_n<x\leq\lambda_{n+1}, -\infty<t<+\infty}\left|\int_{\lambda_n}^x\exp\{(\beta+{\rm i}t)y\}{\rm d}\alpha(y)\right| \\ &\leq &\sup\limits_{-\infty<t<+\infty}\left|\int_{\lambda_n}^\infty\exp\{(\beta+{\rm i}t)y\}{\rm d}\alpha(y)\right|, \end{eqnarray*}

以及由 \Pi_{n-1} 定义知,存在 p_1\in \Pi_{n-1} 使得

\begin{equation} \|F-p_1\|_\beta\leq 2E_{n-1}(F, \beta). \end{equation}
(3.8)

那么,对任意的 p\in \Pi_{n-1} ,有

\begin{equation} A_n^*\exp\{\beta\lambda_n\}\leq |F(\beta+{\rm i}t)-p(\beta+{\rm i}t)|\leq \|F-p\|_\beta, \end{equation}
(3.9)

结合(3.8)式可得

A_n^*\exp\{\beta\lambda_n\}\leq 2E_{n-1}(F, \beta).

这样,对任意 \beta<+\infty F(s)\in L_\infty ,再结合 \gamma_n 的定义,得

\begin{equation} \gamma_n\geq \frac{A_n^*}{2}. \end{equation}
(3.10)

结合(3.7)与(3.10)式得

\begin{equation} (\gamma_n)^{\frac{\mu_2}{\lambda_n}} >\exp\left\{\frac{\mu_2}{\lambda_n} \exp\exp\left[\log(\tau_{\mu_2}-\varepsilon)+\mu_2\sigma\right]-\mu_2\sigma-\frac{\mu_2\log 2}{\lambda_n}\right\}. \end{equation}
(3.11)

\sigma = \frac{1}{\mu_2}\left[\log\frac{\log(\frac{\lambda_n}{e\mu_2})}{\tau_{\mu_2}}+o(\frac{1}{\log\lambda_n})\right],

又由 x>0 , e^x\geq ex 成立.这样,类似情形2.1易得, \tau_{\mu_2}\leq \vartheta_2 .

这样,对 q = 2 , \tau_{\mu_q} = \vartheta_2 成立.

情形3.2    q\geq3 .类似情形2.2与情形3.1,有

\tau_{\mu_q} = \liminf\limits_{n\rightarrow\infty}(E_{n-1}(F, \beta)\exp(-\beta\lambda_n))^{\frac{\mu_q} {\lambda_n}}\log_{q-1}\left(\frac{\lambda_n}{e\mu_q}\right).

又由 [\exp(-\beta\lambda_n)]^{\frac{\mu_q}{\lambda_n}} = \exp(-\beta\mu_q) ,故(0.10)式得证.

定理1.4证毕.

参考文献

Batty C .

Tauberian theorem for the Laplace-Stieltjes transform

Trans Amer Math Soc, 1990, 322 (2): 783- 804

DOI:10.1090/S0002-9947-1990-1013326-6      [本文引用: 1]

Ding X Q , Yu J R .

Picard points of random Dirichlet series

Bull Sci Math, 2000, 124 (3): 225- 238

DOI:10.1016/S0007-4497(00)00134-2     

Huo Y Y , Kong Y Y .

On generalized orders and generalized types of Dirichlet series in the right half-plane

Acta Math Sci, 2014, 34B (1): 175- 182

URL     [本文引用: 1]

Knopp K .

Über die Konvergenzabszisse des Laplace-integrals

Math Zeits, 1951, 54, 291- 296

DOI:10.1007/BF01574830      [本文引用: 1]

孔荫莹.

半平面解析的无穷级Laplace-Stieltjes变换

数学学报, 2012, 55A (1): 141- 148

URL     [本文引用: 1]

Kong Y Y .

Laplace-Stieltjes transform of infinite order in the right half-plane

Acta Math Sinica, 2012, 55A (1): 141- 148

URL     [本文引用: 1]

孔荫莹, 霍颖莹.

右半平面解析的Laplace-Stieltjes变换的广义级与型

数学学报, 2016, 59A, 91- 98

DOI:10.3969/j.issn.1005-3085.2016.01.009      [本文引用: 1]

Kong Y Y , Huo Y Y .

On generalized orders and types of Laplace-Stieltjes transformas analytic in the right half-plane

Acta Math Sinica, 2016, 59A, 91- 98

DOI:10.3969/j.issn.1005-3085.2016.01.009      [本文引用: 1]

Kong Y Y , Hong Y . On the Growth of Laplace-Stieltjes Transforms and the Singuar Direction of Complex Analysis. Jinan: Jinan University Press, 2010

[本文引用: 1]

Kong Y Y , Sun D C .

On the growth of zero order Laplace-Stieltjes transform convergent in the right half-plane

Acta Math Sci, 2008, 28B (2): 431- 440

URL     [本文引用: 1]

Kong Y Y , Yang Y .

On the growth properties of the Laplace-Stieltjes transform

Complex Variables and Elliptic Equations, 2014, 59, 553- 563

DOI:10.1080/17476933.2013.766174      [本文引用: 1]

罗茜, 刘兴臻, 孔荫莹.

在全平面上解析的Laplace-Stieltjes变换的正规增长性

数学杂志, 2014, 34, 1181- 1186

URL     [本文引用: 6]

Luo X , Liu X Z , Kong Y Y .

The regular growth of Laplace-Stieltjes transforms

J of Math, 2014, 34, 1181- 1186

URL     [本文引用: 6]

罗茜, 孔荫莹.

全平面上慢增长的Laplace-Stieltjes变换的级与型

数学物理学报, 2012, 32A, 601- 607

DOI:10.3969/j.issn.1003-3998.2012.03.016      [本文引用: 5]

Luo X , Kong Y Y .

On the order and type of Laplace-Stieltjes transforms of slow growth

Acta Math Sci, 2012, 32A, 601- 607

DOI:10.3969/j.issn.1003-3998.2012.03.016      [本文引用: 5]

Mishkelyavichyus A .

A Tauberian theorem for the Laplace-Stieltjes integral and the Dirichlet series (Russian)

Litovsk Mast Sb, 1989, 29 (4): 745- 753

URL     [本文引用: 1]

Oskolkov V A , Kalinichenko L I .

Growth of entire functions represented by Dirichlet series

Sbornik:Mathematics, 1996, 187, 1545- 1560

DOI:10.1070/SM1996v187n10ABEH000168      [本文引用: 1]

Shang L N , Gao Z S .

Entire functions defined by Dirichlet series

J Math Anal Appl, 2008, 339, 853- 862

URL     [本文引用: 1]

尚丽娜, 高宗升.

Laplace-Stieltjes变换所定义的无限级整函数的增长性

数学物理学报, 2007, 27A (6): 1035- 1043

URL     [本文引用: 1]

Shang L N , Gao Z S .

The growth of entire functions of infinite order represented by Laplace-Stieltjes transformation

Acta Math Sci, 2007, 27A (6): 1035- 1043

URL     [本文引用: 1]

尚丽娜, 高宗升.

Laplace-Stieltjes变换所表示的解析函数的值分布

数学学报, 2008, 51A (5): 993- 1000

DOI:10.3321/j.issn:0583-1431.2008.05.019      [本文引用: 1]

Shang L N , Gao Z S .

The value distribution of analytic functions defined by Laplace-Stieltjes transforms

Acta Math Sinica, 2008, 51A (5): 993- 1000

DOI:10.3321/j.issn:0583-1431.2008.05.019      [本文引用: 1]

Sheremeta M N , Fedynyak S I .

On the derivative of a Dirichlet series

Siberian Mathematical Journal, 1998, 39 (1): 181- 197

DOI:10.1007/BF02732373      [本文引用: 1]

Singhal C, Srivastava G S. On the growth and approximation of entire functions represented by Laplace-Stieltjes transformation. Ann Univ Ferrara, 2017, 59(1): 1-12

URL     [本文引用: 3]

Sun D C .

On the distribution of values of random Dirichlet series II

Chinese Ann Math, 1990, 11B (1): 33- 44

URL    

Tian F J, Sun D C, Yu J R. Sur les séries aléatoires de Dirichlet. C R Acad Sci Paris Ser I, 1998, 326: 427-431

[本文引用: 1]

Vakarchuk S B, Zhir S I. On some problems of polynomial approximation of entire transcendental functions. Ukrainian Math J, 2002, 54(9): 1393-1401

URL     [本文引用: 1]

Xu H Y, Xuan Z X. The growth and value distribution of Laplace-Stieltjes transformations with infinite order in the right half-plane. Journal of Inequalities and Applications, 2013, 2013: Article 273

URL     [本文引用: 1]

Xu H Y, Xuan Z X. The singular points of analytic functions with finite X-order defined by Laplace-Stieltjes transformations. Journal of Function Spaces 2015, Article ID: 865069

URL     [本文引用: 1]

Xu H Y, Liu S Y. The approximation of Laplace-Stieltjes transforms with finite order. Journal of Inequalities and Applications 2017, 2017: Artcile 164

URL     [本文引用: 4]

徐洪焱, 刘三阳.

慢增长的Laplace-Stieltjes变换的逼近

数学学报, 2019, 62A (3): 457- 468

DOI:10.3969/j.issn.0583-1431.2019.03.011      [本文引用: 2]

Xu H Y , Liu S Y .

The approximation of Laplace-Stieltjes transforms with slow growth

Acta Math Sinica, 2019, 62A (3): 457- 468

DOI:10.3969/j.issn.0583-1431.2019.03.011      [本文引用: 2]

余家荣.

Laplace-Stieltjes变換所定义的整函数之Borel线

数学学报, 1963, 13, 471- 484

URL     [本文引用: 4]

Yu J R .

Borel's line of entire functions represented by Laplace-Stieltjes transformation

Acta Math Sinica, 1963, 13, 471- 484

URL     [本文引用: 4]

余家荣. 狄利克雷级数与随机狄得克雷级数. 北京: 科学出版社, 1997

[本文引用: 1]

Yu J R . Dirichlet Series and the Random Dirichlet Series. Beijing: Science Press, 1997

[本文引用: 1]

Yu J R .

Sur les droites de Borel de certaines fonction entières

Annales École Norm Sup, 1951, 68 (3): 65- 104

URL     [本文引用: 1]

张洪申, 孙道椿.

右半平面上Laplace-Stieltjes变换的值分布

数学学报, 2012, 55A (3): 535- 542

URL     [本文引用: 1]

Zhang H S , Sun D C .

The value distribution of Laplace-Stieltjes transforms in the right half plane

Acta Math Sinica, 2012, 55A (3): 535- 542

URL     [本文引用: 1]

/