数学物理学报, 2020, 40(3): 545-555 doi:

论文

移动紧圆盘上Bernstein-Durrmeyer型算子的逼近

庞兆鋆1, 虞旦盛,1, 周平2

On Approximation by Bernstein-Durrmeyer-Type Operators in Movable Compact Disks

Pang Zhaojun1, Yu Dansheng,1, Zhou Ping2

通讯作者: 虞旦盛,E-mail: dsyu@hznu.edu.cn

收稿日期: 2019-05-15  

Received: 2019-05-15  

摘要

为了逼近移动圆盘上的解析函数,构造了一种新的Bernstein-Durrmeyer型算子,并给出其在移动圆盘上同时逼近的一致逼近速度估计.

关键词: 复Bernstein-Durrmeyer型算子 ; 可移动紧圆盘 ; 逼近估计

Abstract

To approximate analytic functions in movable compact disks, we introduce a new kind of Bernstein-Durrmeyer-Type polynomials. The order of simultaneous approximation rate of the new polynomials in the movable compact disks is given.

Keywords: Complex Bernstein-Durrmeyer type operators ; Movable compact disks ; Approximation rates

PDF (294KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

庞兆鋆, 虞旦盛, 周平. 移动紧圆盘上Bernstein-Durrmeyer型算子的逼近. 数学物理学报[J], 2020, 40(3): 545-555 doi:

Pang Zhaojun, Yu Dansheng, Zhou Ping. On Approximation by Bernstein-Durrmeyer-Type Operators in Movable Compact Disks. Acta Mathematica Scientia[J], 2020, 40(3): 545-555 doi:

1 引言

定义在圆盘上的复Bernstein多项式的逼近性质是由Bernstein最早开始研究的.设$ f:{\Bbb G}\rightarrow {\Bbb C} $是开集$ {\Bbb G} $上的解析函数,这里$ {\Bbb G}\subset {\Bbb C} $, $ \overline{{\Bbb D}}_1\subset {\Bbb G} $ ($ {\Bbb D}_1: = \{z\in {\Bbb C}: |z|<1\} $). Bernstein[16]证明了经典复Bernstein多项式$ B_{n}(f, z): = \sum\limits_{k = 0}^{n}\bigg(\begin{array}{c}n\\ k\end{array}\bigg)z^{k}\left( 1-z\right) ^{n-k}f\left(\frac{k}{n}\right) $; $ z\in{\Bbb C} $,在$ \overline{{\Bbb D}}_1 $上一致收敛于$ f $.有关Bernstein多项式逼近的精确量化估计以及Voronovaskaja型可参见文献[2-3].许多学者研究了诸如Bernstein-Stancu多项式, Kantorovich型Bernstein-Stancu多项式, Durrmeyer型Bernstein-Stancu多项式等Bernstein多项式的推广形式对圆盘上解析函数的逼近性质,建立了一些重要的结论(参见文献[1-21]).

最近,蒋和虞[17]引入了一类新的定义在移动圆盘上的复Bernstein-Stancu多项式.设$ \alpha_{1}, \alpha_{2}, \beta_1, \beta_2 $是任意给定的常数,且满足$ 0\leq\alpha_{1}\leq\beta_{1} $, $ \alpha_{2}\in {\Bbb C} $, $ |\alpha_{2}|\leq\beta_{2} $.蒋和虞[17]引入的新的复Bernstein-Stancu多项式$ S_{n, \alpha, \beta}(f, z) $定义如下:

其中

$ \alpha_{2} = \beta_{2} = 0 $时, $ S_{n, \alpha, \beta}(f, z) $即为经典复Bernstein-Stancu多项式.蒋和虞的主要结论如下:

定理1.1  设$ R $$ r $是满足$ 1\leq r<R $的两个常数, $ {\Bbb D}_R: = \{z\in {\Bbb C};|z|<R\} $.$ f:{\Bbb D}_R\rightarrow {\Bbb C} $$ {\Bbb D}_R $上的解析函数,且对所有的$ z\in{\Bbb D}_R $$ f(z) = \sum\limits_{k = 0}^{\infty}c_{k}z^{k} $.如果$ n\in {\Bbb N} $充分大使得$ r+\frac{ |\alpha_{2}|}{n+\beta_{2}} = :\overline{r}<R $$ 1+\frac{\beta_{2}}{n}\leq 2 $,则对所有$ \big|z-\frac{\alpha_{2}}{n+\beta_{2}}\big|\leq r $,有

其中

同时,若$ 1\leq r<r_1<R, $$ n\in{\Bbb N} $充分大使得$ r_1+\frac{|\alpha_{2}|}{n+\beta_{2}} = : \overline{r_1}<R $$ 1+\frac{\beta_{2}}{n}\leq2 $,则对所有$ \big|z-\frac{\alpha_{2}}{n+\beta_{2}}\big|\leq r_1 $, $ n, p\in{\Bbb N} $,有

$ \begin{equation} \left|\left(S_{n, \alpha, \beta}(f, z)\right)^{(p)}-f^{(p)}(z)\right| \leq {\mathfrak M}_{r_1}^{\left(\alpha, \beta\right)}(f)\frac{p! r_{1}}{ \left(r_{1}-r\right)^{p+1}}. \end{equation} $

应该注意的是:定理1.1中研究了$ S_{n, \alpha, \beta}(f) $在圆盘$ \left\{z\in{\Bbb C} :\big|z-\frac{\alpha_{2}}{n+\beta_{2}}\big|\leq r\right\} $上的逼近性质.这个圆盘是一个移动圆盘,即随着参数$ n, \alpha_2 $$ \beta_2 $的改变而移动.

我们回顾由Mahmudov和Gupta给出的本征Durrmeyer-Stancu多项式(参见文献[15]):

$ \begin{eqnarray} U_n^{(\alpha, \beta)}(f;z) &: = &(n-1)\sum\limits_{k = 1}^{n-1}p_{n, k}(z)\int_0^1p_{n-2, k-1}(t)f\left(\frac{nt+\alpha}{n+\beta}\right){\rm d}t \\ & &+f\left(\frac{\alpha}{n+\beta}\right)p_{n, 0}(z)+f\left(\frac{n+\alpha}{n+\beta}\right)p_{n, n}(z), \end{eqnarray} $

其中$ \alpha, \beta $是满足$ 0 \leq \alpha \leq \beta $的任意实数, $ z \in {\Bbb C} $, $ n = 1, 2, \cdots; $$ p_{n, k}(z) = \bigg(\begin{array}{c}n\\ k\end{array}\bigg)z^{k}(1-z)^{n-k}. $

$ \alpha = \beta = 0 $时,该多项式即通常的本征Bernstein-Durrmeyer算子$ U_n(f;z) = U_n^{(0, 0)}(f;z) $.这种情形更早在文献[1]中已有过研究.

Mahmudov和Gupta对$ U_n^{(\alpha, \beta)}(f;z) $在圆盘上对解析函数的逼近性质做了研究(参见文献[1]).以下引述其中一个关于$ U_n^{(\alpha, \beta)}(f;z) $逼近速度的结论:

定理1.2  设$ \alpha, \beta $是满足$ 0 \leq \alpha \leq \beta $的两个任意给定的实数, $ R $$ r $是满足$ 1 \leq r < R $的两个常数, $ {\Bbb D}_R: = \{z\in{\Bbb C} : \left|z\right|<R\} $.$ f:{\Bbb D}_R\rightarrow {\Bbb C} $$ {\Bbb D}_R $上的解析函数,且对所有的$ z\in{\Bbb D}_R $$ f(z) = \sum\limits_{m = 0}^{\infty}c_{m}z^{m}, $则对所有$ \left|z\right| \le r $,有

其中

在本文中,我们将引入一种新的Durrmeyer-Stancu型多项式以进一步推广(1.2)所定义的多项式,并使之能够用以逼近移动圆盘上的解析函数.我们还将考查这一新多项式的逼近速度.

在下文中,记$ {\Bbb D}_R $是以$ O(0, 0) $为圆心, $ R $为半径的圆,这里$ R > 1 $为常数,即$ {\Bbb D}_R: = \{z\in{\Bbb C} : \left|z\right|<R\} $.$ \alpha_1, \alpha_2, \beta_1, \beta_2 $是任意给定的数且满足$ \alpha_2 \in {\Bbb C}, $$ 0 \leq \alpha_1 \leq \beta_1, $$ \left|\alpha_2\right| \leq \beta_2 $.

$ f : {\Bbb D}_R\rightarrow {\Bbb C} $$ {\Bbb D}_R $上的解析函数,且对所有的$ z\in{\Bbb D}_R $$ f(z) = \sum\limits_{m = 0}^{\infty}c_{m}z^{m} $.定义新的Durrmeyer-Stancu如下:

其中$ A_n: = [\frac{\alpha_2}{n+\beta_2}, \frac{n+\alpha_2}{n+\beta_2}] $,而

$ \alpha_2 = \beta_2 = 0 $时, $ \overline{U}_{n, \alpha, \beta}(f;z) $即为(1.2)式中定义的多项式.

本文的主要结果为:

定理1.3  设$ R $$ r $是满足1 $ \leq $$ r $$ \leq $$ R $的两个常数.设$ f:{\Bbb D}_R\rightarrow {\Bbb C} $$ {\Bbb D}_R $上的解析函数,且对所有的$ z\in {\Bbb D}_R $$ f(z) = \sum\limits_{m = 0}^{\infty}c_{m}z^{m} $.如果$ n \in {\Bbb N} $充分大使得$ r\big(1+\frac{\beta_2}{n}\big) = :\overline{r}< R, $则对所有$ \big|z-\frac{\alpha_2}{n+\beta_2}\big| \leq r $,有

$ \begin{equation} \left|\overline{U}_{n, \alpha, \beta}(f;z)-f(z)\right| \leq K_{r, n}^{(\alpha, \beta)}(f), \end{equation} $

其中

同时,若$ 1\leq r<r_1<R $,那么当$ n\in{\Bbb N} $充分大使得$ r\big(1+\frac{\beta_2}{n}\big): = \overline{r}< R $时,对所有$ \big|z-\frac{\alpha_2}{n+\beta_2}\big| \leq r_1 $, $ n, p \in {\Bbb N}, $

$ \begin{equation} \left|\left(\overline{U}_{n, \alpha, \beta}(f;z)\right)^{(p)}-f(z)^{(p)}\right| \leq K_{{r_1}, n}^{(\alpha, \beta)}(f)\frac{p!r_1}{(r_1-r)^{p+1}}. \end{equation} $

2 辅助引理

引理2.1  设$ m, n\in{\Bbb N} \cup{0}, r\geq 1, r\big(1+\frac{\beta_2}{n}\big): = \overline{r}<R. $那么对任意$ \big|z-\frac{\alpha_2}{n+\beta_2}\big|\leq r, $$ \left|\overline{U}_{n, \alpha, \beta}(e_m;z)\right| \leq \overline{r}^m, $其中$ e_m(z) = z^m, \; m = 0, 1, 2, \cdots. $

  置

直接计算可得

$ \begin{equation} \overline{U}_{n, \alpha, \beta}(e_m;z) = \sum\limits_{p = 0}^m \bigg(\begin{array}{c}m\\ p\end{array}\bigg)\frac{n^p\alpha_1^{m-p}}{(n+\beta_1)^m} U_{n, \alpha, \beta}^*(e_p;z). \end{equation} $

注意到

$ u = \frac{n+\beta_2}{n}t-\frac{\alpha_2}{n}, $则有

其中$ F_j(k) = \prod\limits_{s = 0}^{j-1}(k+s), k\geq 0, j \geq 1. $因此

$ \widetilde{z} = \frac{n+\beta_2}{n}z-\frac{\alpha_2}{n} $.$ \left(\frac{n+\beta_2}{n}\right)^nq_{n, k}(z) = p_{n, k}(\widetilde{z}), k = 0, 1, 2, \cdots, $从而

$ \begin{eqnarray} U_{n, \alpha, \beta}^*(e_p;z) & = &\sum\limits_{j = 0}^p\bigg(\begin{array}{c}p\\ j\end{array}\bigg)\left(\frac{\alpha_2}{n+\beta_2}\right)^{p-j}\left(\frac{n}{n+\beta_2}\right)^j \\ & &\times\left(\frac{(n-1)!}{(n+j-1)!}\sum\limits_{k = 1}^{n-1}p_{n, k}(\widetilde{z})F_j(k)+p_{n, n}(\widetilde{z})e_j(1)+p_{n, 0}(\widetilde{z})e_j(0)\right) \\ & = &\sum\limits_{j = 0}^p\bigg(\begin{array}{c}p\\ j\end{array}\bigg)\left(\frac{\alpha_2}{n+\beta_2}\right)^{p-j}\left(\frac{n}{n+\beta_2}\right)^jU_n^{(0, 0)}(e_j;\widetilde{z}). \end{eqnarray} $

$ 1\le r<R, $则对所有$ \left|z\right|\le r, $[1]

结合下式

$ \left|U_n^{(0, 0)}(e_j;\widetilde{z})\right| \leq \overline{r}^j, j = 0, 1, 2, \cdots . $因此

由(2.1)式,有

引理2.1证毕.

引理2.2  对所有$ m, n\in{\Bbb N} $, $ z\in {\Bbb C} $,成立

$ \begin{eqnarray} \overline{U}_{n, \alpha, \beta}(e_{m+1};z) & = &\frac{n\left(z-\frac{\alpha_2}{n+\beta_2}\right)\left(\frac{n+\alpha_2}{n+\beta_2}-z\right)}{\left(n+\beta_1\right)\left(n+m\right)}\left(\overline{U}_{n, \alpha, \beta}(e_{m};z)\right)^\prime \\ & &+\left(\frac{\alpha_1\left(n+2m\right)+n^2z}{\left(n+\beta_1\right)\left(n+m\right)}+\frac{mn\left(n+2\alpha_2\right)}{\left(n+\beta_1\right)\left(n+\beta_2\right)\left(n+m\right)}\right)\overline{U}_{n, \alpha, \beta}(e_{m};z) \\ & &-\left(\frac{mn\alpha_1\left(n+2\alpha_2\right)}{\left(n+\beta_1\right)^2\left(n+\beta_2\right)\left(n+m\right)}+\frac{m\alpha_1^2}{\left(n+\beta_1\right)^2\left(n+m\right)}\right. \\ & &+\left.\frac{mn^2\alpha_2\left(n+\alpha_2\right)}{\left(n+\beta_1\right)^2\left(n+\beta_2\right)^2\left(n+m\right)}\right)\overline{U}_{n, \alpha, \beta}(e_{m-1};z). \end{eqnarray} $

  令

由计算可得

对于$ J_1 $,有

对于$ K_1 $,有

对于$ K_2 $,有

容易观察到

对于$ J_2 $$ J_3 $,有

因此

$ W_{n, \alpha, \beta}(e_m, z) $满足等式(2.3).

由直接计算可知$ V_{n, \alpha, \beta}(e_m, z) $也满足等式(2.3).引理2.2证毕.

3 定理1.3的证明

由引理2.2可得

注意到

同理可得

因此,对于$ m\ge $ 2,有

因此,对于$ m = 2, 3, \cdots $,可推得

$ \begin{eqnarray} &&\left|\overline{U}_{n, \alpha, \beta}(e_{m};z)-e_m(z)\right|\\ &\leq&\overline{r}\left(\overline{r}\left|\overline{U}_{n, \alpha, \beta}(e_{m-2};z)-e_{m-2}(z)\right|+\frac{\left(m-2\right)\left(1+\overline{r}\right)}{n+\beta_1}\overline{r}^{m-2}\right. +\frac{\alpha_1\left(m-2\right)}{n\left(n+\beta_1\right)}\overline{r}^{m-2} \\ &&+\frac{m-2}{n+\beta_1}\overline{r}^{m-2}+ \frac{\left(m-2\right)\left|\alpha_2\right|}{\left(n+\beta_1\right)\left(n+\beta_2\right)}\overline{r}^{m-2}+\frac{m-2}{n+\beta_1}\overline{r}^{m-2}+\frac{\left(m-2\right)\alpha_1}{\left(n+\beta_1\right)^2}\overline{r}^{m-3} \\ &&+ \frac{\left(m-2\right)\alpha_1\left|\alpha_2\right|}{\left(n+\beta_1\right)^2\left(n+\beta_2\right)}\overline{r}^{m-3} +\frac{\left(m-2\right)\alpha_1^2}{n\left(n+\beta_1\right)^2}\overline{r}^{m-3}+\frac{\left(m-2\right)\left|\alpha_2 \right|}{\left(n+\beta_1\right)^2}\overline{r}^{m-3} \\ &&+\left.\frac{\left(m-2+\beta_1\right)\left(1+\overline{r}\right)}{n+\beta_1}\overline{r}^{m-2}\right)+\frac{\left(m-1 \right)\left(1+\overline{r}\right)}{n+\beta_1}\overline{r}^{m-1} +\frac{\alpha_1\left(m-1\right)}{n\left(n+\beta_1\right)}\overline{r}^{m-1} \\ &&+\frac{m-1}{n+\beta_1}\overline{r}^{m-1}+ \frac{\left(m-1\right)\left|\alpha_2\right|}{\left(n+\beta_1\right)\left(n+\beta_2\right)}\overline{r}^{m-1} +\frac{m-1}{n+\beta_1}\overline{r}^{m-1}+\frac{\left(m-1\right)\alpha_1}{\left(n+\beta_1\right)^2}\overline{r}^{m-2} \\ && +\frac{\left(m-1\right)\alpha_1\left|\alpha_2\right|}{\left(n+\beta_1\right)^2\left(n+\beta_2\right)}\overline{r}^{m-2} +\frac{\left(m-1\right)\alpha_1^2}{n\left(n+\beta_1\right)^2}\overline{r}^{m-2}+\frac{\left(m-1\right)\left|\alpha_2\right|}{\left(n+\beta_1\right)^2}\overline{r}^{m-2} \\ &&+\frac{\left(m-1+\beta_1\right)\left(1+\overline{r}\right)}{n+\beta_1}\overline{r}^{m-1} \\ &\leq&\cdots\leq\frac{m\left(m-1\right)\left(1+\overline{r}\right)}{2\left(n+\beta_1\right)}\overline{r}^{m-1}+\frac{m\left(m-1\right)}{2\left(n+\beta_1\right)}\overline{r}^{m-1} +\frac{\alpha_1m\left(m-1\right)}{2n\left(n+\beta_1\right)}\overline{r}^{m-1} \\ &&+\frac{m\left(m-1\right)\left|\alpha_2\right|}{2\left(n+\beta_1\right)\left(n+\beta_2\right)}\overline{r}^{m-1} +\frac{m\left(m-1\right)}{2\left(n+\beta_1\right)}\overline{r}^{m-1} +\frac{m\left(m-1\right)\alpha_1}{2\left(n+\beta_1\right)^2}\overline{r}^{m-2} \\ && +\frac{m\left(m-1\right)\alpha_1\left|\alpha_2\right|}{2\left(n+\beta_1\right)^2\left(n+\beta_2\right)}\overline{r}^{m-2} +\frac{m\left(m-1\right)\alpha_1^2}{2n\left(n+\beta_1\right)^2}\overline{r}^{m-2}+\frac{m\left(m-1\right)\left|\alpha_2\right|}{2\left(n+\beta_1\right)^2}\overline{r}^{m-2} \\ &&+\frac{\left(m\left(m-1\right)+2\beta_1\left(m-1\right)\right)\left(1+\overline{r}\right)}{2\left(n+\beta_1\right)}\overline{r}^{m-1}. \end{eqnarray} $

由(3.1)式及$ \overline{U}_{n, \alpha, \beta}(e_0;z) = 1; $$ \overline{U}_{n, \alpha, \beta}(e_1;z) = \frac{n}{n+\beta_1}z+\frac{\alpha_1}{n+\beta_1} $,得

(1.3)式得证.

$ \Gamma $是以$ z_0 : = \frac{\alpha_2}{n+\beta_2} $为圆心, $ r_1 $为半径的圆周,且$ r_1 > r. $因为对于任意的$ \big|z-\frac{\alpha_2}{n+\beta_2}\big|\leq r, $$ v \in \Gamma $,有$ \left|v-z\right|\geq r_1-r. $由柯西公式,对于任意$ \big|z-\frac{\alpha_2}{n+\beta_2}\big| \leq r, n, p \in {\Bbb N}, $

这就证得了(1.4)式.

参考文献

Gal S G .

Approximation by complex genuine Durrmeyer type polynomials in compact disks

Appl Math Comput, 2010, 217, 1913- 1920

URL     [本文引用: 4]

Gal S G .

Approximation by Complex Bernstein and Convolution Type Operstors

Singapore:World Scientific, 2009

URL     [本文引用: 1]

Gal S G .

Overconvergence in Complex Approximation

New York:Springer, 2013

[本文引用: 1]

Gal S G .

Voronovskaja's theorem and iterations for complex Bernstein polynomials in compact disks

Mediterr Math J, 2008, 5, 253- 272

DOI:10.1007/s00009-008-0148-z     

Gal S G .

Approximation by complex Bernstein-Kantorovich and Stancu-Kanrorovich polynomials and their iterates in compact disks

Appl Math Comput, 2009, 58, 734- 743

DOI:10.1016/j.camwa.2009.04.009     

Gal S G .

Approximation by complex Bernstein-Durrmeyer polynomials with jacobi weights in compact disks

Math Balk, 2010, 24, 103- 110

URL    

Gal S G , Gupta V .

Approximation by a Durrmeyer-Stancu-type operator in compact disks

Ann Univ Ferrara, 2011, 57, 261- 274

DOI:10.1007/s11565-011-0124-6     

Gal S G , Gupta V .

Approximation by complex Lupas-Durrmeyer polynomials based on Polya distribution

Banach J Math Anal, 2016, 10, 209- 221

DOI:10.1215/17358787-3345203     

Gupta V .

Approximation properties by Bernstein-Durrmeyer type operators

Complex Anal Oper Theory, 2013, 7, 363- 374

DOI:10.1007/s11785-011-0167-9     

Gupta V .

Direct estimates for a new general family of Durrmeyer type operators

Bollettino dell'Unione Matematica Italiana, 2015, 7, 279- 288

DOI:10.1007/s40574-014-0016-7     

Gupta V , Agarwal R P .

Convergence Estimates in Approximation Theory

Switzerland:Springer, 2014

URL    

Gupta V .

On approximation properties of a new type Bernstein-Durrmeyer operators

Math Slovaca, 2015, 65, 1107- 1122

URL    

Mahmudov N I .

Approximation by Bernstein-Durrmeyer-type operators in compact disks

Appl Math Letter, 2011, 24, 1231- 1238

DOI:10.1016/j.aml.2011.02.014     

Mahmudov N I .

Approximation by genuine q-Bernstein-Durrmeyer polynomials in compact disks

Hacet J Math Stat, 2011, 40, 77- 89

URL    

Mahmudov N I , Gupta V .

Approximation by genuine Durrmeyer-Stancu polynomials in compact disks

Math Comput Modelling, 2012, 55, 278- 285

DOI:10.1016/j.mcm.2011.06.018      [本文引用: 1]

Lorentz G G . Bernstein Polynomials. 2nd edn. New York: Chelsea, 1986

[本文引用: 1]

Jiang B , Yu D S .

On Approximation by Bernstein-Stancu polynomials in movable compact disks

Result Math, 2017, 72, 1535- 1543

DOI:10.1007/s00025-017-0669-5      [本文引用: 2]

Jiang B, Yu D S. Approximation by Durrmeyer type Bernstein-Stancu polynomials in movable compact disks. Result Math, 2019, 74: Article 28

URL    

Jiang B , Yu D S .

On approximation by Stancu type Bernstein-Schurer polynomials in compact disks

Result Math, 2017, 72, 1623- 1638

DOI:10.1007/s00025-017-0740-2     

Ren M Y, Zeng X M. Approximation by a kind of complex modified q-Durrmeyer type operators in compact disks. J Inequal Appl, 2012, 2012: Article 212

URL    

Ren M Y, Zeng X M, Zeng L. Approximation by complex Durrmeyer-Stancu type operators in compact disks. J Inequal Appl, 2013, 2012: Article 442

URL     [本文引用: 1]

/