数学物理学报, 2020, 40(2): 492-500 doi:

论文

由时变Lévy噪声驱动的随机微分方程的平均值原理

程丽娟,1, 任永,1,2, 王露,2

Averaging Principles for Stochastic Differential Equations Driven by Time-Changed Lévy Noise

Cheng Lijuan,1, Ren Yong,1,2, Wang Lu,2

通讯作者: 任永, E-mail: renyong@126.com

收稿日期: 2018-11-13  

基金资助: 国家自然科学基金.  11871076

Received: 2018-11-13  

Fund supported: the NSFC.  11871076

作者简介 About authors

程丽娟,E-mail:chenglijuan666@126.com , E-mail:chenglijuan666@126.com

王露,E-mail:wanglu03057465@126.com , E-mail:wanglu03057465@126.com

摘要

该文讨论了一类由时变Lévy噪声驱动的随机微分方程(LSDE)的平均值原理,提出了其均值化方程,在均方和以概率意义下得到了均值化方程的解收敛到原LSDE的解,给出了一个具体例子.

关键词: 平均值原理 ; 随机微分方程 ; 时变Lévy噪声

Abstract

This paper concerns averaging principles for a kind of stochastic differential equations driven by time-changed Lévy noise (LSDEs, in short). An averaged LSDE for the original LSDE is proposed. The solution of the averaged LSDE converges to that of the original LSDE in the sense of mean square and probability. Finally, we will give an example to illustrate the obtained results.

Keywords: Averaging principle ; Stochastic differential equation ; Time-changed Lévy noise

PDF (282KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

程丽娟, 任永, 王露. 由时变Lévy噪声驱动的随机微分方程的平均值原理. 数学物理学报[J], 2020, 40(2): 492-500 doi:

Cheng Lijuan, Ren Yong, Wang Lu. Averaging Principles for Stochastic Differential Equations Driven by Time-Changed Lévy Noise. Acta Mathematica Scientia[J], 2020, 40(2): 492-500 doi:

1 引言

由于在分子动力学、材料科学以及自动化控制等领域的实际应用,随机微分方程(SDE)的平均值原理引起了研究者的广泛兴趣.在文献[8]中, Stoyanov和Bainov首先研究了SDE的平均值原理, Xu和Liu在文献[10]中探讨了一类多值SDE的平均值原理.近来, Guo和Pei在文献[1]中建立了一类由Poisson点过程驱动的多值SDE的平均值原理. Pei及其合作者在系列论文[5-7]中讨论了几种不同类型SDE的平均值原理.

为刻画一些金融市场,在文献[4]中,作者提出了一类时变SDE.特别地, Wu在文献[9]中建立了由时变布朗运动驱动SDE解的随机稳定、随机渐近稳定以及整体随机渐近稳定性. Zhu等在文献[11]中给出了由时变布朗运动驱动SDE解的几乎必然指数稳定性.近来, Nane和Ni在文献[2-3]中推广了文献[9]中的相关结论,讨论了由时变Lévy噪声驱动SDE(LSDE)解的相关稳定性.尚未有文献对LSDE的平均值原理进行探讨.基于此,本文旨在建立LSDE的平均值原理.

全文共分四节.第二节给出一些预备知识,第三节给出LSDE的平均值原理,第四节给出一个具体例子.

2 预备知识

本节给出一些预备知识,具体细节参见文献[2-3, 9].假设$(\Omega, {\cal F}, ({\cal F}_{t}), {\Bbb P})$是一个完备概率空间, $N$是定义在$\mathbb R ^{+}\times (\mathbb R -\left\{0 \right\})$上的${\cal F}_{t}$ -适应的Poisson随机测度,其补偿子为$\widetilde{N}$,强度测度为$\nu$,其中$\nu$为一个Lévy测度并且满足

假设$\left\{D(t), t\geq 0 \right\}$是一个右连续且左极限存在的(RCLL)单增Lévy过程.由此, $\left\{D(t), t\geq 0 \right\}$是一个从0点出发的从属过程,其Laplace变换具有如下形式

其中Laplace指数具有形式$\phi(\lambda)=\int_{0}^{\infty}(1-e^{-\lambda x})\nu ({\rm d}x).$定义其逆过程为

$\begin{eqnarray}\label{equation0}{E}_{t}:=\inf\left\{\tau >0:D(\tau)>t\right\}.\end{eqnarray}$

假设$D(t)$为RCLL从属过程, $E_{t}$为由(2.1)式所定义的逆过程.定义流$\left\{{\cal G}_{t}\right\}_{t\geq0}$${\cal G}_{t}={\cal F}_{E_t}$.本文主要考虑如下LSDE的平均值原理

$\begin{eqnarray}\label{equation1}\left\{\begin{array}{ll}{\rm d}X(t)=f(t, {E}_{t}, X(t-)){\rm d}t+\delta(t, {E}_{t}, X(t-)){\rm d}E_{t}+g(t, {E}_{t}, X(t-)){\rm d}B_{E_{t}}\\\displaystyle~~~~~~~~~~~~+\int_{|v|<c}h(t, {E}_{t}, X(t-), v)\widetilde{N}({\rm d}E_{t}, {\rm d}v), ~~~t\in \mathbb R ^{+}, \\X(0)=x_{0}, \end{array}\right.\end{eqnarray}$

其中$f, ~\delta, ~g, ~h$为实值函数.

引理2.1[9]   假设$E_{t}$为由所从属过程$D(t)$的逆所定义的${\cal F}_{t}$ -可测时间变换, $\upsilon(s)$$\mu(s)$为两个${\cal F}_{t}$有界可测函数,则对于$t\geq 0$以概率1有下式成立

条件2.1 (Lipschitz条件)   假定对于$x_{1}, ~x_{2} \in\mathbb R ^{d}, ~t_{1}, ~t_{2}\in \mathbb R ^{+}$,存在常数$K_{1}$使得

条件2.2 (线性增长条件)  假定对于$x\in \mathbb R ^{d}, ~t_{1}, ~t_{2}\in \mathbb R ^{+}$,存在常数$K_{2}$使得

条件2.3   假设$X(t)$是一个RCLL, ${\cal G}_{t}$ -适应过程,则

其中${\Bbb L}({\cal G}_{t})$表示RCLL, ${\cal G}_{t}$ -适应过程的集合.

条件2.4[11]   假定$E_{t}$${\cal F}_{t}$ -可测的时间变换并且渐近慢于$t$,即

3 主要结论

对于$t\in[0, T]$,考虑$ \mathbb R ^{d}$上LSDE

$\begin{eqnarray} \label{equation2}\left\{\begin{array}{ll} \displaystyleX(t)=X_{0}+\int_{0}^{t}f(s, E_{s}, X(s-)){\rm d}s+\int_{0}^{t}\delta(s, E_{s}, X(s-)){\rm d}E_{s} \\[3mm]\displaystyle~~~~~~~~~~~~+\int_{0}^{t}g(s, E_{s}, X(s-)){\rm d}B_{E_{s}}+\int_{0}^{t}\int_{|v|<c}h(s, E_{s}, X(s-), v)\widetilde{N}({\rm d}E_{s}, {\rm d}v), \\X(0)=X_{0}.\end{array}\right.\end{eqnarray}$

如果条件2.1-2.3满足,由文献[2]可知方程(3.2)有唯一解$X(t), t\in [0, T].$

考虑$\mathbb R ^d$上LSDE的平均值原理.为此,定义如下LSDE

$\begin{eqnarray}X_{\epsilon}(t)&=X(0)+\epsilon\int_{0}^{t} f(s, E_{s}, X_{\epsilon}(s-)){\rm d}s+\epsilon\int_{0}^{t} \delta(s, E_{s}, X_{\epsilon}(s-)){\rm d}E_{s} \\&+\sqrt{\epsilon}\int_{0}^{t}g(s, E_{s}, X_{\epsilon}(s-)){\rm d}B_{E_{s}} \\&+\sqrt{\epsilon}\int_{0}^{t}\int_{|v|<c}h(s, E_{s}, X_{\epsilon}(s-), v)\widetilde{N}({\rm d}E_{s}, {\rm d}v), t\in[0, T], \end{eqnarray}$

其中上述方程的系数满足条件2.1, 2.2以及2.3, $\varepsilon_{0}$是一个给定的常数, $\epsilon\in(0, \epsilon_{0}]$为小参数.易知,方程(3.2)存在唯一解$X_{\epsilon}(t), ~t\in[0, T].$

考虑如下均值化LSDE

$\begin{eqnarray}\label{equation3}Y_{\epsilon}(t)&=&X(0)+\epsilon\int_{0}^{t} \bar{f}(Y_{\epsilon}(s-)){\rm d}s+\epsilon\int_{0}^{t}\bar{\delta}(Y_{\epsilon}(s-)){\rm d}E_{s}+\sqrt{\epsilon}\int_{0}^{t}\bar{g}(Y_{\epsilon}(s-)){\rm d}B_{E_{s}}\nonumber\\&&+\sqrt{\epsilon}\int_{0}^{t}\int_{|v|<c}\bar{h}(Y_{\epsilon}(s-), v)\widetilde{N}({\rm d}E_{s}, {\rm d}v), ~~t\in[0, T].\end{eqnarray}$

假定$\bar{f}, ~\bar{\delta}, ~\bar{g}, ~\bar{h}$满足条件2.1, 2.2以及2.3,则方程(3.3)存在唯一解$Y_{\epsilon}(t), ~0\leq t \leq T.$进一步地,对于$ x\in \mathbb R ^d$, $T_{1}\in[0, T]$,假设

(A5) $\displaystyle\frac {1}{T_{1}}\int_{0}^{T_{1}}|f(s, E_{s}, x)-\bar{f}(x)|^{2}{\rm d}s \leq \varphi_{1}(T_{1})(1+|x|^{2}), $

(A6) $\displaystyle\frac {1}{T_{1}}\int_{0}^{T_{1}}|\delta(s, E_{s}, x)-\bar{\delta}(x)|^{2}{\rm d}s \leq \varphi_{2}(T_{1})(1+|x|^{2}), $

(A7) $\displaystyle\frac {1}{T_{1}}\int_{0}^{T_{1}}|g(s, E_{s}, x)-\bar{g}(x)|^{2}{\rm d}s \leq \varphi_{3}(T_{1})(1+|x|^{2}), $

(A8) $\displaystyle\frac {1}{T_{1}}\int_{0}^{T_{1}}\int_{|v|<c}|h(s, E_{s}, x, v)-\bar{h}(x, v)|^{2}\nu({\rm d}v){\rm d}s \leq \varphi_{4}(T_{1})(1+|x|^{2}), $

其中$\varphi_{i}(T_{1}), (i=1, 2, 3, 4, T_{1}\in[0, T])$为有界函数.

下面主要建立$X_{\epsilon}(t)$$Y_{\epsilon}(t)$的关系,旨在证明均值化方程(3.3)的解在均方和以概率意义下收敛到方程(3.2)的解.

定理3.1   假定LSDE (3.2)以及均值化LSDE (3.3)均满足条件2.1-2.4以及(A5)-(A8),对于给定的任意常数$\delta_{1}>0, $存在常数$\alpha\in (0, 1), ~L>0, ~\varepsilon_{1} \in(0, \varepsilon_{0}]$使得当$\epsilon \in(0, \epsilon_{1}]$时有

  对于方程(3.2)和(3.3),考虑其差$X_{\epsilon}(t)-Y_{\epsilon}(t)$

由不等式有

进而有

$I^{2}_{11}$取期望,由Cauchy不等式以及条件2.1有

其中$K_{11}$为常数.对于$I^{2}_{12}$,取期望并由条件(A5)可得

由文献[3],对于LSDE,如果${\Bbb E}|X(0)|^{2}<\infty$,对于$t\geq0$${\Bbb E}|X(t)|^{2}<\infty$进而有

以及$\varphi_{1}(T_{1})$是正的有界函数,则有

由上可得

$\begin{eqnarray}\label{equation4}{\Bbb E}|{I}_{1}|^{2}\leq 8\epsilon^{2}uK_{11}\int_{0}^{u}{\Bbb E}\bigg(\sup\limits_{0\leq r\leq u}|X_{\epsilon}(r)-Y_{\epsilon}(r)|^{2}\bigg){\rm d}u+8\epsilon^{2}u^{2}K_{12}.\end{eqnarray}$

由引理2.1以及Cauchy不等式有

$I^{2}_{21}$取期望并由条件2.1,引理2.1以及$E_{t}$的单调性可得

$I^{2}_{22}$取期望并由条件(A6)可得

由此可得

由条件2.4以及过程$E_{t}$渐近慢于$t$,对任意的$\lambda>0$存在常数$T_{0}$使得$t>T_{0}, ~E_{t}\leq \lambda t~~a.s., $由此可得当$u\in(T_{0}, T]$时有

$\begin{eqnarray}\label{equation5}{\Bbb E}|{I}_{2}|^{2}\leq 8\epsilon^{2}\lambda^{2}uK_{21}\int_{0}^{u}{\Bbb E}\bigg(\sup\limits_{0\leq r\leq u}|X_{\epsilon}(r)-Y_{\epsilon}(r)|^{2}\bigg){\rm d}u+8\epsilon^{2}\lambda^{2}u^{2}K_{22}.\end{eqnarray}$

对于$I^{2}_{3}$,取期望并由Burkholder-Davis-Gundy不等式可得

由条件2.1有

由引理2.1,条件(A7)以及$E_{t}$的单调性有

进而

由条件2.4, $u\in (T_{0}, T]$

$\begin{eqnarray}\label{equation6}{\Bbb E}I^{2}_{3}\leq 32\epsilon\lambda K_{31}\int_{0}^{u}{\Bbb E}\bigg(\sup\limits_{0\leq r\leq u}|X_{\epsilon}(r)-Y_{\epsilon}(r)|^{2}\bigg){\rm d}u+32\epsilon \lambda uK_{32}.\end{eqnarray}$

$I^{2}_{4}$取期望并由Doob鞅不等式有

由条件2.1有

由条件(A8)有

故有

$\begin{eqnarray}\label{equation7}{\Bbb E}|I_{4}|^{2}\leq32\epsilon k_{41}\int_{0}^{u}{\Bbb E}\bigg(\sup\limits_{0\leq r\leq u}|X_{\epsilon}(r)-Y_{\epsilon}(r)|^{2}\bigg){\rm d}u+32\epsilon uK_{42}.\end{eqnarray}$

由(3.4)-(3.7)式有

由Gronwall不等式有

选取$\alpha\in(0, 1)$以及$L>0$使得当$t\in [0, L\epsilon^{-\alpha}]$时有

其中$C=8(L\epsilon^{1-\alpha} K_{12}+L\epsilon^{1-\alpha}\lambda^{2}K_{22}+4\lambda K_{32}+4K_{42}) \exp\big(8L\epsilon^{1-\alpha}(L\epsilon^{1-\alpha} K_{11}+L\epsilon^{1-\alpha} \lambda^{2}K_{21}+4\lambda K_{31}+4K_{41})\big)$为常数, $T_{0}<L\epsilon^{-\alpha}.$因此,对于给定的$\delta_{1}>0$,可以选取$\epsilon_{1} \in(0, \epsilon_{0}]$使得对于任意的$\epsilon \in(0, \epsilon_{1}]$以及$t\in[0, L\epsilon^{-\alpha}]$,如下式子成立

$ \label{equation9}{\Bbb E}\bigg(\sup\limits_{t\in [0, L\epsilon^{-\alpha}]}|X_{\epsilon}(t)-Y_{\epsilon}(t)|^{2}\bigg)\leq \delta_{1}. $

定理3.1证毕.

下面进一步给出以概率收敛性.

定理3.2   假定条件2.1-2.4以及(A5)-(A8)满足,对于任意给定的数$\eta_{1}>0, L>0$以及$\alpha\in (0, 1)$,存在常数$\varepsilon_{1} \in(0, \varepsilon_{0}]$使得当$\epsilon \in(0, \epsilon_{1}], ~t\in[0, L\epsilon^{-\alpha}]$时有

  由定理3.1以及Chebyshev不等式有

因此,定理结论成立.

注3.1   上述定理表明均值化方程的解$Y_{\epsilon}(t)$在均方和以概率两种意义下收敛到$X_{\epsilon}(t)$.

4 例子

考虑如下LSDE

$\begin{eqnarray}\label{equation10}{\rm d}X_{\epsilon}(t)&=&2\epsilon MX_{\epsilon}(t)\cos^{2}(t){\rm d}t+\epsilon LX_{\epsilon}(t){\rm d}E_{t}-\sqrt{\epsilon}KX_{\epsilon}(t)\sin^{2}(t){\rm d}B_{E_{t}} \nonumber\\&&+\sqrt{\epsilon}\int_{|v|<c}vX_{\epsilon}(t)\widetilde{N}({\rm d}E_{t}, {\rm d}v), \end{eqnarray}$

其中初值$X_{\epsilon}(0)=X_{0}$满足${\Bbb E}|X_{0}|^{2}<\infty, ~t\in[0, T], $系数$f(t, E_{t}, X_{\epsilon}(t))=2MX_{\epsilon}(t)\cos^{2}(t), $$\delta(t, E_{t}, X_{\epsilon}(t))=LX_{\epsilon}(t), $$g(t, E_{t}, X_{\epsilon}(t))=-KX_{\epsilon}(t)\sin^{2}(t), $$h(t, E_{t}, X_{\epsilon}(t), v)=vX_{\epsilon}(t)$.

由上,定义一个均值化LSDE

$ \label{equation11}{\rm d}Y_{\epsilon}(t)=\epsilon MY_{\epsilon}(t){\rm d}t+\epsilon LY_{\epsilon}(t){\rm d}E_{t}-\sqrt{\epsilon}\frac{K}{2}Y_{\epsilon}(t){\rm d}B_{E_{t}}+\sqrt{\epsilon}\int_{|v|<c}vY_{\epsilon}(t)\widetilde{N}({\rm d}E_{t}, {\rm d}v). $

由定理3.1以及3.2,方程(4.2)的解$Y_{\epsilon}(t)$在均方和以概率意义下收敛到方程(4.1)的解$X_{\epsilon}(t)$.

参考文献

Guo R , Pei B .

Stochastic averaging principles for multi-valued stochastic differential equations driven by poisson point processes

Stoch Anal Appl, 2018, 36, 1- 16

DOI:10.1080/07362994.2017.1356732      [本文引用: 1]

Nane E , Ni Y .

Stability of the solution of stochastic differential equation driven by time-changed Lévy noise

Proc Amer Math Soc, 2017, 145, 3085- 3104

DOI:10.1090/proc/13447      [本文引用: 3]

Nane E , Ni Y .

Path stability of stochastic differential equations driven by time-changed Lévy noises

ALEA Lat Am J Probab Math Stat, 2018, 15, 479- 507

DOI:10.30757/ALEA.v15-20      [本文引用: 3]

Kobayashi K .

Stochastic calculus for a time-changed semimartingale and the associated stochastic differential equations

J Theoret Probab, 2011, 24, 789- 820

DOI:10.1007/s10959-010-0320-9      [本文引用: 1]

Pei B , Xu Y , Yin G .

Stochastic averaging for a class of two-time-scale systems of stochastic partial differential equations

Nonlinear Anal, 2017, 160, 159- 176

DOI:10.1016/j.na.2017.05.005      [本文引用: 1]

Pei B , Xu Y , Yin G .

Averaging principles for SPDEs driven by fractional Brownian motions with random delays modulated by two-time-scale Markov switching processes

Stoch Dyn, 2018, 18, 1850023

DOI:10.1142/S0219493718500235     

Pei B , Xu Y , Yin G , Zhang X .

Averaging principles for functional stochastic partial differential equations driven by a fractional Brownian motion modulated by two-time-scale Markovian switching processes

Nonlinear Anal Hybrid Syst, 2018, 27, 107- 124

DOI:10.1016/j.nahs.2017.08.008      [本文引用: 1]

Stoyanov I M , Bainov D D .

The averaging method for a class of stochastic differential equations

Ukr Math J, 1974, 26, 186- 194

URL     [本文引用: 1]

Wu Q. Stability of stochastic differential equation with respect to time-changed Brownian motion. 2016, arXiv: 1602.08160

[本文引用: 4]

Xu J , Liu J .

An averaging principle for multivalued stochastic differential equations

Stoch Anal Appl, 2014, 32, 962- 974

DOI:10.1080/07362994.2014.959594      [本文引用: 1]

Zhu Y , Zhu M , Li J .

Almost sure exponential stability for time-changed stochastic differential equations

J Nonlinear Sci Appl, 2017, 10, 5985- 5998

DOI:10.22436/jnsa.010.11.35      [本文引用: 2]

/