由时变Lévy噪声驱动的随机微分方程的平均值原理
Averaging Principles for Stochastic Differential Equations Driven by Time-Changed Lévy Noise
Received: 2018-11-13
Fund supported: |
|
作者简介 About authors
程丽娟,E-mail:
王露,E-mail:
该文讨论了一类由时变Lévy噪声驱动的随机微分方程(LSDE)的平均值原理,提出了其均值化方程,在均方和以概率意义下得到了均值化方程的解收敛到原LSDE的解,给出了一个具体例子.
关键词:
This paper concerns averaging principles for a kind of stochastic differential equations driven by time-changed Lévy noise (LSDEs, in short). An averaged LSDE for the original LSDE is proposed. The solution of the averaged LSDE converges to that of the original LSDE in the sense of mean square and probability. Finally, we will give an example to illustrate the obtained results.
Keywords:
本文引用格式
程丽娟, 任永, 王露.
Cheng Lijuan, Ren Yong, Wang Lu.
1 引言
全文共分四节.第二节给出一些预备知识,第三节给出LSDE的平均值原理,第四节给出一个具体例子.
2 预备知识
假设
其中Laplace指数具有形式
假设
其中
引理2.1[9] 假设
条件2.1 (Lipschitz条件) 假定对于
条件2.2 (线性增长条件) 假定对于
条件2.3 假设
其中
条件2.4[11] 假定
3 主要结论
对于
如果条件2.1-2.3满足,由文献[2]可知方程(3.2)有唯一解
考虑
其中上述方程的系数满足条件2.1, 2.2以及2.3,
考虑如下均值化LSDE
假定
(A5)
(A6)
(A7)
(A8)
其中
下面主要建立
定理3.1 假定LSDE (3.2)以及均值化LSDE (3.3)均满足条件2.1-2.4以及(A5)-(A8),对于给定的任意常数
证 对于方程(3.2)和(3.3),考虑其差
由不等式有
进而有
对
其中
由文献[3],对于LSDE,如果
以及
由上可得
由引理2.1以及Cauchy不等式有
对
对
由此可得
由条件2.4以及过程
对于
由条件2.1有
由引理2.1,条件(A7)以及
进而
由条件2.4,
对
由条件2.1有
由条件(A8)有
故有
由(3.4)-(3.7)式有
由Gronwall不等式有
选取
其中
定理3.1证毕.
下面进一步给出以概率收敛性.
定理3.2 假定条件2.1-2.4以及(A5)-(A8)满足,对于任意给定的数
证 由定理3.1以及Chebyshev不等式有
因此,定理结论成立.
注3.1 上述定理表明均值化方程的解
4 例子
考虑如下LSDE
其中初值
由上,定义一个均值化LSDE
由定理3.1以及3.2,方程(4.2)的解
参考文献
Stochastic averaging principles for multi-valued stochastic differential equations driven by poisson point processes
,DOI:10.1080/07362994.2017.1356732 [本文引用: 1]
Stability of the solution of stochastic differential equation driven by time-changed Lévy noise
,DOI:10.1090/proc/13447 [本文引用: 3]
Path stability of stochastic differential equations driven by time-changed Lévy noises
,DOI:10.30757/ALEA.v15-20 [本文引用: 3]
Stochastic calculus for a time-changed semimartingale and the associated stochastic differential equations
,DOI:10.1007/s10959-010-0320-9 [本文引用: 1]
Stochastic averaging for a class of two-time-scale systems of stochastic partial differential equations
,DOI:10.1016/j.na.2017.05.005 [本文引用: 1]
Averaging principles for SPDEs driven by fractional Brownian motions with random delays modulated by two-time-scale Markov switching processes
,
Averaging principles for functional stochastic partial differential equations driven by a fractional Brownian motion modulated by two-time-scale Markovian switching processes
,DOI:10.1016/j.nahs.2017.08.008 [本文引用: 1]
The averaging method for a class of stochastic differential equations
,
An averaging principle for multivalued stochastic differential equations
,DOI:10.1080/07362994.2014.959594 [本文引用: 1]
Almost sure exponential stability for time-changed stochastic differential equations
,DOI:10.22436/jnsa.010.11.35 [本文引用: 2]
/
〈 | 〉 |