数学物理学报, 2020, 40(2): 422-431 doi:

论文

高阶Chen-Lee-Liu方程在半直线上的初边值问题

胡贝贝,1, 张玲,1, 张宁2

An Initial-Boundary Value Problem for the Higher-Order Chen-Lee-Liu Equation on the Half-Line

Hu Beibei,1, Zhang Ling,1, Zhang Ning2

收稿日期: 2018-12-24  

基金资助: 国家自然科学基金.  11601055
国家自然科学基金.  11805114
安徽省自然科学基金.  1408085QA06
安徽省高校优秀人才基金.  gxyq2019096
安徽省高校自然科学研究项目.  KJ2019A0637

Received: 2018-12-24  

Fund supported: the NSFC.  11601055
the NSFC.  11805114
the NSF of Anhui Province.  1408085QA06
the University Excellent Talent Fund of Anhui Province.  gxyq2019096
the Natural Science Research Projects in Colleges and Universities of Anhui Province.  KJ2019A0637

作者简介 About authors

胡贝贝,E-mail:hubsquare@chzu.edu.cn , E-mail:hubsquare@chzu.edu.cn

张玲,E-mail:originzhang@126.com , E-mail:originzhang@126.com

摘要

该文运用Fokas方法分析了高阶Chen-Lee-Liu方程在半直线上的初边值问题,证明了高阶Chen-Lee-Liu方程初边值问题的解可以用复λ平面上的矩阵Riemann-Hilbert问题的形式解唯一表示.

关键词: Riemann-Hilbert问题 ; 高阶Chen-Lee-Liu方程 ; 跳跃矩阵 ; Fokas方法

Abstract

In this paper, the initial-boundary value problems of the higher-order Chen-Lee-Liu (HOCLL) equation on the half-line has been analysed via the Fokas method. We show that the solution q(x, t) of HOCLL equation can be expressed in terms of the unique solution of a matrix Riemann-Hilbert problem formulated in the plane of the complex spectral parameter λ.

Keywords: Riemann-Hilbert problem ; Higher-order Chen-Lee-Liu equation ; Jump matrix ; Fokas method

PDF (500KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

胡贝贝, 张玲, 张宁. 高阶Chen-Lee-Liu方程在半直线上的初边值问题. 数学物理学报[J], 2020, 40(2): 422-431 doi:

Hu Beibei, Zhang Ling, Zhang Ning. An Initial-Boundary Value Problem for the Higher-Order Chen-Lee-Liu Equation on the Half-Line. Acta Mathematica Scientia[J], 2020, 40(2): 422-431 doi:

1 引言

众所周知,许多经典的可积系统的初值问题可以由反散射方法来求解. 1997年, Fokas[1]借鉴反散射变换的思想提出了统一变换方法,我们称之为Fokas方法,该方法很好的求解了可积方程的初边值问题[2-5].就像全直线上的反散射方法一样, Fokas方法也是将初边值问题的解表示成相应的Riemann-Hilbert (RH)问题的解. 2012年, Lenells[6]首次将此方法做了推广,并且研究了Degasperis-Procesi方程在半直线上的初边值问题[7].在这之后,越来越多的学者开始关注可积系统的初边值问题[8-23].此外,基于RH方法得到的可积方程的多孤子解在近几年也得到了广泛研究[24-29].

2015年,张等[30]从耦合高阶Chen-Lee-Liu方程

$ \begin{eqnarray} \left\{\begin{array}{l} { } q_{t}+q_{xxx}+\frac{3}{2}{\rm i}qrq_{xx}-\frac{3}{4}q^2r^2q_{x}+\frac{3}{2}{\rm i}q_x^2r = 0, \\ { } r_{t}+r_{xxx}+\frac{3}{2}{\rm i}qrr_{xx}-\frac{3}{4}q^2r^2r_{x}-\frac{3}{2}{\rm i}r_x^2q = 0 \end{array}\right. \end{eqnarray} $

出发,在约化条件$ q = r^* $下,得到了高阶Chen-Lee-Liu(HOCLL)方程

$ \begin{eqnarray} q_{t}+q_{xxx}+\frac{3}{2}{\rm i}|q|^2q_{xx}-\frac{3}{4}|q|^4q_{x}+\frac{3}{2}{\rm i}q_x^2q^* = 0, \end{eqnarray} $

其中$ q(x, t) $是复的光滑包络函数, $ t $$ x $分别是时间和空间变量.并用达布变换方法得到了方程(1.2)的怪波解[30].随后,在2018年,胡等[29]基于RH方法得到了HOCLL方程的多孤子解.而在本文中,基于前人的工作,我们运用Fokas方法研究HOCLL方程在半直线$ \Omega = \{0<x<\infty, 0<t<T\} $上的初边值问题,其初值和边值条件定义如下

$ \begin{eqnarray} \begin{array}{l} q_0(x) = q(x, t = 0);g_0(t) = q(x = 0, t), g_1(t) = q_{x}(x = 0, t), g_2(t) = q_{xx}(x = 0, t). \end{array} \end{eqnarray} $

本文结构如下:在第二部分,给出了Lax对的谱分析.在第三部分,证明了HOCLL方程初边值问题的解可用RH问题的形式解唯一表示.

2 谱分析

HOCLL方程(1.2)有如下的Lax对[30]

$ \begin{eqnarray} \left\{ \begin{array}{l} { } \phi_{x} = M\phi = (-{\rm i}\lambda^2\sigma_3+\lambda\sigma_3Q+\frac{1}{4}{\rm i}\sigma_3Q^2)\phi, \\ { } \phi_{t} = N\phi = (-4{\rm i}\lambda^6\sigma_3+4\lambda^5\sigma_3Q+2{\rm i}\lambda^4\sigma_3Q^2+2\lambda^3 Z_0+\lambda^2Z_1+\lambda Z_2+\frac{1}{4}Z_3)\phi, \end{array}\right. \end{eqnarray} $

其中$ \lambda\in{\rm C} $是谱参数, $ \sigma_3, Q, Z_0, Z_1, Z_2 $$ Z_3 $定义为

$ \begin{eqnarray} \begin{array}{l} \sigma_3 = \left(\begin{array}{cc} -1 & 0 \\ 0 & 1 \end{array}\right), {\qquad} Q = \left(\begin{array}{cc} 0 & q \\ q^* & 0 \end{array}\right), //{ } Z_0 = {\rm i}Q_x-\frac{1}{2}\sigma_3Q^3, Z_1 = [Q, Q_x]-\frac{1}{2}{\rm i}\sigma_3Q^4, // { } Z_2 = Q_{xx}\sigma_3+\frac{1}{2}{\rm i}QQ_xQ-\frac{3}{2}{\rm i}Q^2Q_x+\frac{1}{4}\sigma_3Q^5, // { } Z_3 = \frac{1}{4}{\rm i}\sigma_3Q^6+\frac{3}{2}{\rm i}Q^2[Q_x, Q]-{\rm i}\sigma_3(Q_{xx}Q+QQ_{xx}-Q_x^2), \end{array} \end{eqnarray} $

因此, Lax对方程(2.1)有下列形式

$ \begin{eqnarray} \left\{ \begin{array}{l} \phi_{x}+{\rm i}\lambda^2\sigma_{3}\phi = U_1\phi, \\ \phi_{t}+4{\rm i}\lambda^6\sigma_{3}\phi = U_2\phi, \end{array}\right. \end{eqnarray} $

其中$ U_1 = \lambda\sigma_3Q+\frac{1}{4}{\rm i}\sigma_3Q^2 $$ U_2 = 4\lambda^5\sigma_3Q+2{\rm i}\lambda^4\sigma_3Q^2+2\lambda^3 Z_0+\lambda^2Z_1+\lambda Z_2+\frac{1}{4}Z_3. $假设

$ \begin{eqnarray} \phi(x, t;\lambda) = \psi(x, t;\lambda){\rm e}^{-{\rm i}(\lambda^2x+4\lambda^6t)\sigma_3}, 0<x<\infty, 0<t<T. \end{eqnarray} $

因此,方程(2.3)等价为

$ \begin{eqnarray} \left\{ \begin{array}{l} \psi_x+{\rm i}\lambda^2[\sigma_3, \psi] = U_1\psi, \\ \psi_t+4{\rm i}\lambda^6[\sigma_3, \psi] = U_2\psi, \end{array}\right. \end{eqnarray} $

写成全微分形式有

$ \begin{eqnarray} {\rm d}({\rm e}^{{\rm i}(\lambda^2x+4\lambda^6t )\hat{\sigma}_3}\psi(x, t;\lambda)) = W_1(x, t;\lambda), 0<x<\infty, 0<t<T, \end{eqnarray} $

其中

$ \begin{eqnarray} W_1(x, t;\lambda) = {\rm e}^{{\rm i}(\lambda^2x+4\lambda^6t )\hat{\sigma}_3}(U_1{\rm d}x+U_2{\rm d}t)\psi(x, t;\lambda), \end{eqnarray} $

其中, $ \hat{\sigma}_{3} $是矩阵算子,作用结果为$ \hat{\sigma}_{3}A = [\sigma_{3}, A] $$ {\rm e}^{\hat{\sigma}_{3}}A = {\rm e}^{\sigma_{3}}A{\rm e}^{-\sigma_{3}} $.

然后,我们寻找方程(2.1)如下形式的一个解

$ \begin{equation} \psi(x, t;\lambda) = D_0+\sum\limits_{j = 1}^5\frac{D_j}{\lambda_j}+O(\frac{1}{\lambda^6}), \lambda\rightarrow\infty. \end{equation} $

将(2.8)式代入(2.5)式的$ x $部分,并比较$ \lambda $的同次幂系数得

$ \begin{eqnarray} \begin{array}{l} \lambda^2: {\rm i}[\sigma_3, D_0] = 0, \\ \lambda^1: {\rm i}[\sigma_3, D_1] = \sigma_3QD_0, \\ { } \lambda^{0}:D_{0, x}+{\rm i}[\sigma_3, D_2] = \frac{{\rm i}}{4}\sigma_3 Q^2D_0+\sigma_3QD_1. \end{array} \end{eqnarray} $

从得$ O(\lambda^1) $得到$ D_0 $是一个对角矩阵,假设

$ O(\lambda^0) $

$ \begin{equation} D_1^{(o)} = -\frac{{\rm i}}{2}QD_0, \, D_{0, x} = -\frac{{\rm i}}{4}qr\sigma_3D_0, \end{equation} $

这里$ D_1^{(o)} $表示$ D_1 $的次对角线部分.对于方程(2.5)的$ t $部分,我们进行类似的分析,并且经过一段繁琐的计算可以得到

$ \begin{eqnarray} D_{0, t} = (-\frac{{\rm i}}{16}q^3r^3-\frac{3}{8}qr^2q_x+\frac{3}{8}q^2rr_x+\frac{{\rm i}}{4}q_{xx}r+\frac{{\rm i}}{4}qr_{xx}-\frac{{\rm i}}{4}q_{x}r_{x})D_0\sigma_3. \end{eqnarray} $

注意到方程(2.1)的守恒律

我们定义

$ \begin{eqnarray} D_0(x, t) = \exp\bigg({\rm i}\int_{(x_0, t_0)}^{(x, t)}\Delta(x, t)\sigma_3\bigg), \quad\Delta(x, t) = \Delta_1(x, t){\rm d}x+\Delta_2(x, t){\rm d}t, \end{eqnarray} $

其中$ \Delta_1 = -\frac{1}{4}qr, \, \Delta_2 = -\frac{1}{16}q^3r^3+\frac{3{\rm i}}{8}qr^2q_x-\frac{3{\rm i}}{8}q^2rr_x+\frac{1}{4}q_{xx}r+\frac{1}{4}qr_{xx}-\frac{1}{4}q_xr_x $,不失一般性,在(2.12)式中,我们取$ (x_0, t_0) = (0, 0) $.

由于(2.12)式与积分路径无关,而且$ \Delta $是独立于$ \lambda $的函数,故引入特征函数$ \mu(x, t;\lambda) $,

$ \begin{eqnarray} \psi(x, t;\lambda) = {\rm e}^{{\rm i}\int_{(0, 0)}^{(x, t)}\Delta\hat{\sigma}_3}\mu(x, t;\lambda)D_0(x, t), 0<x<\infty, 0<t<T. \end{eqnarray} $

因此, Lax对方程(2.5)可以写为

$ \begin{eqnarray} {\rm d}({\rm e}^{{\rm i}(\lambda^2 x+4\lambda^6t)\hat{\sigma}_3}\mu(x, t;\lambda)) = W_2(x, t;\lambda), \end{eqnarray} $

其中

$ \begin{equation} \begin{array}{cc} W_2(x, t;\lambda) = {\rm e}^{{\rm i}(\lambda^2 x+4\lambda^6t)\hat{\sigma}_3}V(x, t;\lambda)\mu(x, t;\lambda), \\ { } V(x, t;\lambda) = V_1(x, t;\lambda){\rm d}x+V_2(x, t;\lambda){\rm d}t = {\rm e}^{-{\rm i}\int_{(0, 0)}^{(x, t)} \Delta\hat{\sigma}_3}(U_1{\rm d}x+U_2{\rm d}t-{\rm i}\Delta\sigma_3). \end{array} \end{equation} $

$ U(x, t;\lambda) $$ \Delta $,我们得到

因此,方程(2.14)可以写成

$ \begin{eqnarray} \left\{ \begin{array}{l} \mu_x+{\rm i}\lambda^2[\sigma_3, \mu] = V_1\mu, \\ \mu_t+4{\rm i}\lambda^6[\sigma_3, \mu] = V_2\mu. \end{array}\right. \end{eqnarray} $

2.1 特征函数

假设$ q(x, t) $在半直线区域$ \Omega = \{0<x<\infty, 0<t<T\} $内充分光滑,定义三个$ 2\times2 $矩阵值特征函数$ \{\mu_j(x, t, \lambda)\}_1^3 $

$ \begin{eqnarray} \mu_j(x, t;\lambda) = {\rm I}+\int_{(x_j, t_j)}^{(x, t)}{\rm e}^{-{\rm i}(\lambda^2 x+4\lambda^6t)\hat{\sigma}_3}W_2(\xi, \tau, \lambda), 0<x<\infty, 0<t<T, \end{eqnarray} $

其中积分路径是从$ (x_j, t_j) $$ (x, t) $,并且有$ (x_1, t_1) = (0, T ), (x_2 t_2) = (0, 0), (x_3, t_3) = (\infty, t) $ (如图 1所示).由于积分方程(2.19)与积分路径无关,我们选取如图 1所示特殊的积分路径,得到

$ \begin{equation} \left\{ \begin{array}{l} { } \mu_1(x, t;\lambda) = {\rm I}+\int_{0}^{x}{\rm e}^{{\rm i}\lambda^2 (\xi-x)\hat{\sigma}_3}(V_1\mu_1)(\xi, t, \lambda){\rm d}\xi -{\rm e}^{-{\rm i}\lambda^2 x\hat{\sigma}_3}\int_{t}^{T}{\rm e}^{4{\rm i}\lambda^6(\tau-t)\hat{\sigma}_3}(V_2\mu_1)(0, \tau, \lambda){\rm d}\tau , \\ { } \mu_2(x, t;\lambda) = {\rm I}+\int_{0}^{x}{\rm e}^{{\rm i}\lambda^2 (\xi-x)\hat{\sigma}_3}(V_1\mu_2)(\xi, t, \lambda){\rm d}\xi +{\rm e}^{-{\rm i}\lambda^2 x\hat{\sigma}_3}\int_{0}^{t}{\rm e}^{4{\rm i}\lambda^6(\tau-t)\hat{\sigma}_3}(V_2\mu_2)(0, \tau, \lambda){\rm d}\tau , \\ { } \mu_3(x, t;\lambda) = {\rm I}-\int_{x}^{\infty}{\rm e}^{{\rm i}\lambda^2 (\xi-x)\hat{\sigma}_3}(V_1\mu_3)(\xi, t, \lambda){\rm d}\xi . \end{array}\right. \end{equation} $

图 1

图 1   $ (x, t) $ -平面中的三条曲线$ \gamma_1, \gamma_2, \gamma_3 $


假设$ [\mu_j]_k $$ \mu_j $的第$ k $列向量,由方程(2.9)得到$ \mu_j(x, t, \lambda) $的第一、二列分别含有如下的指数项

$ \begin{equation} {[\mu_j]}_{1}:\, {\rm e}^{-2{\rm i}[\lambda^2(\xi-x)+8\lambda^6(\tau-t)]};\quad {[\mu_j]}_{2}:\, {\rm e}^{2{\rm i}[\lambda^2(\xi-x)+8\lambda^6(\tau-t)]}. \end{equation} $

同时,在曲线上有如下的不等式

$ \begin{equation} \begin{array}{l} \gamma_1 = (0, T)\rightarrow(x, t):\, x-\xi\geq 0, \, t-\tau\leq 0;\\ \gamma_2 = (0, 0)\rightarrow(x, t):\, x-\xi\geq 0, \, t-\tau\geq 0;\\ \gamma_3 = (\infty, t)\rightarrow(x, t):\, x-\xi\leq 0. \end{array} \end{equation} $

为了得到$ \{\mu_j(x, t, \lambda)\}_1^3 $在复$ \lambda $平面上的有界解析区域,我们用$ {\rm Im}{{\rm i}\lambda^2} = 0 $$ {\rm Im}{{\rm i}\lambda^6} = 0 $把复$ \lambda $平面划分为六个区域(如图 2).不难发现特征函数$ \{\mu_j(x, t, \lambda)\}_1^3 $的有界解析区域分别为

$ \begin{equation} \begin{array}{l} \mu_1:\, \lambda\in(D_2, D_5), \quad \mu_2:\, \lambda\in(D_1\cup D_3, D_4\cup D_6), \\ \mu_3:\, \lambda\in(D_4\cup D_5\cup D_6, D_1\cup D_2\cup D_3), \end{array} \end{equation} $

其中$ \{D_n\}_1^6 $表示六个开的、互不相交的复$ \lambda $平面内的子集,如图 2所示.

图 2

图 2   $ \lambda $ -平面中的集合$ \{D_j\}_1^6 $


2.2 谱函数和全局关系

为了导出RH问题的跳跃矩阵,定义两个$ 2\times2 $矩阵值特征函数$ s(\lambda) $$ S(\lambda) $如下

$ \begin{equation} \left\{ \begin{array}{l} \mu_3(x, t;\lambda) = \mu_2(x, t;\lambda){\rm e}^{-{\rm i}(\lambda^2 x+4\lambda^6t)\hat{\sigma}_3}s(\lambda), \\ \mu_1(x, t;\lambda) = \mu_2(x, t;\lambda){\rm e}^{-{\rm i}(\lambda^2 x+4\lambda^6t)\hat{\sigma}_3}S(\lambda). \end{array}\right. \end{equation} $

在方程(2.22)第一、二个式中分别取$ (x, t) = (0, 0) $$ (x, t) = (0, T) $,有

$ \begin{equation} s(\lambda) = \mu_3(0, 0;\lambda), S(\lambda) = ({\rm e}^{4{\rm i}\lambda^6 T\hat{\sigma}_3}\mu_2(0, T;\lambda))^{-1}, \end{equation} $

由(2.22)和(2.23)式可以得到如下的全局关系

$ \begin{equation} \mu_1(x, t;\lambda) = \mu_3(x, t;\lambda){\rm e}^{-{\rm i}(\lambda^2 x+4\lambda^6t)\hat{\sigma}_3}(s(\lambda))^{-1}S(\lambda), \lambda\in(D_2\cup D_4, D_1\cup D_3). \end{equation} $

特别地,由于$ \mu_1(0, t, \lambda) = {\rm I} $,我们有全局关系为

$ \begin{equation} S^{-1}(\lambda)s(\lambda) = {\rm e}^{4{\rm i}\lambda^6T\hat\sigma_3}c(T, \lambda), \, \lambda\in(D_2\cup D_4, D_1\cup D_3), \end{equation} $

其中$ c(T, \lambda) = \mu_3(0, t, \lambda). $

命题2.1   (对称性)  特征函数

有如下的对称性:

$ \bullet $$ \mu_j^{11}(x, t;\lambda) = \overline{\mu_j^{22}(x, t;\bar{\lambda})} $, $ \mu_j^{12}(x, t;\lambda) = \overline{\mu_j^{21}(x, t;\bar{\lambda})} $;

$ \bullet $$ \mu_j^{11}(x, t;-\lambda) = \mu_j^{11}(x, t;\lambda) $, $ \mu_j^{12}(x, t;-\lambda) = -\mu_j^{12}(x, t;\lambda) $,

$ \mu_j^{21}(x, t;-\lambda) = -\mu_j^{21}(x, t;\lambda) $, $ \mu_j^{22}(x, t;-\lambda) = \mu_j^{22}(x, t;\lambda) $.

命题2.2  由方程(2.22)和(2.23)定义的谱函数$ s(\lambda) $$ S(\lambda) $有如下的积分形式

$ \begin{eqnarray} \begin{array}{l} { } s(\lambda) = {\rm I}-\int_{0}^{\infty}{\rm e}^{{\rm i}\lambda^2 \xi \hat{\sigma}_3}(V_1\mu_3)(\xi, 0;\lambda){\rm d}\xi , \\ { } S^{-1}(\lambda) = {\rm I}+\int_{0}^{T}{\rm e}^{4{\rm i}\lambda^6\tau\hat{\sigma}_3}(V_2\mu_2)(0, \tau;\lambda){\rm d}\tau . \end{array} \end{eqnarray} $

我们定义矩阵函数$ s(\lambda) $$ S(\lambda) $如下

$ \begin{eqnarray} s(\lambda) = \left(\begin{array}{cc} \overline{a(\bar{\lambda})} & b(\lambda)\\ \overline{b(\bar{\lambda})} & a(\lambda) \end{array}\right), S(\lambda) = \left(\begin{array}{cc} \overline{A(\bar{\lambda})} & B(\lambda)\\ \overline{B(\bar{\lambda})}& A(\lambda)\\ \end{array}\right). \end{eqnarray} $

利用方程(2.23)和(2.26),我们得到

2.3 跳跃矩阵及计算

为了研究方便,我们假设

$ \begin{eqnarray} \begin{array}{l} \theta(\lambda) = \lambda^2 x+4\lambda^6t, \quad \alpha(\lambda) = \overline{a(\bar{\lambda})}A(\lambda)-\overline{b(\bar{\lambda})}B(\lambda), \\ \beta(\lambda) = a(\lambda)B(\lambda)-b(\lambda)A(\lambda), \quad \delta(\lambda) = \overline{a(\bar{\lambda})}\beta(\lambda)+b(\lambda)\alpha(\lambda). \end{array} \end{eqnarray} $

矩阵函数$ M(x, t;\lambda) $定义为

$ \begin{eqnarray} \begin{array}{l} { } M_{+}^{(1)}(x, t, \lambda) = (\frac{\mu_3^{D_4\cup D_5\cup D_6}(x, t, \lambda)}{\alpha(\lambda)}, \mu_1^{D_5}(x, t, \lambda)), \lambda\in D_5, \\ { } M_{-}^{(1)}(x, t, \lambda) = (\frac{\mu_3^{D_4\cup D_5\cup D_6}(x, t, \lambda)}{\overline{a(\bar{\lambda})}}, \mu_2^{D_4\cup D_6}(x, t, \lambda)), \lambda\in D_4\cup D_6, \\ { } M_{+}^{(2)}(x, t, \lambda) = (\mu_2^{D_1\cup D_3}(x, t, \lambda), \frac{\mu_3^{D_1\cup D_2\cup D_3}(x, t, \lambda)}{a(\lambda)}), \lambda\in D_1\cup D_3, \\ { } M_{-}^{(2)}(x, t, \lambda) = (\mu_1^{D_2}(x, t, \lambda), \frac{\mu_3^{D_1\cup D_2\cup D_3}(x, t, \lambda)}{\overline{\alpha(\bar{\lambda})}}), \lambda\in D_2. \end{array} \end{eqnarray} $

因此,我们有

$ \begin{equation} {\rm det} M(x, t;\lambda) = 1, \, \, M(x, t;\lambda) = {\rm I}+O(\frac{1}{\lambda}), \lambda\rightarrow\infty. \end{equation} $

命题2.3  假设$ u(x, t) $充分光滑, $ \{\mu_j(x, t, \lambda)\}_1^3 $由方程(2.17)给出, $ M(x, t;\lambda) $由方程(2.29)给出,那么$ M(x, t;\lambda) $满足下面的跳跃条件

$ \begin{eqnarray} M_{+}(x, t, \lambda) = M_{-}(x, t, \lambda)J(x, t, \lambda), \lambda^6 \in {{\Bbb R}}, \end{eqnarray} $

其中$ J(x, t, \lambda) $是跳跃矩阵,在不同的跳跃曲线上,跳跃矩阵可以分别表示为

$ \begin{eqnarray} J(x, t, \lambda) = \left\{ \begin{array}{l} { } J_1(x, t, \lambda), {\rm Arg} \lambda = k\pi \cup k\pi+\frac{\pi}{2}, \\ { } J_2(x, t, \lambda), {\rm Arg} \lambda = k\pi+\frac{\pi}{6} \cup k\pi+\frac{\pi}{3}, \\ { } J_3(x, t, \lambda), {\rm Arg} \lambda = k\pi+\frac{2\pi}{3} \cup k\pi+\frac{5\pi}{6}, \end{array}\right. \end{eqnarray} $

其中

$ \begin{eqnarray} &J_1(x, t, \lambda) = \left(\begin{array}{cc} 1 &{ } \frac{b(\lambda)}{\overline{a(\bar{\lambda})}}{\rm e}^{-2{\rm i}\theta(\lambda)} \\ { } -\frac{\overline{b(\bar{\lambda})}}{a(\lambda)}{\rm e}^{2{\rm i}\theta(\lambda)} &{ } \frac{1}{a(\lambda)\overline{a(\bar{\lambda})}} \end{array}\right), {}\\ &J_2(x, t, \lambda) = \left(\begin{array}{cc} { } \frac{a(\lambda)}{\overline{\alpha(\bar{\lambda})}} & 0 \\ { } -\overline{\delta(\bar{\lambda})} {\rm e}^{2{\rm i}\theta(\lambda)}& { } \frac{\overline{\alpha(\bar{\lambda})}}{a(\lambda)} \end{array}\right), J_3(x, t, \lambda) = \left(\begin{array}{cc} { } \frac{\overline{a(\bar{\lambda})}}{\alpha(\lambda)} & { } \delta(\lambda){\rm e}^{-2{\rm i}\theta(\lambda)} \\ 0 &{ } \frac{\alpha(\lambda)}{\overline{a(\bar{\lambda})}} \end{array} \right). \end{eqnarray} $

  为了导出(2.31)式,我们把(2.22)和(2.27)式写成下面的形式

$ \begin{eqnarray} && \left\{ \begin{array}{l} \overline{a(\bar{\lambda})}\mu_2^{D_1\cup D_3}+\overline{b(\bar{\lambda})}{\rm e}^{2{\rm i}\theta(\lambda)}\mu_2^{D_4\cup D_6} = \mu_3^{D_4\cup D_5\cup D_6}, \\ b(\lambda){\rm e}^{-2{\rm i}\theta(\lambda)}\mu_2^{D_1\cup D_3}+a(\lambda)\mu_2^{D_4\cup D_6} = \mu_3^{D_1\cup D_2\cup D_3}, \end{array}\right.{}\\ && \left\{ \begin{array}{l} \overline{A(\bar{\lambda})}\mu_2^{D_1\cup D_3}+\overline{B(\bar{\lambda})}{\rm e}^{2{\rm i}\theta(\lambda)}\mu_2^{D_4\cup D_6} = \mu_1^{D_2}, \\ B(\lambda){\rm e}^{-2{\rm i}\theta(\lambda)}\mu_2^{D_1\cup D_3}+A(\lambda)\mu_2^{D_4\cup D_6} = \mu_1^{D_5}, \end{array}\right.\\ && \left\{ \begin{array}{l} \overline{\alpha(\bar{\lambda})}\mu_3^{D_4\cup D_5\cup D_6}+\overline{\beta(\bar{\lambda})}{\rm e}^{2{\rm i}\theta(\lambda)}\mu_2^{D_1\cup D_2\cup D_3} = \mu_1^{D_2}, \\ \beta(\lambda){\rm e}^{-2{\rm i}\theta(\lambda)}\mu_3^{D_4\cup D_5\cup D_6}+\alpha(\lambda)\mu_2^{D_1\cup D_2\cup D_3} = \mu_1^{D_5}. \end{array}\right.{} \end{eqnarray} $

通过直接计算可以得到(2.33)式,并且$ J_i(x, t;\lambda)\ (i = 1, 2, 3, 4.) $满足跳跃条件(2.31),进一步地,我们可以得到$ M_{+}^{(1)}(x, t;\lambda) $$ M_{-}^{(2)}(x, t;\lambda) $之间的跳跃关系为

其中$ J_4(x, t;\lambda) = J_2(x, t;\lambda)J_1^{-1}(x, t;\lambda)J_3(x, t;\lambda) $.

2.4 留数条件

函数$ M(x, t;\lambda) $在复$ \lambda $平面上是解析函数,它可能的极点就是$ a(\lambda) $$ \alpha(\lambda) $的零点.我们假设

$ \bullet $$ a(\lambda) $$ 2n $个简单零点$ \{\varepsilon_j\}_{j = 1}^{2n} $, $ 2n = 2n_1+2n_2 $,且$ \{\varepsilon_j\}_{j = 1}^{2n_1} $$ D_1\cup D_3 $中, $ \{\varepsilon_j\}_{j = 1}^{2n_2} $$ D_4\cup D_6 $中.

$ \bullet $$ \alpha(\lambda) $$ 2N $个简单零点$ \{\gamma_j\}_{j = 1}^{2N} $ ($ 2N = 2N_1+2N_2 $),且$ \{\varepsilon_j\}_{j = 1}^{2N_1} $$ D_5 $中, $ \{\varepsilon_j\}_{j = 1}^{2N_2} $$ D_2 $中.

$ \bullet $$ \alpha(\lambda) $$ a(\lambda) $没有相同的零点.

命题2.4  记$ \dot{a}(\lambda) = \frac{{\rm d}a}{{\rm d}\lambda} $,我们有如下的留数条件:

(ⅰ) $ {\rm Res} \{[M(x, t;\lambda)]_{2} , \varepsilon_j\} = \frac{{\rm e}^{-2{\rm i}\theta(\varepsilon_j)} b(\varepsilon_j)}{\dot{a}(\varepsilon_j)}[M(x, t;\varepsilon_j)]_{1}, $$ j = 1, 2, \cdots, 2n_1 $.

(ⅱ) $ {\rm Res}\{[M(x, t;\lambda)]_{1} , \bar{\varepsilon}_j \} = \frac{{\rm e}^{2{\rm i}\theta(\bar{\varepsilon_j})}\overline{b(\bar{\varepsilon}_j)}}{\overline{\dot{a} (\bar{\varepsilon}_j)}}[M(x, t;\bar{\varepsilon}_j)]_{2} $, $ j = 1, 2, \cdots, 2n_2 $.

(ⅲ) $ {\rm Res}\{[M(x, t;\lambda)]_{1} , \gamma_j \} = \frac{{\rm e}^{2{\rm i}\theta(\gamma_j)}} {\dot{\alpha}(\gamma_j)\beta(\gamma_j)}[M(x, t;\gamma_j)]_{2} $, $ j = 1, 2, \cdots, 2N_1 $.

(ⅳ) $ {\rm Res}\{[M(x, t;\lambda)]_{2} , $$ \bar{\gamma}_j \} = \frac{{\rm e}^{-2{\rm i}\theta (\bar{\gamma}_j)}}{\overline{\dot{\alpha}(\bar{\gamma}_j)}\overline{\beta(\bar{\gamma_j})}} [M(x, t;\bar{\gamma_j})]_{1} $, $ j = 1, 2, \cdots, 2N_2 $.

  这里我们只需证明(ⅰ),其余的留数计算与之类似.考虑

$ a(\lambda) $的简单零点$ \{\varepsilon_j\}_{1}^{2n_1} $$ \frac{\mu_3^{D_1\cup D_2\cup D_3}}{a(\lambda)} $的简单极点,那么有

$ \lambda = \varepsilon_j $代入(2.33)式的第二个方程得到

进一步地,我们有

这就是(ⅰ)式,证毕.

3 Riemann-Hilbert问题

在上一部分定义的$ M(x, t, \lambda) $满足一个与$ q(x, t) $的初边值数据有关的$ 2\times 2 $矩阵RH问题.通过解这个$ 2\times 2 $矩阵RH问题,对于所有的$ (x, t) $可以重建(1.2)的解,因此,我们有:

定理3.1  在方程(2.27)中,由$ a(\lambda), b(\lambda), A(\lambda) $$ B(\lambda) $定义的谱函数$ S(\lambda) $$ s(\lambda) $满足全局关系(2.25).即利用初边值数据$ q_0(x) = q(x, 0);g_0(t) = q(0, t), g_1(t) = q_{x}(0, t), g_2(t) = q_{xx}(0, t) $,我们由方程(2.22)定义了谱函数$ s(\lambda) $$ S(\lambda) $,并且通过计算得到了跳跃矩阵$ J(x, t, \lambda) $,假设$ a(\lambda) $$ \alpha(\lambda) $的简单极点分别为$ \{\varepsilon_j\}_{j = 1}^{2n} $$ \{\gamma_j\}_{j = 1}^{2N} $,则矩阵函数$ M(x, t, \lambda) $是下面RH问题的解:

$ \bullet $$ M(x, t;\lambda) $$ {\rm C}\setminus\{\lambda^6 \in {{\Bbb R}}\} $上的分片解析函数.

$ \bullet $在曲线$ \lambda^6 \in {{\Bbb R}} $上, $ M(x, t;\lambda) $满足如下的跳跃关系:

$ \begin{equation} M_{+}(x, t;\lambda) = M_{-}(x, t;\lambda)J(x, t;\lambda). \end{equation} $

$ \bullet $$ M(x, t;\lambda) = {\rm I}+O(\frac{1}{\lambda}), \, \lambda\rightarrow\infty $.

$ \bullet $$ M(x, t;\lambda) $满足命题2.4中的留数条件.

因此, $ M(x, t;\lambda) $存在并且是唯一的,且势函数$ q(x, t) $可以由矩阵函数$ M(x, t, \lambda) $来给出:

$ \begin{equation} { } q(x, t) = 2{\rm i}m(x, t){\rm e}^{2{\rm i}\int_{(0, 0)}^{(x, t)}\Delta}, {\qquad} { } m(x, t) = \lim\limits_{\lambda\rightarrow\infty}(\lambda M(x, t;\lambda))_{12}. \end{equation} $

此外, $ q(x, t) $是HOCLL方程(1.2)的解,并且满足方程(1.3)定义的初边值数据.

  事实上,如果函数$ a(\lambda) $$ \alpha(\lambda) $没有零点,那么$ 2\times2 $矩阵函数$ M(x, t;\lambda) $是一个非正则的RH问题.利用跳跃矩阵$ J(x, t;\lambda) $的对称条件,我们可以证明这个非正则的RH问题能够映射到一个耦合与代数方程系统的正则性的RH问题.

定理3.2   (消灭定理)定理3.1中的带有边界条件$ M(x, t;\lambda)\rightarrow 0, \, \, \, \lambda \rightarrow \infty $的RH问题有且仅有零解.

  可以类似于文献[4-5]中的Dressing方法证明该消灭定理,这里省略.

参考文献

Fokas A S .

A unified transform method for solving linear and certain nonlinear PDEs

Proc R Soc Lond A, 1997, 453, 1411- 1443

URL     [本文引用: 1]

Fokas A S .

Integrable nonlinear evolution equations on the half-line

Commun Math Phys, 2002, 230, 1- 39

URL     [本文引用: 1]

Lenells J .

The derivative nonlinear Schrödinger equation on the half-line

Phys D, 2008, 237, 3008- 3019

URL    

Zhang N , Xia T C , Fan E G .

A Riemann-Hilbert approach to the Chen-Lee-Liu equation on the half line

Acta Math Applicatae Sin-E, 2018, 34 (3): 493- 515

URL     [本文引用: 1]

Zhang N , Xia T C , Hu B B .

A Riemann-Hilbert approach to the complex Sharma-Tasso-Olver equation on the half line

Commun Theor Phys, 2017, 68, 580- 594

URL     [本文引用: 2]

Lenells J .

Initial-boundary value problems for integrable evolution equations with 3×3 Lax pairs

Phys D, 2012, 241, 857- 875

URL     [本文引用: 1]

Lenells J .

The Degasperis-Procesi equation on the half-line

Nonlinear Anal, 2013, 76, 122- 139

URL     [本文引用: 1]

Xu J , Fan E G .

The three wave equation on the half-line

Phys Lett A, 2014, 378, 26- 33

URL     [本文引用: 1]

Xu J , Fan E G .

A Riemann-Hilbert approach to the initial-boundary problem for derivative nonlinear Schrödinger equation

Acta Math Sci, 2014, 34B, 973- 994

URL    

Xiao Y , Fan E G , Xu J .

The Fokas-Lenells equation on the finite interval

Acta Math Sci, 2017, 37B, 852- 876

URL    

Boutet de Monvel A , Shepelsky D , Zielinski L .

A Riemann-Hilbert approach for the Novikov equation

SIGMA, 2016, 12, 095

URL    

Tian S F .

The mixed coupled nonlinear Schrödinger equation on the half-line via the Fokas method

Proc R Soc A, 2016, 472, 1- 22

Tian S F .

Initial-boundary value problems of the coupled modified Korteweg-de Vries equation on the half-line via the Fokas method

J Phys A Math Theor, 2017, 50, 395204

URL    

Tian S F .

Initial-boundary value problems for the general coupled nonlinear Schrödinger equation on the interval via the Fokas method

J Differ Equations, 2017, 262, 506- 558

Yan Z Y .

An initial-boundary value problem for the integrable spin-1 Gross-Pitaevskii equations with a 4×4 Lax pair on the half-line

CHAOS, 2017, 27, 053117

Zhang N , Xia T C , Hu B B .

A Riemann-Hilbert approach to the complex Sharma-Tasso-Olver equation on the half Line

Commun Theor Phys, 2017, 68, 580- 594

URL    

Hu B B , Xia T C , Zhang N , Wang J B .

Initial-boundary value problems for the coupled higher-order nonlinear Schrödinger equations on the half-line

Int J Nonlin Sci Num, 2018, 19, 83- 92

URL    

Hu B B , Xia T C , Ma W X .

Riemann-Hilbert approach for an initial-boundary value problem of the two-component modified Korteweg-de Vries equation on the half-line

Appl Math Comput, 2018, 332, 148- 159

URL    

Hu B B , Xia T C .

A Fokas approach to the coupled modified nonlinear Schrödinger equation on the half-line

Math Meth Appl Sci, 2018, 41, 5112- 5123

Hu B B , Xia T C , Ma W X .

Riemann-Hilbert approach for an initial-boundary value problem of an integrable coherently coupled nonlinear Schrödinger system on the half-line

E Asian J Appld Math, 2018, 8, 531- 548

Hu B B , Xia T C , Zhang N .

The unified transform method to initial-boundary value problem of the coupled cubic-quintic nonlinear Schrödinger system

Complex Anal Oper Th, 2019, 13, 1143- 1159

Hu B B , Xia T C .

A Riemann-Hilbert approach to the initial-boundary value problem for Kundu-Eckhaus equation on the half line

Complex Var Elliptic, 2019, 64 (12): 2019- 2039

URL    

董凤娇, 胡贝贝.

广义Sasa-Satsuma方程在半直线上的初边值问题

华东师范大学学报(自然科学版), 2019, 4 (1): 33- 41

URL     [本文引用: 1]

Dong F J , Hu B B .

An initial-boundary value problem for the generalized Sasa-Satsuma equation on the half-line

Journal of East China Normal University (Natural Science), 2019, 4, 33- 41

URL     [本文引用: 1]

Ma W X .

Riemann-Hilbert problems and N-soliton solutions for a coupled mKdV system

J Geom Phys, 2018, 132, 45- 54

URL     [本文引用: 1]

Ma W X .

Riemann-Hilbert problems of a six-component fourth-order AKNS system and its soliton solutions

Comput Appl Math, 2018, 37, 6359- 6375

URL    

Ma W X .

Application of the Riemann-Hilbert approach to the multicomponent AKNS integrable hierarchies

Nonlinear Anal Real, 2019, 47, 1- 17

URL    

Ma W X .

Riemann-Hilbert problems and soliton solutions of a multicomponent mKdV system and its reduction

Math Meth Appl Sci, 2019, 42, 1099- 1113

URL    

Ma W X .

Riemann-Hilbert problems of a six-component mKdV system and its soliton solutions

Acta Math Sci, 2019, 39, 509- 523

URL    

Hu J , Xu J , Yu G F .

Riemann-Hilbert approach and N-soliton formula for a higher-order Chen-Lee-Liu equation

J Nonlinear Math Phy, 2018, 25 (4): 633- 649

URL     [本文引用: 2]

Zhang J , Liu W , Qiu D Q , et al.

Rogue wave solutions of a higher-order Chen-Lee-Liu equation

Phys Scr, 2015, 90, 055207

[本文引用: 3]

/