数学物理学报, 2020, 40(2): 395-407 doi:

论文

Hilbert空间中关于变分不等式问题和不动点问题的粘性隐式中点算法

蔡钢,

Viscosity Implicit Algorithms for a Variational Inequality Problem and Fixed Point Problem in Hilbert Spaces

Cai Gang,

收稿日期: 2018-11-20  

基金资助: 国家自然科学基金.  11971082
国家自然科学基金.  11771063
重庆市自然科学基金.  cstc2017jcyjAX0006
重庆市教委项目.  KJZD-K201900504
重庆市高等学校青年骨干教师资助计划.  020603011714
重庆师范大学青年拔尖人才计划.  02030307-00024

Received: 2018-11-20  

Fund supported: the NSFC.  11971082
the NSFC.  11771063
the NSF of Chongqing.  cstc2017jcyjAX0006
the Science and Technology Project of Chongqing Education Committee.  KJZD-K201900504
the University Young Core Teacher Foundation of Chongqing.  020603011714
the Talent Project of Chongqing Normal University.  02030307-00024

作者简介 About authors

蔡钢,E-mail:caigang-aaa@163.com , E-mail:caigang-aaa@163.com

摘要

该文在Hilbert空间中研究了关于两个逆强单调算子的一般变分不等式问题和非扩张映射的不动点问题的粘性隐式中点算法,用修改的超梯度方法,在对参数作适当的限制下,得到了强收敛定理,所得结果推广和提高了许多最新文献中的相应结果.

关键词: Hilbert空间 ; 非扩张映射 ; 变分不等式 ; 强收敛

Abstract

In this paper, we study a viscosity implicit algorithm for finding a common element of the set of solutions of a new variational inequality problems for two inverse-strongly monotone operators and the set of fixed points of a nonexpansive mapping in Hilbert spaces. Using modified extragradient method, we obtain strong convergence theorems under some suitable assumptions imposed on the parameters. The results obtained in this paper extend and improve many recent ones.

Keywords: Hilbert spaces ; Nonexpansive mapping ; Variational inequality ; Strong convergence

PDF (296KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

蔡钢. Hilbert空间中关于变分不等式问题和不动点问题的粘性隐式中点算法. 数学物理学报[J], 2020, 40(2): 395-407 doi:

Cai Gang. Viscosity Implicit Algorithms for a Variational Inequality Problem and Fixed Point Problem in Hilbert Spaces. Acta Mathematica Scientia[J], 2020, 40(2): 395-407 doi:

1 引言

$ H $为Hilbert空间,用$ \left<{\cdot, \cdot}\right> $表示其内积, $ C $$ H $中非空闭凸子集.设$ T $$ C $上非线性自映射, $ F(T) $表示$ T $的不动点集.

映射$ f: C\rightarrow C $称为严格压缩的,若存在常数$ \alpha\in(0, 1) $使得

$ \begin{align} \left\Vert{f(x)-f(y)}\right\Vert\leq\alpha\left\Vert{x-y}\right\Vert, \ \forall \ x, y\in C. \end{align} $

映射$ T:C\rightarrow H $称为非扩张的,若

$ \begin{align} \left\Vert{Tx-Ty}\right\Vert\leq\left\Vert{x-y}\right\Vert, \forall\, \, x, y\in C. \end{align} $

映射$ A:C\rightarrow H $称为单调的,若

映射$ A:C\rightarrow H $称为$ \alpha $ -逆强单调的,若存在常数$ \alpha $使得

$ \begin{align} \left<{Ax-Ay, x-y}\right>\geq\alpha\left\Vert{Ax-Ay}\right\Vert^2, \, \, \forall\, x, y\in C. \end{align} $

变分不等式是解决一些纯理论和应用科学问题的一种重要工具,例如均衡问题,优化问题等.许多研究者已经提出了一些数值方法来解决变分不等式问题和相关的优化问题,见文献[1-14].

$ A:C\rightarrow H $为非线性算子,经典的变分不等式就是找$ x^* $满足

$ \begin{align} \left<{Ax^*, x-x^*}\right>\geq0, \ \forall\ x\in C. \end{align} $

$ \rm{VI}(A, C) $记不等式$ (1.4) $的解集. Iiduka, Takahashi和Toyoda[4]引进了一个迭代算法并证明了由此迭代算法构建的序列弱收敛到上述变分不等式问题的一个元.

进一步, Ceng等[6]研究了下述一般的变分不等式: $ A, B:C\rightarrow H $为非线性算子,找$ (x^*, y^*)\in C\times C $满足

$ \begin{align} \left\{ \begin{array}{ll} \left<{x^*-(I-\lambda A)y^*, x-x^*}\right>\geq0, \, \, &\forall\, x\in C, \\ \left<{y^*-(I-\mu B)x^*, x-y^*}\right>\geq0, \, \, &\forall\, x\in C.\\ \end{array} \right. \end{align} $

他们引入迭代算法并找到了变分不等式(1.5)的解集与一个非扩张映射的不动点集的公共元,这里$ \lambda, \mu $为正实数.

我们考虑更一般的变分不等式:找$ (x^*, y^*)\in C\times C $满足

$ \begin{align} \left\{ \begin{array}{ll} \left<{x^*-(I-\lambda A)(ax^*+(1-a)y^*), x-x^*}\right>\geq0, \, \, &\forall\, x\in C, \\ \left<{y^*-(I-\mu B)x^*, x-y^*}\right>\geq0, \, \, &\forall\, x\in C, \\ \end{array} \right. \end{align} $

这里$ 0\leq a<1 $, $ \lambda, \mu $为正实数.如果$ a = 0 $,则(1.6)式变为$ (1.5) $式,因此(1.5)式作为(1.6)式特殊情形.

本文用修改的超梯度方法,我们研究了一个新的粘性隐式算法并证明了由此算法构建的序列强收敛到变分不等式问题(1.6)的解集和非扩张映射的不动点集的公共元.

2 预备知识

任取$ x\in H $,众所周知, $ C $中存在唯一点,记为$ P_Cx $,满足

$\left\Vert{x-P_Cx}\right\Vert\leq\left\Vert{x-y}\right\Vert, \, \, \forall\, \, y\in C.$

$ P $称为$ H $$ C $上的投影算子.易知$ P_C $$ H $$ C $上的非扩张映射且满足

$\left<{x-y, P_Cx-P_Cy}\right>\geq\left\Vert{P_Cx-P_Cy}\right\Vert^2, \, \forall\, x, y\in H.$

进一步, $ P_Cx $满足如下性质: $ P_Cx\in C $

$\left<{x-P_Cx, y-P_Cx}\right>\leq0,$

$\left\Vert{x-y}\right\Vert^2\geq\left\Vert{x-P_Cx}\right\Vert^2+\left\Vert{y-P_Cx}\right\Vert^2, \forall\, x\in H, \, y\in C.$

也有

$ \begin{align} \left\Vert{x-y}\right\Vert^2 = \left\Vert{x}\right\Vert^2-\left\Vert{y}\right\Vert^2-2\left<{x-y, y}\right>. \end{align} $

为了证明主要结果,需要如下引理.

引理2.1[11]  设$ \left\{{a_n}\right\} $为非负实数列满足

其中$ \left\{{\alpha_n}\right\} $$ (0, 1) $中序列且$ \left\{{\delta_n}\right\} $为实数列满足

(i) $ \sum\limits_{n = 0}^\infty \alpha_n = \infty $,

(ii) $ \limsup\limits_{n\rightarrow\infty}\frac{\delta_n}{\alpha_n}\leq0 $$ \sum\limits_{n = 1}^\infty\left\vert{\delta_n}\right\vert<\infty $,

$ \lim\limits_{n\rightarrow\infty}a_n = 0 $.

引理2.2[12]  设$ \left\{{x_n}\right\} $$ \left\{{z_n}\right\} $为Banach空间$ E $中有界序列, $ \left\{{\beta_n}\right\} $$ [0, 1] $中序列满足: $ 0<\liminf\limits_{n\rightarrow\infty}\beta_n\leq\limsup\limits_{n\rightarrow\infty}\beta_n<1 $.$ x_{n+1} = \beta_nx_n+(1-\beta_n)z_n $, $ n\geq0 $满足$ \limsup\limits_{n\rightarrow\infty}(\left\Vert{z_{n+1}-z_n}\right\Vert-\left\Vert{x_{n+1}-x_n}\right\Vert)\leq0 $.$ \lim\limits_{n\rightarrow\infty}\left\Vert{z_n-x_n}\right\Vert = 0 $.

引理2.3[13]  设$ C $为实Hilbert空间$ H $中非空闭凸子集, $ S $$ C $上非扩张自映射且满足$ F(T)\neq\emptyset $.$ I-S $是半闭的,即任给$ C $中序列$ \left\{{x_n}\right\} $$ \left\{{x_n}\right\} $弱收敛到$ x\in C $,序列$ \left\{{(I-S)x_n}\right\} $强收敛到$ y $,则$ (I-S)x = y $,这里$ I $$ H $上恒等算子.

通过简单的证明,可以得到下面结果.

引理2.4  设$ C $为实Hilbert空间$ H $中非空闭凸子集, $ A, B:C\rightarrow H $为两个非线性算子.任给$ \lambda, \mu>0 $, $ a\in[0, 1] $.则下述结论等价.

(i) $ (x^*, y^*)\in C\times C $为问题(1.6)的解;

(ii) $ x^* $为映射$ G $的不动点,即$ x^*\in F(G) $,这里$ G:C\rightarrow C $定义为

这里$ y^* = P_C(I-\mu B)x^* $.

3 主要结果

定理3.1  设$ C $为实Hilbert空间$ H $中非空闭凸子集, $ A, B:C\rightarrow H $分别为$ d_1 $ -逆强单调的与$ d_2 $ -逆强单调的, $ T:C\rightarrow C $为非扩张映射满足$ \Omega = F(T)\cap F(G)\neq\emptyset $,这里$ G $的定义见引理2.4.设$ f $$ C $上严格压缩自映射,其参数$ \delta\in(0, 1) $.任取$ x_{1}\in C $.定义序列$ \left\{{x_{n}}\right\} $

$ \begin{equation} \left\{ \begin{array}{l} { } v_n = \frac{1}{2}(x_n+z_n), \\ u_n = P_C(I-\mu B)v_n, \\ z_n = P_C(I-\lambda A)(ax_n+(1-a)u_n), \\ y_n = \alpha_nf(x_n)+(1-\alpha_n)z_n, \\ x_{n+1} = \beta_nx_n+(1-\beta_n)Ty_n, \end{array} \right. \end{equation} $

这里$ \lambda\in (0, 2d_1), \mu\in(0, 2d_2) $, $ 0\leq a<1 $.$ \{\alpha_{n}\} $, $ \{\beta_{n}\} $$ (0, 1] $中序列满足:

(i) $ \lim\limits_{n\rightarrow\infty}\alpha_{n} = 0 $, $ \sum\limits_{n = 1}^{\infty}\alpha_{n} = \infty $,

(ii) $ 0<\liminf\limits_{n\rightarrow\infty}\beta_n\leq\limsup\limits_{n\rightarrow\infty}\beta_n<1 $,

$ \left\{{x_n}\right\} $强收敛到$ q\in \Omega $,这里$ q = P_\Omega f(q) $,也满足下述变分不等式

  首先证明$ \{x_{n}\} $有界.任取$ x, y\in C $,观察

$ \begin{eqnarray} \left\Vert{(I-\lambda A)x-(I-\lambda A)y}\right\Vert^2 & = &\left\Vert{x-y}\right\Vert^2-2\lambda\left<{Ax-Ay, x-y}\right>+\lambda^2\left\Vert{Ax-Ay}\right\Vert^2 \\ &\leq&\left\Vert{x-y}\right\Vert^2-2\lambda d_1\left\Vert{Ax-Ay}\right\Vert^2+\lambda^2\left\Vert{Ax-Ay}\right\Vert^2 \\ & = &\left\Vert{x-y}\right\Vert^2+\lambda(\lambda-2d_1)\left\Vert{Ax-Ay}\right\Vert^2 \\ &\leq&\left\Vert{x-y}\right\Vert^2. \end{eqnarray} $

根据$ \lambda\in(0, 2d_1) $$ I-\lambda A $是非扩张的.同理可以证明$ I-\mu B $也为非扩张的,从而可证$ G $也是非扩张的.设$ x^*\in \Omega $, $ y^* = P_C(I-\lambda A)x^* $.

于是

$ \begin{equation} \left\Vert{z_n-x^*}\right\Vert\leq\left\Vert{x_n-x^*}\right\Vert. \end{equation} $

由(3.1)式和数学归纳法得

因此$ \{x_{n}\} $有界.

下面证明$ \lim\limits_{n\rightarrow\infty}\left\Vert{x_{n+1}-x_n}\right\Vert = 0 $.观察

从而

$ \begin{equation} \left\Vert{z_{n+1}-z_n}\right\Vert\leq\left\Vert{x_{n+1}-x_n}\right\Vert. \end{equation} $

由(3.4)式得

$ \begin{eqnarray} \left\Vert{y_{n+1}-y_n}\right\Vert & = &\left\Vert{\alpha_{n+1}f(x_{n+1})+(1-\alpha_{n+1})z_{n+1}-\alpha_nf(x_n)-(1-\alpha_n)z_n}\right\Vert \\ & = &\left\Vert{\alpha_{n+1}(f(x_{n+1})-z_{n+1})+\alpha_n(z_n-f(x_n))+z_{n+1}-z_n}\right\Vert \\ &\leq&\alpha_{n+1}\left\Vert{f(x_{n+1})-z_{n+1}}\right\Vert+\alpha_n\left\Vert{z_n-f(x_n)}\right\Vert+\left\Vert{z_{n+1}-z_n}\right\Vert \\ &\leq&\alpha_{n+1}\left\Vert{f(x_{n+1})-z_{n+1}}\right\Vert+\alpha_n\left\Vert{z_n-f(x_n)}\right\Vert+\left\Vert{x_{n+1}-x_n}\right\Vert, \end{eqnarray} $

于是

由条件(i), (ii)知

根据引理2.2得

于是

$ \begin{equation} \lim\limits_{n\rightarrow\infty}\left\Vert{x_{n+1}-x_n}\right\Vert = \lim\limits_{n\rightarrow\infty}(1-\beta_n)\left\Vert{Ty_n-x_n}\right\Vert = 0. \end{equation} $

下面证明$ \lim\limits_{n\rightarrow\infty}\left\Vert{x_n-Gx_n}\right\Vert = 0, \ \lim\limits_{n\rightarrow\infty}\left\Vert{x_n-Tx_n}\right\Vert = 0 $.

由(3.1)式知

$ \begin{eqnarray} \left\Vert{u_n-y^*}\right\Vert^2& = &\left\Vert{P_C(I-\mu B)v_n-P_C(I-\mu B)x^*}\right\Vert^2 \\ &\leq&\left\Vert{(I-\mu B)v_n-(I-\mu B)x^*}\right\Vert^2 \\ &\leq&\left\Vert{v_n-x^*}\right\Vert^2-\mu(2d_2-\mu)\left\Vert{Bv_n-Bx^*}\right\Vert^2 \\ & = &\left\Vert{\frac{1}{2}(x_n-x^*)+\frac{1}{2}(z_n-x^*)}\right\Vert^2-\mu(2d_2-\mu)\left\Vert{Bv_n-Bx^*}\right\Vert^2 \\ &\leq&\frac{1}{2}\left\Vert{x_n-x^*}\right\Vert^2+\frac{1}{2}\left\Vert{z_n-x^*}\right\Vert^2-\mu(2d_2-\mu)\left\Vert{Bv_n-Bx^*}\right\Vert^2. \end{eqnarray} $

同理可得

$ \begin{eqnarray} \left\Vert{z_n-x^*}\right\Vert^2 & = &\left\Vert{P_C(I-\lambda A)(ax_n+(1-a)u_n)-P_C(I- \lambda A)(ax^*+(1-a)y^*)}\right\Vert^2 \\ &\leq&\left\Vert{(I-\lambda A)(ax_n+(1-a)u_n)-(I- \lambda A)(ax^*+(1-a)y^*)}\right\Vert^2 \\ &\leq&\left\Vert{(ax_n+(1-a)u_n)-(ax^*+(1-a)y^*)}\right\Vert^2 \\ &&-\lambda(2d_1-\lambda)\left\Vert{A(ax_n+(1-a)u_n)-A(ax^*+(1-a)y^*)}\right\Vert^2 \\ &\leq& a\left\Vert{x_n-x^*}\right\Vert^2+(1-a)\left\Vert{u_n-y^*}\right\Vert^2 \\ &&-\lambda(2d_1-\lambda)\left\Vert{A(ax_n+(1-a)u_n)-A(ax^*+(1-a)y^*)}\right\Vert^2. \end{eqnarray} $

(3.7)式代入(3.8)式,得

于是

$ \begin{eqnarray} \left\Vert{z_n-x^*}\right\Vert^2&\leq&\left\Vert{x_n-x^*}\right\Vert^2-\frac{1-a}{1+a}2\mu(2d_2-\mu)\left\Vert{Bv_n-Bx^*}\right\Vert^2 \\ &&-\frac{1}{1+a}2\lambda(2d_1-\lambda)\left\Vert{A(ax_n+(1-a)u_n)-A(ax^*+(1-a)y^*)}\right\Vert^2. \end{eqnarray} $

根据(3.1)式知

$ \begin{eqnarray} \left\Vert{x_{n+1}-x^*}\right\Vert^2& = &\left\Vert{\beta_n(x_n-x^*)+(1-\beta_n)(Ty_n-x^*)}\right\Vert^2 \\ &\leq&\beta_n\left\Vert{x_n-x^*}\right\Vert^2+(1-\beta_n)\left\Vert{Ty_n-x^*}\right\Vert^2 \\ &\leq&\beta_n\left\Vert{x_n-x^*}\right\Vert^2+(1-\beta_n)\left\Vert{y_n-x^*}\right\Vert^2 \\ & = &\beta_n\left\Vert{x_n-x^*}\right\Vert^2+(1-\beta_n)\left\Vert{\alpha_n(f(x_n)-x^*)+(1-\alpha_n)(z_n-x^*)}\right\Vert^2 \\ &\leq&\beta_n\left\Vert{x_n-x^*}\right\Vert^2+(1-\beta_n)\alpha_n\left\Vert{f(x_n)-x^*}\right\Vert^2+(1-\beta_n)(1-\alpha_n)\left\Vert{z_n-x^*}\right\Vert^2 \\ &\leq&\alpha_n\left\Vert{f(x_n)-x^*}\right\Vert^2+\beta_n\left\Vert{x_n-x^*}\right\Vert^2+(1-\beta_n)\left\Vert{z_n-x^*}\right\Vert^2 \\ &\leq&\alpha_nM_1+\beta_n\left\Vert{x_n-x^*}\right\Vert^2+(1-\beta_n)\left\Vert{z_n-x^*}\right\Vert^2, \end{eqnarray} $

这里$ M_1 = \sup_{n\geq1}\left\Vert{f(x_n)-x^*}\right\Vert^2 $.

将(3.9)式代入(3.10)式得

于是

因为$ \lambda\in(0, 2d_1), \ \mu\in(0, 2d_2) $, $ 0\leq a<1 $, $ { }\lim\limits_{n\rightarrow\infty}\alpha_{n} = 0 $和(3.6)式,有

$ \begin{eqnarray} \lim\limits_{n\rightarrow\infty}\left\Vert{Bv_n-Bx^*}\right\Vert = 0, \, \lim\limits_{n\rightarrow\infty} \left\Vert{A(ax_n+(1-a)u_n)-A(ax^*+(1-a)y^*)}\right\Vert = 0. \end{eqnarray} $

另外一方面,由(2.2)和(2.5)式得

从而

$ \begin{eqnarray} \left\Vert{u_n-y^*}\right\Vert^2 &\leq&\left\Vert{v_n-x^*}\right\Vert^2-\left\Vert{v_n-u_n-(x^*-y^*)}\right\Vert^2+2\mu\left\Vert{Bx^*-Bv_n}\right\Vert\left\Vert{u_n-y^*}\right\Vert \\ & = &\left\Vert{\frac{1}{2}(x_n-x^*)+\frac{1}{2}(z_n-x^*)}\right\Vert^2-\left\Vert{v_n-u_n-(x^*-y^*)}\right\Vert^2 \\ &&+2\mu\left\Vert{Bx^*-Bv_n}\right\Vert\left\Vert{u_n-y^*}\right\Vert \\ &\leq&\frac{1}{2}\left\Vert{x_n-x^*}\right\Vert^2+\frac{1}{2}\left\Vert{z_n-x^*}\right\Vert^2-\left\Vert{v_n-u_n-(x^*-y^*)}\right\Vert^2 \\ &&+2\mu\left\Vert{Bx^*-Bv_n}\right\Vert\left\Vert{u_n-y^*}\right\Vert. \end{eqnarray} $

再次由(2.2)和(2.5)式知

于是

$ \begin{eqnarray} \left\Vert{z_n-x^*}\right\Vert^2 &\leq& a\left\Vert{x_n-x^*}\right\Vert^2+(1-a)\left\Vert{u_n-y^*}\right\Vert^2-a\left\Vert{x_n-z_n}\right\Vert^2 \\ &&-(1-a)\left\Vert{u_n-z_n+x^*-y^*}\right\Vert^2 \\ &&+2\lambda\left\Vert{A(ax^*+(1-a)y^*)-A(ax_n+(1-a)u_n)}\right\Vert\left\Vert{z_n-x^*}\right\Vert \\ &\leq& a\left\Vert{x_n-x^*}\right\Vert^2+(1-a)\left\Vert{u_n-y^*}\right\Vert^2-(1-a)\left\Vert{u_n-z_n+x^*-y^*}\right\Vert^2 \\ &&+2\lambda\left\Vert{A(ax^*+(1-a)y^*)-A(ax_n+(1-a)u_n)}\right\Vert\left\Vert{z_n-x^*}\right\Vert. \end{eqnarray} $

将(3.12)式代入(3.13)式,得

于是

$ \begin{eqnarray} \left\Vert{z_n-x^*}\right\Vert^2 &\leq&\left\Vert{x_n-x^*}\right\Vert^2-\frac{2(1-a)}{1+a}\left\Vert{v_n-u_n-(x^*-y^*)}\right\Vert^2 \\ &&+\frac{1-a}{1+a}4\mu\left\Vert{Bx^*-Bv_n}\right\Vert\left\Vert{u_n-y^*}\right\Vert-\frac{2(1-a)}{1+a}\left\Vert{u_n-z_n+x^*-y^*}\right\Vert^2 \\ &&+\frac{4\lambda}{1+a}\left\Vert{A(ax^*+(1-a)y^*)-A(ax_n+(1-a)u_n)}\right\Vert\left\Vert{z_n-x^*}\right\Vert. \end{eqnarray} $

将(3.14)式代入(3.10)式,有

从而

因为$ \lim\limits_{n\rightarrow\infty}\alpha_{n} = 0 $, $ 0\leq a<1 $,条件(ii), (3.6)式和(3.11)式,有

$ \begin{eqnarray} \lim\limits_{n\rightarrow\infty}\left\Vert{v_n-u_n-(x^*-y^*)}\right\Vert = 0, \, \lim\limits_{n\rightarrow\infty}\left\Vert{u_n-z_n+x^*-y^*}\right\Vert = 0. \end{eqnarray} $

从而

$ \begin{eqnarray} \left\Vert{v_n-z_n}\right\Vert \leq\left\Vert{v_n-u_n-(x^*-y^*)}\right\Vert+\left\Vert{u_n-z_n+x^*-y^*}\right\Vert \rightarrow0, \ \mbox{当}\ n\rightarrow\infty. \end{eqnarray} $

注意到

于是

$ \begin{eqnarray} \left\Vert{x_n-z_n}\right\Vert\leq2\left\Vert{v_n-z_n}\right\Vert \rightarrow0, \ \mbox{当}\ n\rightarrow\infty. \end{eqnarray} $

由(3.1)式得

于是

由条件(ii)和(3.6)式得

$ \begin{eqnarray} \lim\limits_{n\rightarrow\infty}\left\Vert{Ty_n-x_n}\right\Vert = 0. \end{eqnarray} $

观察

$ \begin{eqnarray} \left\Vert{y_n-z_n}\right\Vert = \alpha_n\left\Vert{f(x_n)-z_n}\right\Vert \rightarrow0, \ \mbox{当}\ n\rightarrow\infty. \end{eqnarray} $

于是

$ \begin{eqnarray} \left\Vert{Tx_n-x_n}\right\Vert&\leq&\left\Vert{Tx_n-Tz_n}\right\Vert+\left\Vert{Tz_n-Ty_n}\right\Vert+\left\Vert{Ty_n-x_n}\right\Vert \\ &\leq&\left\Vert{x_n-z_n}\right\Vert+\left\Vert{z_n-y_n}\right\Vert+\left\Vert{Ty_n-x_n}\right\Vert \\ &\rightarrow&0, \ \ \mbox{当}\ n\rightarrow\infty. \end{eqnarray} $

由(3.17)式和(3.19)式知

$ \begin{eqnarray} \left\Vert{x_n-y_n}\right\Vert\leq\left\Vert{x_n-z_n}\right\Vert+\left\Vert{z_n-y_n}\right\Vert \rightarrow0, \ \mbox{当}\ n\rightarrow\infty. \end{eqnarray} $

下面证明

$ \begin{eqnarray} \limsup\limits_{n\rightarrow\infty}\left<{f(q)-q, x_{n}-q}\right>\leq0, \end{eqnarray} $

这里$ q = P_{\Omega}f(q) $.事实上,存在$ \{x_{n}\} $的子列$ \{x_{n_i}\} $满足

易知$ P_{\Omega}f $为压缩映射.由Banach压缩映射原理知$ P_{\Omega}f $存在唯一不动点.记为$ q\in C $,即, $ q = P_{\Omega}f(q) $.因为$ \left\{{x_n}\right\} $$ C $中有界列,不失一般性,假设$ x_{n_i}\rightharpoonup z\in C $.根据引理2.3和(3.17)式,有$ z\in F(G) $.根据引理2.3和(3.20)式,有$ z\in F(T) $.$ z\in\Omega $.因此

于是(3.22)式成立.由(3.21)式得

观察

于是

$ \begin{eqnarray} \left\Vert{y_n-q}\right\Vert^2\leq[1-\alpha_n(1-\delta)]\left\Vert{x_n-q}\right\Vert^2+\alpha_n(1-\delta)\frac{2\left<{f(q)-q, y_n-q}\right>}{1-\delta}. \end{eqnarray} $

从而

$ \begin{eqnarray} \left\Vert{x_{n+1}-q}\right\Vert^2& = &\left\Vert{\beta_n(x_n-q)+(1-\beta_n)(Ty_n-q)}\right\Vert^2 \\ &\leq&\beta_n\left\Vert{x_n-q}\right\Vert^2+(1-\beta_n)\left\Vert{Ty_n-q}\right\Vert^2 \\ &\leq&\beta_n\left\Vert{x_n-q}\right\Vert^2+(1-\beta_n)\left\Vert{y_n-q}\right\Vert^2 \\ &\leq&\beta_n\left\Vert{x_n-q}\right\Vert^2 \\ &&+(1-\beta_n) \bigg[(1-\alpha_n(1-\delta))\left\Vert{x_n-q}\right\Vert^2 +\alpha_n(1-\delta)\frac{2\left<{f(q)-q, y_n-q}\right>}{1-\delta}\bigg] \\ & = &[1-(1-\beta_n)\alpha_n(1-\delta)]\left\Vert{x_n-q}\right\Vert^2+(1-\beta_n)\alpha_n(1-\delta)\frac{2\left<{f(q)-q, y_n-q}\right>}{1-\delta}. \\ \end{eqnarray} $

由引理2.1得$ \left\{{x_n}\right\} $强收敛到$ q $.证毕.

根据定理3.1,容易得到下述结果.

定理3.2  设$ C $为实Hilbert空间$ H $中非空闭凸子集, $ A, B:C\rightarrow H $分别为$ d_1 $ -逆强单调的与$ d_2 $ -逆强单调的, $ T:C\rightarrow C $为非扩张映射满足$ \Omega = F(T)\cap F(G)\neq\emptyset $,这里$ G $的定义见引理2.4.设$ f $$ C $上严格压缩自映射,其参数$ \delta\in(0, 1) $.任取$ x_{1}\in C $.定义序列$ \left\{{x_{n}}\right\} $

$ \begin{align} \left\{ \begin{array}{l} { } v_n = \frac{1}{2}(x_n+z_n), \\ u_n = P_C(I-\mu B)v_n, \\ z_n = P_C(I-\lambda A)u_n, \\ y_n = \alpha_nf(x_n)+(1-\alpha_n)z_n, \\ x_{n+1} = \beta_nx_n+(1-\beta_n)Ty_n, \end{array} \right. \end{align} $

这里$ \lambda\in (0, 2d_1), \mu\in(0, 2d_2) $.$ \{\alpha_{n}\} $, $ \{\beta_{n}\} $$ (0, 1] $中序列满足:

(i) $ { }\lim\limits_{n\rightarrow\infty}\alpha_{n} = 0 $, $ \sum\limits_{n = 1}^{\infty}\alpha_{n} = \infty $,

(ii) $ 0<\liminf\limits_{n\rightarrow\infty}\beta_n\leq\limsup\limits_{n\rightarrow\infty}\beta_n<1 $,

$ \left\{{x_n}\right\} $强收敛到$ q\in \Omega $,这里$ q = P_\Omega f(q) $,也满足下述变分不等式

4 应用

$ \phi:C\times C\rightarrow {{\Bbb R}} $为二元函数,这里$ {{\Bbb R}} $为实数集.关于$ \phi $的均衡问题就是找点$ x\in C $使得

$ \phi(x, y)\geq0, \, \forall\, y\in C. $

不等式$ (4.1) $的解集记为$ EP(\phi) $.均衡问题包括变分不等式问题,不动点问题,优化问题作为特殊情形(参见文献[14]).

为了解决均衡问题,假设$ \phi $满足下述条件(参见文献[14]):

(A1) $ \phi(x, x) = 0, \forall\ x\in C $;

(A2) $ \phi $是单调的,即$ \phi(x, y)+\phi(y, x)\leq0, \forall \ x, y\in C $;

(A3) $ \phi $是上半连续的,即,任给$ x, y, z\in C $,有

(A4)任给$ x\in C $, $ \phi(x, .) $是凸的和弱下半连续的.

引理4.1[14]  设$ C $为Hilbert空间$ H $中非空闭凸子集, $ \phi:C\times C\rightarrow {{\Bbb R}} $为二元函数且满足条件(A1)–(A4).设$ r>0 $, $ x\in H $.则存在$ z\in C $满足

引理4.2[15]  设$ \phi:C\times C\rightarrow {{\Bbb R}} $满足条件(A1)–(A4).给定$ r>0 $$ x\in H $,定义$ T_r:H\rightarrow C $如下:

(1) $ T_r $是单值的;

(2) $ T_r $为固定非扩张的,即,任给$ x, y\in H $,有$ \left\Vert{T_rx-T_ry}\right\Vert^2\leq\left<{T_rx-T_ry, x-y}\right> $.

从而$ \left\Vert{T_rx-T_ry}\right\Vert\leq\left\Vert{x-y}\right\Vert, \, \forall x, y\in H $,于是, $ T_r $是非扩张的;

(3) $ F(T_r) = EP(\phi), \, \, \forall r>0 $;

(4) $ EP(\phi) $是闭凸的.

我们可得下面结果.

定理4.1  设$ C $为实Hilbert空间$ H $中非空闭凸子集, $ A, B:C\rightarrow H $分别为$ d_1 $ -逆强单调的与$ d_2 $ -逆强单调的,设$ \phi:C\times C\rightarrow {{\Bbb R}} $满足条件(A1)–(A4).假设$ \Omega = F(T)\cap F(G)\neq\emptyset $,这里$ G $的定义见引理2.4.设$ f $$ C $上严格压缩自映射,其参数$ \delta\in(0, 1) $.任取$ x_{1}\in C $.定义序列$ \left\{{x_{n}}\right\} $

$ \begin{align} \left\{ \begin{array}{l} { } v_n = \frac{1}{2}(x_n+z_n), \\ u_n = P_C(I-\mu B)v_n, \\ z_n = P_C(I-\lambda A)(ax_n+(1-a)u_n), \\ y_n = \alpha_nf(x_n)+(1-\alpha_n)z_n, \\ x_{n+1} = \beta_nx_n+(1-\beta_n)T_ry_n, \end{array} \right. \end{align} $

这里$ r>0 $, $ \lambda\in (0, 2d_1), \mu\in(0, 2d_2) $, $ 0\leq a<1 $.$ \{\alpha_{n}\} $, $ \{\beta_{n}\} $$ (0, 1] $中序列满足:

(i) $ { }\lim\limits_{n\rightarrow\infty}\alpha_{n} = 0 $, $ \sum\limits_{n = 1}^{\infty}\alpha_{n} = \infty $,

(ii) $ 0<\liminf\limits_{n\rightarrow\infty}\beta_n\leq\limsup\limits_{n\rightarrow\infty}\beta_n<1 $,

$ \left\{{x_n}\right\} $强收敛到$ q\in \Omega $,这里$ q = P_\Omega f(q) $,也满足下述变分不等式

参考文献

Deuflhard P .

Recent progress in extrapolation methods for ordinary differential equations

SIAM Rev, 1985, 27 (4): 505- 535

DOI:10.1137/1027140      [本文引用: 1]

Zhu D L , Marcotte P .

Co-coercivity and its role in the convergence of iterative schemes for solving variational inequalities

SIAM J Optim, 1996, 6, 774- 726

URL    

Noor M A .

Some algorithms for general monotone mixed variational inequalities

Math Comput Model, 1999, 29, 1- 9

URL    

Iiduka H , Takahashi W , Toyoda M .

Approximation of solutions of variational inequalities for monotone mappings

Pan Math J, 2004, 14, 49- 61

URL     [本文引用: 1]

Noor M A .

Some development in general variational inequalities

Appl Math Comput, 2004, 152, 199- 277

URL    

Ceng L C , Wang C , Yao J C .

Strong convergence theorems by a relaxed extragradient method for a general system of variational inequalities

Math Methods Oper Res, 2008, 67, 375- 390

DOI:10.1007/s00186-007-0207-4      [本文引用: 1]

Yao Y , Noor M A .

On viscosity iterative methods for variational inequalities

J Math Anal Appl, 2007, 325, 776- 787

DOI:10.1016/j.jmaa.2006.01.091     

Noor M A .

On iterative methods for solving a system of mixed variational inequalities

Appl Anal, 2008, 87, 99- 108

DOI:10.1080/00036810701799777     

Yao Y , Noor M A , Noor K I , et al.

Modified extragradient methods for a system of variational inequalities in Banach spaces

Acta Appl Math, 2010, 110, 1211- 1224

DOI:10.1007/s10440-009-9502-9     

Yao Y , Maruster S .

Strong convergence of an iterative algorithm for variational inequalities in Banach spaces

Math Comput Modell, 2011, 54, 325- 329

DOI:10.1016/j.mcm.2011.02.016     

Xu H K .

Viscosity approximation methods for nonexpansive mappings

J Math Anal Appl, 2004, 298, 279- 291

DOI:10.1016/j.jmaa.2004.04.059      [本文引用: 1]

Suzuki T .

Strong convergence of Krasnoselskii and Manns type sequences for one parameter nonexpansive semigroups without Bochner integrals

J Math Anal Appl, 2005, 305, 227- 239

DOI:10.1016/j.jmaa.2004.11.017      [本文引用: 1]

Lim T C , Xu H K .

Fixed point theorems for asymptotically nonexpansive mappings

Nonlinear Anal, 1994, 22, 1345- 1355

DOI:10.1016/0362-546X(94)90116-3      [本文引用: 1]

Blum E , Oettli W .

From optimization and variational inequalities to equilibrium problems

Math Stud, 1994, 63, 123- 145

URL     [本文引用: 4]

Combettes P L , Hirstoaga S A .

Equilibrium programming in Hilbert space

J Nonlinear Convex Anal, 2005, 6, 117- 136

[本文引用: 1]

Tang Y C , Wu G R , Zhu C X .

A first-order splitting method for solving a large-scale composite convex optimization problem

J Comp Math, 2019, 37 (5): 668- 690

URL    

Tang Y C , Wu G R , Zhu C X .

An inner-outer iteration method for solving convex optimization problems involving the sum of three convex functions (in Chinese)

Sci Sin Math, 2019, 49, 831- 858

DOI:10.1360/SCM-2017-0313     

/