数学物理学报, 2020, 40(2): 369-378 doi:

论文

一个混合核Hilbert型积分不等式及其算子范数表达式

刘琼,1, 刘英迪2

A Hilbert-Type Integral Inequality with the Mixed Kernel and Its Operator Expressions with Norm

Liu Qiong,1, Liu Yindi2

收稿日期: 2018-10-26  

基金资助: 湖南教育厅科学研究项目.  19A455
湖南教育厅科学研究项目.  18B433
湖南省教育厅教学改革项目.  湘教通[2014]247号,No:448

Received: 2018-10-26  

Fund supported: the Scientific Research Project of Hunan Education Department.  19A455
the Scientific Research Project of Hunan Education Department.  18B433
the Teaching Reform Project of Hunan Education Department.  湘教通[2014]247号,No:448

作者简介 About authors

刘琼,E-mail:liuqiongxx13@163.com , E-mail:liuqiongxx13@163.com

摘要

利用权函数方法、实分析技巧和特殊函数理论,建立了一个联系Whittaker函数的混合核Hilbert型积分不等式及其等价式,证明了它们的常数因子是最佳的.并给出其算子范数表达式.

关键词: Hilbert型积分不等式 ; 权函数 ; Whittaker函数 ; 混合核 ; 算子表达式

Abstract

By using the method of weight function, the technique of real analysis and the theory of special functions, a Hilbert-type integral inequality with the mixed kernel and its equivalent form are established, the optimality for the constant factors are proved and the operator expressions with norm are given.

Keywords: Hilbert-type integral inequality ; Weight function ; Whittaker function ; Mixed kernel ; Operator expression

PDF (339KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

刘琼, 刘英迪. 一个混合核Hilbert型积分不等式及其算子范数表达式. 数学物理学报[J], 2020, 40(2): 369-378 doi:

Liu Qiong, Liu Yindi. A Hilbert-Type Integral Inequality with the Mixed Kernel and Its Operator Expressions with Norm. Acta Mathematica Scientia[J], 2020, 40(2): 369-378 doi:

1 引言

$ f, g\geq 0 $,使得

则有如下著名的Hilbert积分不等式[1]

$ \begin{equation} \int_{0}^\infty\int_{0}^\infty \frac{f(x)g(y)}{x+y}{\rm d}x{\rm d}y<\pi\bigg\{\int_0^\infty f^2(x){\rm d}x\bigg\}^{\frac{1}{2}}\bigg\{\int_0^\infty g^2(y){\rm d}y\bigg\}^{\frac{1}{2}}, \end{equation} $

这里的常数因子$ \pi $是最佳值.不等式(1.1)在分析学和偏微分方程理论中有着重要应用[1, 2].近年来,杨必成等对式(1.1)进行了一系列的参量化、抽象化和系统化研究,取得了众多成果[3-13]. 2011年,杨给出了一个具有指数函数核Hilbert型积分不等式[14]:

$ \begin{equation} \int_{0}^\infty\int_{0}^\infty e^{-xy}f(x)g(y){\rm d}x{\rm d}y<\sqrt{\pi}\bigg\{\int_0^\infty f^2(x){\rm d}x\bigg\}^{\frac{1}{2}}\bigg\{\int_0^\infty g^2(y){\rm d}y\bigg\}^{\frac{1}{2}}, \end{equation} $

这里的常数因子$ \sqrt{\pi} $是最佳值.本文引入多个参数$ (\lambda_1, \lambda_2, \lambda_3) $,利用“基于Hardy插值难题”的权函数方法和实分析技巧,借助一些特殊函数刻画不等式中的常数因子,得到了具有混合核$ \frac{e^{-\lambda_1 xy}(\min\{1, xy\})^{\lambda_2}}{(\max\{1, xy\})^{\lambda_3}} $的Hilbert型积分不等式和其等价式,证明了它们的常数因子是最佳值,并利用算子理论给出了所得不等式的算子范数表达式.

2 预备知识

特殊函数是指实与复分析、数学物理和数论等学科中具有基础理论与重要应用价值的函数.特殊函数论是数学研究的一个重要分支.文献[15-22]对工程技术领域中出现的一些重要特殊函数从定义、性质和主要结论及其应用等方面作了较为详细和精辟的阐述.本文研究涉及了如下一些特殊函数:

1)设Re$ (s)>0 $, Gamma函数$ \Gamma(s) $和不完全Gamma函数$ \Gamma(s, \alpha) $的定义分别为[15-22]

$ \begin{equation} \Gamma(s): = \int_{0}^\infty <italic>e</italic>^{-t}t^{s-1}{\rm d}t. \end{equation} $

$ \begin{equation} \Gamma(s, \alpha): = \int_{\alpha}^\infty <italic>e</italic>^{-t}t^{s-1}{\rm d}t. \end{equation} $

2) Beta函数$ B(u, v)(u, v>0) $的定义为[15-16]

$ \begin{equation} B(u, v): = \int_0^1(1-t)^{u-1}t^{v-1}{\rm d}t = \frac{\Gamma(u)\Gamma(v)}{\Gamma(u+v)}. \end{equation} $

3)合流超几何函数(又称Kummer函数) $ _1F_1(\alpha, \beta, z)(\alpha, \beta, z>0) $的定义为[15]

$ \begin{equation} _1F_1(\alpha, \beta, z): = \sum\limits_{n = 0}^\infty\frac{(\alpha)_n}{n!(\beta)_n}z^n = \frac{\Gamma(\beta)}{\Gamma(\alpha)}\sum\limits_{n = 0}^\infty\frac{z^n\Gamma(n+\alpha)}{n!\Gamma(\beta+n)}, \end{equation} $

记号$ (x)_n = x(x+1)\cdots(x+n-1) = \frac{\Gamma(x+n)}{\Gamma(x)}(x>0) $.由(2.4)式,当$ 0<\lambda_1<4-\lambda_3+\lambda_2 $时,有

$ \begin{equation} _1F_1 \bigg(1, 2-\frac{\lambda_1-\lambda_2+\lambda_3}{2}, \lambda_1\bigg) = \Gamma\bigg(2-\frac{\lambda_1-\lambda_2+\lambda_3}{2}\bigg)\sum\limits_{n = 0}^\infty\frac{\lambda^n}{\Gamma(n+2-\frac{\lambda_1-\lambda+\lambda_3}{2})}. \end{equation} $

4) Whittaker函数$ M(k, m, z) $定义为[15]

$ \begin{equation} M(k, m, z): = z^{m+\frac{1}{2}}<italic>e</italic>^{-\frac{z}{2}}\ _1F_1(m-k+\frac{1}{2}, 2m+1, z). \end{equation} $

由(2.5)和(2.6)式,有

$ \begin{eqnarray} &&M\bigg(-\frac{\lambda_1-\lambda_2+\lambda_3}{4}, -\frac{\lambda_1-\lambda_2+\lambda_3}{4}+\frac{1}{2}, \lambda_1\bigg) \\ & = &\lambda_1^{-\frac{\lambda_1-\lambda_2+\lambda_3}{4}+1}<italic>e</italic>^{-\frac{\lambda_1}{2}} \Gamma\bigg(2-\frac{\lambda_1-\lambda_2+\lambda_3}{2}\bigg)\sum\limits_{n = 0}^\infty\frac{\lambda_1^n}{\Gamma(n+2-\frac{\lambda_1-\lambda_2+\lambda_3}{2})}. \end{eqnarray} $

$ 0<\lambda_1<2-\lambda_3+\lambda_2 $,由(2.3)和(2.7)式,有

$ \begin{eqnarray} I_1& = &\int_0^1 <italic>e</italic>^{-\lambda_1 t}t^{-\frac{\lambda_1-\lambda_2+\lambda_3}{2}}{\rm d}t \\ & = &e^{-\lambda_1}\int_0^1 e^{\lambda(1- t)}t^{-\frac{\lambda_1-\lambda_2+\lambda_3}{2}}{\rm d}t \\ & = &e^{-\lambda_1}\sum\limits_{n = 0}^\infty\frac{\lambda_1^n}{n!}\int_0^1(1-t)^nt^{-\frac{\lambda_1-\lambda_2+\lambda_3}{2}}{\rm d}t \\ & = &e^{-\lambda_1}\sum\limits_{n = 0}^\infty\frac{\lambda_1^n}{n!}\frac{\Gamma(n+1)\Gamma(1-\frac{\lambda_1-\lambda_2+\lambda_3}{2})}{\Gamma(n+2-\frac{\lambda_1-\lambda_2+\lambda_3}{2})} \\ & = &\frac{\lambda_1^{\frac{\lambda_1-\lambda_2+\lambda_3}{4}-1}e^{-\frac{\lambda_1}{2}}\Gamma (1-\frac{\lambda_1-\lambda_2+\lambda_3}{2})}{\Gamma(2-\frac{\lambda_1-\lambda_2+\lambda_3}{2})} \\ &&\times \bigg[\lambda_1^{-\frac{\lambda_1-\lambda_2+\lambda_3}{4}+1}e^{-\frac{\lambda_1}{2}} \Gamma\bigg(2-\frac{\lambda_1-\lambda_2+\lambda_3}{2}\bigg)\sum\limits_{n = 0}^\infty\frac{\lambda_1^n}{\Gamma(n+2-\frac{\lambda_1-\lambda_2+\lambda_3}{2})}\bigg] \\ & = &\frac{\lambda_1^{\frac{\lambda_1-\lambda_2+\lambda_3}{4}-1}e^{-\frac{\lambda_1}{2}}}{1-\frac{\lambda_1-\lambda_2+\lambda_3}{2}} M\bigg(-\frac{\lambda_1-\lambda_2+\lambda_3}{4}, -\frac{\lambda_1-\lambda_2+\lambda_3}{4}+\frac{1}{2}, \lambda_1\bigg). \end{eqnarray} $

$ 0<\lambda_1<2-\lambda_2-3\lambda_3 $,令$ \lambda_1 t = u $,由(2.2)式,则有

$ \begin{equation} I_2 = \int_1^\infty <italic>e</italic>^{-\lambda_1 t}t^{-\frac{\lambda_1+\lambda_2+3\lambda_3}{2}}{\rm d}t = \lambda_1^{\frac{\lambda_1+\lambda_2+3\lambda_3}{2}-1}\Gamma\bigg(1-\frac{\lambda_1+\lambda_2+3\lambda_3}{2}, \lambda_1\bigg). \end{equation} $

引理2.1  设$ p>1, \frac{1}{p}+\frac{1}{q} = 1, 0<\lambda_1<2-\max\{\lambda_3-\lambda_2, \lambda_2+3\lambda_3\} $,定义如下权函数

则有

其中

$ \begin{eqnarray} C(\lambda_1, \lambda_2, \lambda_3) & = &\frac{\lambda_1^{\frac{\lambda_1-\lambda_2+\lambda_3}{4}-1}e^{-\frac{\lambda_1}{2}}}{1-\frac{\lambda_1-\lambda_2+\lambda_3}{2}} M\bigg(-\frac{\lambda_1-\lambda_2+\lambda_3}{4}, -\frac{\lambda_1-\lambda_2+\lambda_3}{4}+\frac{1}{2}, \lambda_1\bigg) \\ && +\lambda_1^{\frac{\lambda_1+\lambda_2+3\lambda_3}{2}-1}\Gamma\bigg(1-\frac{\lambda_1+\lambda_2+3\lambda_3}{2}, \lambda_1\bigg). \end{eqnarray} $

  令$ xy = t $,由(2.8)和(2.9)式,得到

同理可得$ \omega(\lambda_1, \lambda_2, \lambda_3, y) = C(\lambda_1, \lambda_2, \lambda_3) $.

引理2.2  设$ p>1, \frac{1}{p}+\frac{1}{q} = 1, 0<\lambda_1<2-\max\{\lambda_3-\lambda_2, \lambda_2+3\lambda_3\} $,且$ \varepsilon>0 $充分地小,定义如下两个实函数$ \tilde{f}(x), \tilde{g}(y) $:

则有

$ \begin{equation} \tilde{J}\cdot\varepsilon = \bigg[\int_0^\infty x^{\frac{p(\lambda_1+\lambda_2+\lambda_3)}{2}-1}\tilde{f}^p(x){\rm d}x\bigg]^{\frac{1}{p}}\bigg[\int_0^\infty y^{\frac{q(\lambda_1+\lambda_2+\lambda_3)}{2}-1}\tilde{g}^q(y){\rm d}y\bigg]^{\frac{1}{q}}\cdot\varepsilon = 1, \end{equation} $

$ \begin{eqnarray} \tilde{h}\cdot\varepsilon& = &\varepsilon\int_0^\infty\int_0^\infty\frac{e^{-\lambda_1 xy}(\min\{1, xy\})^{\lambda_2}\tilde{f}(x)\tilde{g}(y)}{(\max\{1, xy\})^{\lambda_3}}{\rm d}x{\rm d}y \\ &>&C(\lambda_1, \lambda_2, \lambda_3)(1-o(1)), \ \ \varepsilon\rightarrow 0^+. \end{eqnarray} $

  容易得到

函数$ H(t): = e^{-\lambda_1 t}t^{1-\frac{\lambda_2+3\lambda_3}{2}} $$ [x, \infty)(x\geq1) $内连续,且用洛比达(L'Hospital)法则[23]可得$ { }\lim_{t\rightarrow\infty}H(t) = 0 $.因此存在一个常数$ T>0 $,使得$ H(u)\leq T $.$ xy = t $,由Fubini's定理[24], (2.8)和(2.9)式可得

证毕.

3 主要结果

定理3.1  设$ p>1, \frac{1}{p}+\frac{1}{q} = 1, 0<\lambda_1<2-\max\{\lambda_3-\lambda_2, \lambda_2+3\lambda_3\}, f(x), g(y)\geq0 $,使得

则有

$ \begin{eqnarray} &&\int_0^\infty\int_0^\infty\frac{e^{-\lambda_1 xy}(\min\{1, xy\})^{\lambda_2}f(x)g(y)}{(\max\{1, xy\})^{\lambda_3}}{\rm d}x{\rm d}y \\ & <&C(\lambda_1, \lambda_2, \lambda_3)\bigg\{\int_0^\infty x^{\frac{p(\lambda_1+\lambda_2+\lambda_3)}{2}-1}f^p(x){\rm d}x\bigg\}^{\frac{1}{p}}\bigg\{\int_0^\infty y^{\frac{q(\lambda_1+\lambda_2+\lambda_3)}{2}-1}g^q(y){\rm d}y\bigg\}^{\frac{1}{q}}, \end{eqnarray} $

这里的常数因子$ C(\lambda_1, \lambda_2, \lambda_3) $ (同(2.10)式)是最佳值.

  由带权Hölder不等式[25]和引理2.1,可得到

$ \begin{eqnarray} &&\int_0^\infty\int_0^\infty\frac{e^{-\lambda_1 xy}(\min\{1, xy\})^{\lambda_2}f(x)g(y)}{(\max\{1, xy\})^{\lambda_3}}{\rm d}x{\rm d}y \\ & = &\int_0^\infty\int_0^\infty\frac{e^{-\lambda_1 xy}(\min\{1, xy\})^{\lambda_2}f(x)g(y)}{(\max\{1, xy\})^{\lambda_3}}\bigg[\frac{y^{-\frac{\lambda_1+\lambda_2+\lambda_3}{2p}}}{x^{-\frac{\lambda_1+\lambda_2+\lambda_3}{2q}}}\bigg] \bigg[\frac{x^{-\frac{\lambda_1+\lambda_2+\lambda_3}{2q}}}{y^{-\frac{\lambda_1+\lambda_2+\lambda_3}{2p}}}\bigg]{\rm d}x{\rm d}y \\ &\leq&\bigg\{\int_0^\infty\int_0^\infty\frac{e^{-\lambda_1 xy}(\min\{1, xy\})^{\lambda_2}f^p(x)}{(\max\{1, xy\})^{\lambda_3}}\frac{y^{-\frac{\lambda_1+\lambda_2+\lambda_3}{2}}}{x^{-\frac{p(\lambda_1+\lambda_2+\lambda_3)}{2q}}}{\rm d}x{\rm d}y\bigg\}^{\frac{1}{p}} \\ &&\times \bigg\{\int_0^\infty\int_0^\infty \frac{e^{-\lambda_1 xy}(\min\{1, xy\})^{\lambda_2}g^p(y)}{(\max\{1, xy\})^{\lambda_3}}\frac{x^{-\frac{\lambda_1+\lambda_2+\lambda_3}{2}}}{y^{-\frac{q(\lambda_1+\lambda_2+\lambda_3)}{2p}}}{\rm d}x{\rm d}y\bigg\}^{\frac{1}{q}} \\ & = &\bigg\{\int_0^\infty \omega(\lambda_1, \lambda_2, \lambda_3, x)x^{\frac{p(\lambda_1+\lambda_2+\lambda_3)}{2}-1}f^p(x){\rm d}x \bigg\}^{\frac{1}{p}} \\ &&\times \bigg\{\int_0^\infty \omega(\lambda_1, \lambda_2, \lambda_3, y)y^{\frac{q(\lambda_1+\lambda_2+\lambda_3)}{2}-1}g^q(y){\rm d}y \bigg\}^{\frac{1}{q}} \\ & = &C(\lambda_1, \lambda_2, \lambda_3)\bigg\{\int_0^\infty x^{\frac{p(\lambda_1+\lambda_2+\lambda_3)}{2}-1}f^p(x){\rm d}x\bigg\}^{\frac{1}{p}}\bigg\{\int_0^\infty y^{\frac{q(\lambda_1+\lambda_2+\lambda_3)}{2}-1}g^q(y){\rm d}y\bigg\}^{\frac{1}{q}}. \end{eqnarray} $

现在假设式(3.2)中的等号成立,则存在不全为零的常数$ A $$ B $,使得

$ (0, \infty)\times(0, \infty) $内几乎处处成立,于是存在不为零的常数$ C $,使得

$ (0, \infty)\times(0, \infty) $内几乎处处成立.不妨设$ A\neq0 $,则有$ x^{\frac{p(\lambda_1+\lambda_2+\lambda_3)}{2}-1}f^p(x) = \frac{C}{Ax} $$ (0, \infty) $内几乎处处成立.因为广义积分$ \int_0^\infty\frac{C}{Ax}{\rm d}x $是发散的,与条件$ 0<\int_0^\infty x^{\frac{p(\lambda_1+\lambda_2+\lambda_3)}{2}-1}f^p(x)){\rm d}x<\infty $矛盾.因此(3.2)式只能取严格不等号.若(3.1)式中的常数因子$ C(\lambda_1, \lambda_2, \lambda_3) $不是最佳值,则存在一个正数$ K<C(\lambda_1, \lambda_2, \lambda_3) $,使得用$ K $代替$ C(\lambda_1, \lambda_2, \lambda_3) $时(3.1)式仍然成立.于是由(2.11)和(2.12)式有$ C(\lambda_1, \lambda_2, \lambda_3)(1-o(1))<K $.$ \varepsilon\rightarrow0^{+} $,就得到$ K\geq C(\lambda_1, \lambda_2, \lambda_3) $,这与$ K<C(\lambda_1, \lambda_2, \lambda_3) $矛盾,所以(3.1)式中的常数因子$ C(\lambda_1, \lambda_2, \lambda_3) $是最佳值.

定理3.2  在与定理3.1相同的条件下,还可得到

$ \begin{eqnarray} &&\int_0^\infty y^{\frac{p}{q}[1-\frac{q(\lambda_1+\lambda_2+\lambda_3)}{2}]}\bigg\{\int_0^\infty\frac{e^{-\lambda_1xy}(\min\{1, xy\})^{\lambda_2}f(x)}{(\max\{1, xy\})^{\lambda_3}}{\rm d}x\bigg\}^p{\rm d}y \\ & <&C^p(\lambda_1, \lambda_2, \lambda_3)\int_0^\infty x^{\frac{p(\lambda_1+\lambda_2+\lambda_3)}{2}-1}f^p(x){\rm d}x, \end{eqnarray} $

这里的常数因子$ C^p(\lambda_1, \lambda_2, \lambda_3) $是最佳值,且不等式(3.3)和不等式(3.1)等价.

  定义函数$ [f(x)]_n: = \min\{n, f(x)\} $.因为$ 0<\int_0^\infty x^{\frac{p(\lambda_1+\lambda_2+\lambda_3)}{2}-1}f^p(x){\rm d}x<\infty $,则存在$ n_0\in\mathbb{N} $使得$ 0<\int_{\frac{1}{n}}^n x^{\frac{p(\lambda_1+\lambda_2+\lambda_3)}{2}-1}f^p(x){\rm d}x<\infty $ ($ n\geq n_0 $).

$ n\geq n_0 $时,由(3.1)式有

$ \begin{eqnarray} 0&<&\int_{\frac{1}{n}}^n y^{\frac{q(\lambda_1+\lambda_2+\lambda_3)}{2}-1}g_n^q(y){\rm d}y \\ & = &\int_{\frac{1}{n}}^n y^{\frac{q(\lambda_1+\lambda_2+\lambda_3)}{2}-1}g_n^{q-1}(y)g_n(y){\rm d}y \\ & = &\int_{\frac{1}{n}}^n \int_{\frac{1}{n}}^n\frac{e^{-\lambda_1 xy}(\min\{1, xy\})^{\lambda_2}[f(x)]_ng_n(y)}{(\max\{1, xy\})^{\lambda_3}}{\rm d}x{\rm d}y \\ &<&C(\lambda_1, \lambda_2, \lambda_3)\bigg\{\int_{\frac{1}{n}}^n x^{\frac{p(\lambda_1+\lambda_2+\lambda_3)}{2}-1}[f(x)]_n^p{\rm d}x\bigg\}^{\frac{1}{p}}\bigg\{\int_{\frac{1}{n}}^n y^{\frac{q(\lambda_1+\lambda_2+\lambda_3)}{2}-1}g_n^{q}(y){\rm d}y\bigg\}^{\frac{1}{q}}. \end{eqnarray} $

进一步,由(3.4)式有

$ \begin{eqnarray} 0&<&\int_{\frac{1}{n}}^n y^{\frac{q(\lambda_1+\lambda_2+\lambda_3)}{2}-1}g_n^q(y){\rm d}y \\ & = &\int_{\frac{1}{n}}^n y^{\frac{p}{q}[1-\frac{q(\lambda_1+\lambda_2+\lambda_3)}{2}]}\bigg\{\int_{\frac{1}{n}}^n\frac{e^{-\lambda_1 xy}(\min\{1, xy\})^{\lambda_2}[f(x)]_n}{(\max\{1, xy\})^{\lambda_3}}{\rm d}x\bigg\}^p {\rm d}y \\ &<&C^p(\lambda_1, \lambda_2, \lambda_3)\int_{\frac{1}{n}}^n x^{\frac{p(\lambda_1+\lambda_2+\lambda_3)}{2}-1}[f(x)]_n^p{\rm d}x<\infty. \end{eqnarray} $

$ n\rightarrow\infty $,有$ 0<\int_0^\infty y^{\frac{q(\lambda_1+\lambda_2+\lambda_3)}{2}-1}g^q_\infty(y))<\infty, 0<0<\int_0^\infty x^{\frac{p(\lambda_1+\lambda_2+\lambda_3)}{2}-1}f^p(x))<\infty $.由(3.1)式,可知(3.4)和(3.5)式取严格不等号的条件均满足,因此不等式(3.3)成立.

另一方面,设(3.3)式成立,由Hölder's不等式,可得

即(3.1)式成立,所以(3.3)与(3.1)式是等价的.

假设(3.3)式中的常数因子不是最佳值,则由上面(3.3)式导出(3.1)式的常数因子也不是最佳值,这与定理3.1的结论矛盾,所以(3.3)式的常数因子$ C^p(\lambda_1, \lambda_2, \lambda_3) $是最佳值.

$ p>1, $$ \frac{1}{p}+\frac{1}{q} = 1, $$ 0<\lambda_1<2-\max\{\lambda_3-\lambda_2, \lambda_2+3\lambda_3\} $, $ \varphi(x) = x^{\frac{p(\lambda_1+\lambda_2+\lambda_3)}{2}-1}, $$ \psi(y) = y^{\frac{q(\lambda_1+\lambda_2+\lambda_3)}{2}-1} (x, y>0) $,显然$ \psi^{1-p}(y) = y^{\frac{p}{q}[1-\frac{q(\lambda_1+\lambda_2+\lambda_3)}{2}]}$.定义如下赋范线性空间:

$ f\in L_\varphi^p(0, \infty) $,定义一个奇异积分算子$ T: L_\varphi^p(0, \infty)\rightarrow L_{\psi^{1-p}}^p(0, \infty) $,

因为$ f\in L_\varphi^p(0, \infty), g\in L_\psi^q(0, \infty) $,定义$ Tf $$ g $的形式内积如下:

由(3.3)式,有

$ \begin{equation} \|T(f)\|_{p, \psi^{1-p}}^p = \int_0^\infty\psi^{1-p}(y)|T(f)|^p{\rm d}y<C^p(\lambda_1, \lambda_2, \lambda_3)\|f\|_{p, \varphi}^p<\infty. \end{equation} $

根据(3.6)式,算子$ T $是有界的,即

又因为常数因子$ C(\lambda_1, \lambda_2, \lambda_3) $是最佳值,故有$ \|T\| = C(\lambda_1, \lambda_2, \lambda_3) $.

定理3.3  由定理3.1和定理3.2,不等式(3.1)和(3.3)可表示成如下算子范数形式:

$ \begin{equation} (Tf, g)<\|T\|\cdot\|f\|_{p, \varphi}\cdot\|g\|_{q, \psi}, \end{equation} $

$ \begin{equation} \|T(f)\|_{p, \psi^{1-p}}^p<\|T\|^p\cdot\|f\|_{p, \varphi}^p. \end{equation} $

4 简单应用

在(3.1)和(3.3)式中选取一些合适的参数值,借助Maple数学软件计算$ C(\lambda_1, \lambda_2, \lambda_3) $的值,并结合(3.7)和(3.8)式的表示方法,可得到一些新的且形式简美的Hilbert型积分不等式及其等价式.选取参数$ \lambda_1, \lambda_2, \lambda_3 $的方法是先选定参数$ \lambda_1\ (>0) $,然后在由不等式组

所确定的区域内选取合适的参数$ \lambda_2, \lambda_3 $.

例1  取$ \lambda_1 = 1, \lambda_2 = \lambda_3 = 0, p = q = 2 $,计算式(2.10),得到$ C(1, 0, 0) = \sqrt{\pi} $,此时$ \varphi(x) = 1 $.$ f, g>0, 0<\|f\|_{2}, \|g\|_{2}<\infty $,则可得到(1.2)式和它的等价式:

$ \begin{equation} \int_0^\infty\bigg[\int_0^\infty e^{-xy}f(x){\rm d}x\bigg]^2{\rm d}y<\pi\|f\|_2^2, \end{equation} $

这里的常数因子$ \pi $是最佳值.

例2  取$ \lambda_1 = 1, \lambda_2 = 0, \lambda_3 = -1, p = q = 2 $,计算(2.10)式,得到$ C(1, 0, -1) = 1+e^{-1} $,此时$ \varphi(x) = \frac{1}{x} $.$ f, g>0, 0<\|f\|_{2, \varphi}, \|g\|_{2, \varphi}<\infty $,则有如下等价不等式:

$ \begin{equation} \int_0^\infty\int_0^\infty\frac{\max\{1, xy\}f(x)g(y)}{e^{xy}}{\rm d}x{\rm d}y<\frac{1+e}{e}\|f\|_{2, \varphi}\|g\|_{2, \varphi}, \end{equation} $

$ \begin{equation} \int_0^\infty y\bigg[\int_0^\infty\frac{\max\{1, xy\}f(x)}{e^{xy}}{\rm d}x\bigg]^2{\rm d}y<\Big(\frac{1+e}{e}\Big)^2\|f\|_{2, \varphi}^2, \end{equation} $

这里的常数因子$ \frac{1+e}{e}, \big(\frac{1+e}{e}\big)^2 $是最佳值.

例3  取$ \lambda_1 = 1, \lambda_2 = \lambda_3 = -\frac{1}{2}, p = q = 2 $,计算(2.10)式,得到

此时$ \varphi(x) = \frac{1}{x} $.$ f, g>0, 0<\|f\|_{2, \varphi}, \|g\|_{2, \varphi}<\infty $,则有如下等价不等式:

$ \begin{equation} \int_0^\infty\int_0^\infty e^{-xy}\sqrt{\frac{\max\{1, xy\}}{\min\{1, xy\}}}f(x)g(y){\rm d}x{\rm d}y<\bigg(\frac{\sqrt{\pi}(erf(1)+1)}{2}+\frac{1}{e}\bigg)\|f\|_{2, \varphi}\|g\|_{2, \varphi}, \end{equation} $

$ \begin{equation} \int_0^\infty y\bigg[\int_0^\infty e^{-xy}\sqrt{\frac{\max\{1, xy\}}{\min\{1, xy\}}}f(x){\rm d}x\bigg]^2{\rm d}y<\bigg(\frac{\sqrt{\pi}(erf(1)+1)}{2}+\frac{1}{e}\bigg)^2\|f\|_{2, \varphi}^2, \end{equation} $

这里的常数因子$ \frac{\sqrt{\pi}(erf(1)+1)}{2}+\frac{1}{e}, \big(\frac{\sqrt{\pi}(erf(1)+1)}{2}+\frac{1}{e}\big)^2 $是最佳值,其中$ erf(x) = \frac{2}{\sqrt{\pi}}\int_0^x e^{-t^2}{\rm d}t $为误差函数.

参考文献

Hardy G H, Littlewood J E, Pólya G. Inequalities. Cambridge: Cambridge Univ Press, 1952

[本文引用: 2]

Mitrinović D S, Pečarić J E, Fink A M. Inequalities Involving Functions and Their Integrals and Derivertives. Boston: Kluwer Academic Publishers, 1991

[本文引用: 1]

杨必成.算子范数和Hilbert型不等式.北京:科学出版社, 2009

[本文引用: 1]

Yang B C. The Norm of Operator and Hilbert-Type Inequalities. Beijing: Science Press, 2009

[本文引用: 1]

Rassias M T H , Yang B C .

On a multidimensional Hilbert-type integral inequality associated to the Gamma function

Appl Math Comput, 2014, 249, 408- 418

URL    

Yang B C , He B .

A new half-discrete Hilbert-type inequality in the whole plane

J Appl Anal Comput, 2017, 7 (3): 977- 991

URL    

Liu Q , Sun W B .

A Hilbert-type integral inequality with the mixed kernel of multi-parameters

C R Acad Sci, 2013, 351, 605- 611

DOI:10.1016/j.crma.2013.09.001     

Liu Q , Chen D Z .

A Hilbert-type integral inequality with a hybrid kernel and its applications

Colloquium Mathematicum, 2016, 143 (2): 193- 207

Rassias M T H , Yang B C .

On a Hardy-Hilbert-type inequality with a general homogeneous kernel

Int J Nonlinear Anal Appl, 2016, 7 (1): 249- 269

URL    

刘琼.

一个具多参数核为双曲余切函数的积分不等式

数学物理学报, 2014, 34 (4): 851- 858

URL    

Liu Q .

A integral inequality with multi-parameters and the kernel of hyperbolic cotangent function

Acta Math Sci, 2014, 34 (4): 851- 858

URL    

洪勇.

一类具有准齐次核的涉及多个函数的Hilbert型积分不等式

数学学报, 2014, 57 (5): 833- 840

URL    

Hong Y .

A Hilbert-type integral inequality with quasi-homogeneous kernel and several functions

Acta Math Sin, 2014, 57 (5): 833- 840

URL    

洪勇, 温雅敏.

一类具有非齐次核Hilbert型积分不等式成立的充要条件及应用

吉林大学学报, 2018, 56 (2): 227- 232

URL    

Hong Y , Wen Y M .

Necessary and sufficient condition for a class of Hilbert-type integral inequality with a non-homogeneous kernel and its application

J Jilin Univ, 2018, 56 (2): 227- 232

URL    

刘琼, 龙顺潮.

一个推广的Hilbert型积分不等式

数学物理学报, 2014, 34 (1): 179- 185

URL    

Liu Q , Long S C .

A generalization of Hilbert-type integral inequality

Acta Math Sci, 2014, 34 (1): 179- 185

URL    

刘琼.

联系一些特殊函数的Hilbert型积分不等式及其算子范数表达式

吉林大学学报, 2018, 56 (6): 1359- 1365

URL     [本文引用: 1]

Liu Q .

Hilbert-type integral inequality related to some special functions and its operator expressions with norm

J Jilin Univ, 2018, 56 (6): 1359- 1365

URL     [本文引用: 1]

杨必成.

关于一个非齐次核的Hilbert型积分不等式

上海大学学报, 2011, 17 (5): 603- 605

DOI:10.3969/j.issn.1007-2861.2011.05.006      [本文引用: 1]

Yang B C .

Hilbert-type integral inequality with non-homogeneous kernel

J Shanghai Univ, 2011, 17 (5): 603- 605

DOI:10.3969/j.issn.1007-2861.2011.05.006      [本文引用: 1]

王竹溪,郭敦仁.特殊函数论.北京:北京大学出版社, 2000

[本文引用: 5]

Huang Z S, Guo D R. An Introduction to Special Function. Beijing: Beijing University Press, 2000

[本文引用: 5]

赵教练,李海龙.特殊函数论及其应用.北京:科学出版社, 2016

[本文引用: 1]

Zhao J L, Li H L. Special Function Theory and Its Application. Beijing: Science Press, 2016

[本文引用: 1]

Yang Z H, Qian W M, Chu Y M, Zhang W. On rational bounds for the gamma function. J Inequal Appl, 2017, Article number: 210

Yang Z H, Zhang W, Chu Y M. Monotonicity of the incomplete gamma function with applications. J Inequal Appl, 2016, Article number: 251

Yang Z H, Zhang W, Chu Y M. Monotonicity and inequalities involving the incomplete gamma function. J Inequal Appl, 2016, Article number: 221

Yang Z H , Chu Y M .

Asymptotic formulas for gamma function with applications

Appl Math Comput, 2015, 270, 665- 680

URL    

Zhao T H, Chu Y M, Wang H. Logarithmically complete monotonicity properties relating to the gamma function, Abstr Appl Anal, 2011, Article ID: 896483

Zhao T H, Chu Y M. A class of logarithmically completely monotonic functions associated with a gamma function. J Inequal Appl, 2010, Article ID: 392431

[本文引用: 2]

常庚哲.数学分析教程.合肥:中国科学技术大学出版社, 2012

[本文引用: 1]

Chang G Z. Mathematical Analysis Course. Hefei: China University of Science and Technology Press, 2012

[本文引用: 1]

匡继昌.实分析引论.长沙:湖南教育出版社, 1996

[本文引用: 1]

Kuang J C. The Theory of Real Analysis. Changsha: Hunan Education Press, 1996

[本文引用: 1]

匡继昌.常用不等式(第三版).济南:山东科学技术出版社, 2004

[本文引用: 1]

Kuang J C. Applied Inequalities. 3rd ed. Jinan: Shangdong Science and Technology Press, 2004

[本文引用: 1]

/