Processing math: 7%

数学物理学报, 2020, 40(2): 288-303 doi:

论文

单位球上正规权Zygmund空间上的加权复合算子

徐思, 张学军,

Weighted Composition Operator on the Normal Weight Zygmund Space in the Unit Ball

Xu Si, Zhang Xuejun,

通讯作者: 张学军, E-mail: xuejunttt@263.net

收稿日期: 2018-10-30  

基金资助: 国家自然科学基金.  11571104
湖南省研究生科研创新项目.  CX2018B286

Received: 2018-10-30  

Fund supported: the NSFC.  11571104
the Hunan Provincial Innovation Foundation for Postgraduate.  CX2018B286

摘要

μ[0,1)上的一个正规函数, φCn中单位球B上的一个全纯自映射, ψB上的一个全纯函数.在本文中,作者刻画了Cn中单位球上具有正规权μ的Zygmund型空间Zμ(B)上加权复合算子ψCφ的有界性和紧性.

关键词: 正规权Zygmund空间 ; 高维 ; 复合算子 ; 有界性 ; 紧性

Abstract

Let μ be a normal function on [0,1). Suppose that φ is a holomorphic self-map on the unit ball B in Cn and ψH(B). Here the authors characterize the boundedness and compactness of the weighted composition operator ψCφ on the Zygmund-type space Zμ(B) with a normal weight μ on the unit ball in Cn.

Keywords: Normal weight Zygmund space ; High dimensions ; Composition operator ; Boundedness ; Compactness

PDF (401KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

徐思, 张学军. 单位球上正规权Zygmund空间上的加权复合算子. 数学物理学报[J], 2020, 40(2): 288-303 doi:

Xu Si, Zhang Xuejun. Weighted Composition Operator on the Normal Weight Zygmund Space in the Unit Ball. Acta Mathematica Scientia[J], 2020, 40(2): 288-303 doi:

1 引言

Cn表示n维复欧几里得空间, Cn中两点z=(z1,,zn)w=(w1,,wn)的内积定义为z,w=z1¯w1++zn¯wn,因而|z|=|z1|2++|zn|2=z,z.B表示Cn中的单位球, D表示C中的单位圆盘, H(B)表示B上的全纯函数函数的全体.对fH(B),其复梯度f和径向导数Rf分别定义为

f(z)=(fz1(z),,fzn(z))  Rf(z)=f(z),¯z=nj=1zjfzj(z).

定义1.1  [0,1)上一个正的连续函数μ被称为正规函数是指:存在常数0<ab以及常数0r0<1使得

(1) μ(r)(1r)a[r0,1)上单调递减; (2) μ(r)(1r)b[r0,1)上单调递增.

在本文中, ab总表示正规函数μ定义中的那两个参数.为了简化论证,不失一般性,本文中总设r0=0.

例如μ(r)=(1r)αlogβe1r(α>0,β 为实数),μ(r)=(1r)αlogβ{e1rlogloge21r}p(α>0,β\和p),

μ(r)={(2n2)!!(2n1)!!(1r)1/2,11nr<112(1n+1n+1),(2n)!!(n+1)(2n+1)!!(1r)3/2,112(1n+1n+1)r<11n+1,

(n=1,2,)等都是此种形式的正规函数.尤其上述第一个权在各种加权型函数空间中频繁出现(如文献[1-3]等).

单位圆盘上的解析函数f若满足条件

bZ(f):=sup

我们称 f 属于Zygmund类(可参见文献[4]),而以 \| f\| _{Z}: = |f(0)|+|f'(0)|+b_{Z}(f) 为范数的Zygmund空间,则首先是在文献[3]中被引进.很快从Zygmund空间到本身或者从Zygmund空间到其他函数空间的一些算子被研究,如文献[5-8].

具有正规权的Zygmund型空间在文献[9]中被提到,这是一种包含Zygmund型空间的更一般的函数空间,在一些文献中被介绍和研究,例如文献[10-11].实际上, 1-|z|^2 可以看成是一种权函数,在本文中,我们把权函数推广到了正规函数 \mu(|z|) .同时,我们把变量从单复变量推广到了多复变量.

定义1.2  设 \mu [0, 1) 上的一个正规函数.函数 f 说成是属于正规权Zygmund空间 {\cal Z}_{\mu}(B) 是指: f\in H(B)

{\| f\| _{\mu}: = \sup\limits_{z\in B}\mu(|z|)\ \sum\limits_{k = 1}^{n}\sum\limits_{j = 1}^{n} \left|\frac{\partial^{2}f}{\partial z_{j}\partial z_{k}}(z)\right|}<\infty .

我们记

{\| f\| _{{\cal Z}_{\mu}}: = |f(0)|+\sum\limits_{k = 1}^{n}\left|\frac{\partial f}{\partial z_{k}}(0)\right|+\| f\| _{\mu}}.

在范数 \| \cdot\| _{{\cal Z}_{\mu}} 下, {\cal Z}_{\mu}(B) 构成一个Banach空间.特别地,当 \mu(r) = 1-r^{2} 时, {\cal Z}_{\mu}(B) 恰好是Zygmund空间 {\cal Z}(B) . n > 1 时,我们在文献[12]和文献[13]中分别给出过空间 {\cal Z}_{\mu}(B) 的几个等价范数.

定义1.3  设 \mu [0, 1) 上的一个正规函数.函数 f 说成是属于正规权Bloch空间 {\cal B}_{\mu}(B) 是指: f\in H(B)

{\| f\| _{{\cal B}_{\mu}}: = |f(0)|+ \sup\limits_{z\in B}\mu(|z|)|\nabla f(z)|}<\infty.

特别地,当 \mu(r) = 1-r^{2} 时, {\cal B}_{\mu}(B) 就是Bloch空间 {\cal B}(B) . n > 1 时,空间 {\cal B}_{\mu}(B) 也有几个等价范数(可参见文献[14-16]).

定义1.4  设 X Y B 上两个全纯函数空间, \varphi = (\varphi_{1}, \cdots, \varphi_{n}) B 上的一个全纯自映射且 \psi\in H(B) .从空间 X Y 的加权复合算子 \psi C_{\varphi} 定义为

(\psi C_{\varphi})f: = \psi\cdot f\circ\varphi\in Y \ \ \ (f\in X).

过去几十年内,在单位圆盘或单位球上各种解析或者全纯函数空间之间的许多具体算子已经被广泛研究,例如文献[2-6, 8-11, 14-15, 17-30, 37-41]等等.在单位圆盘上Zygmund型空间之间 C_{\varphi} 或者 \psi C_{\varphi} 有界或紧的充要条件被给出,如文献[4-5, 22].然而,在多复变情形处理全纯函数空间上复合算子的问题要比单复变困难很多.在2009年,借助于精细的技巧,陈和Gauthier在文献[14]中获得了 {\cal B}_{\mu}(B) 上复合算子有界或紧的充要条件,几乎同时,张和李在文献[15]中获得了正规权Bloch空间上加权复合算子有界或紧的充要条件.人们很自然会在以单位球为支撑集的Zygmund型空间上考虑复合算子和其他算子的刻画问题.在2012年,戴在文献[23]中就 {\cal Z}(B) 上的复合算子 C_{\varphi} 给了如下刻画:

命题A  设 \varphi B 上的一个全纯自映射且 n > 1 .

(1) C_{\varphi} {\cal Z}(B) 上有界算子当且仅当对所有 l\in \{1, \cdots, n\} 都有 \varphi_{l}\in {\cal Z}(B) 且下列两条同时成立:

\sup\limits_{z\in B}\frac{(1-|z|^{2})\ |\langle R\varphi(z), \varphi(z)\rangle|^{2}}{1-|\varphi(z)|^{2}}<\infty,

\sup\limits_{z\in B}(1-|z|^{2})\ |\langle R^{(2)}\varphi(z), \varphi(z)\rangle|\log\frac{1}{1-|\varphi(z)|^{2}}<\infty.

(2) C_{\varphi} {\cal Z}(B) 上紧当且仅当 \| \varphi\| _{\infty} < 1 且对所有 l\in \{1, \cdots, n\} \varphi_{l}\in {\cal Z}(B) .

在单位圆盘上,叶和胡在文献[22]中考虑了 {\cal Z}(D) 上加权复合算子 \psi C_{\varphi} 的有界性和紧性问题,给出如下结果:

命题B  设 u\in H(D) \varphi 是单位圆盘 D 上的一个解析自映射.

(1) uC_{\varphi} {\cal Z}(D) 上有界当且仅当 u\in {\cal Z}(D) 且下列两条同时成立:

\sup\limits_{z\in D}\frac{(1-|z|^{2})\ |u(z)[\varphi'(z)]|^{2}}{1-|\varphi(z)|^{2}}<\infty,

\sup\limits_{z\in D}(1-|z|^{2})\ |2u'(z)\varphi'(z)+u(z)\varphi''(z)|\log\frac{1}{1-|\varphi(z)|^{2}}<\infty.

(2)若 uC_{\varphi} {\cal Z}(D) 上有界,则 uC_{\varphi} {\cal Z}(D) 上紧当且仅当下列两条同时成立:

\lim\limits_{|\varphi(z)|\rightarrow 1^{-}}\frac{(1-|z|^{2})\ |u(z)[\varphi'(z)]|^{2}}{1-|\varphi(z)|^{2}} = 0,

\lim\limits_{|\varphi(z)|\rightarrow 1^{-}}(1-|z|^{2})\ |2u'(z)\varphi'(z)+u(z)\varphi''(z)|\log\frac{1}{1-|\varphi(z)|^{2}} = 0.

很自然的问题是:当具体的权函数 1-|z|^{2} 被推广为抽象的正规函数 \mu(|z|) 以及 D 被推广到 B 后是否能获得类似结果?在高维,刻画这类问题最主要的难度在目标空间.在2015年,梁玉霞等在文献[25]中给出了从 {\cal Z}(B) {\cal B}(B) 之加权复合算子 \psi C_{\varphi} 有界性和紧性条件的刻画.然而,如果目标空间是 {\cal Z}_{\mu}(B) ,那么对同样问题的刻画会更困难.在文献[13]中,张和黎讨论了 {\cal Z}_{\mu}(B) C_{\varphi} 有界或紧的条件,给出了部分充要条件.本文的主要目的就是考虑当 n > 1 {\cal Z}_{\mu}(B) 上加权复合算子有界或紧的一些充要条件.为了解决这个问题,我们必须寻找不同的处理方法.

在本文中,我们将用记号 c, c_{1}, c_{2}, c_{3}, \cdots 来表示与变量 z w 无关的正数,当然 c, c_{1}, c_{2} , c_{3}, \cdots 可以与某些参数有关,不同的地方可以代表不同的数; "E\approx F" 表示比较,称为 E 等价于 F ,即存在正的常数 A_{1} A_{2} 使得 A_{1}E \leq F \leq A_{2}E .

2 一些引理

\mu [0, 1) 上的一个正规函数且

{\sigma_{\mu}(t) = \left\{\frac{1}{\mu(0)}+\int_{0}^{t}\frac{{\rm d}\tau}{(1-\tau)^{\frac{1}{2}}\ \mu(\tau)}\right\}^{-1}\ \ (0\leq t<1)}

(参见文献[14-15]).

对任意 u\in{{\bf C}^{n}} ,我们记 { G^{\mu}_{0}(u) = \frac{|u|^{2}}{\mu^{2}(0)}} . 0\neq z\in B ,我们记

{G^{\mu}_{z}(u) = \frac{1}{\mu^{2}(|z|)}\left\{\frac{\mu^{2}(|z|)}{\sigma_{\mu}^{2}(|z|)}\ |u|^{2}+\left(1-\frac{\mu^{2}(|z|)}{\sigma_{\mu}^{2}(|z|)}\right)\ \frac{|\langle z, u\rangle|^{2}}{|z|^{2}}\right\}}.

z\neq 0 ,可以将 u 分解成 {u = u_1\frac{z}{|z|}+u_2\xi} ,这里 \langle z, \xi\rangle = 0 \xi\in\partial B .经计算得

u_1 = \frac{\langle u, z\rangle}{|z|}, \ |u|^2 = |u_{1}|^2+ |u_2|^2, \ G_z^\mu(u) = \frac{|u_1|^2}{\mu^{2}(|z|)}+ \frac{|u_2|^2}{\sigma_{\mu}^{2}(|z|)}

\begin{equation} (1-t)^{b}\left(1+\int_{0}^{t}\frac{{\rm d}\tau}{(1-\tau)^{b+\frac{1}{2}}}\right)\leq\frac{\mu(t)}{\sigma_{\mu}(t)}\leq (1-t)^{a}\left(1+\int_{0}^{t}\frac{{\rm d}\tau}{(1-\tau)^{a+\frac{1}{2}}}\right). \end{equation}
(2.1)

实际上,上述(2.1)式可以来自于不等式

\frac{(1-t)^{b}}{(1-\tau)^{b}}\leq \frac{\mu(t)}{\mu(\tau)}\leq \frac{(1-t)^{a}}{(1-\tau)^{a}} \ \ \ \ (0\leq \tau\leq t<1).

众所周知 (p^{\frac{1}{2}}+q^{\frac{1}{2}})/2\leq (p+q)^{^{\frac{1}{2}}}\leq p^{\frac{1}{2}}+q^{\frac{1}{2}} 对所有 p\geq 0 q\geq 0 成立.因此,由(2.1)式可知存在常数 1/2 < t_{0} < 1 使得

\begin{equation} \frac{1}{4}\left(\frac{|\langle z, u\rangle|}{\mu(|z|)}+\frac{|u|}{\sigma_{\mu}(|z|)}\right)\leq\sqrt{G_{z}^{\mu}(u)} \leq \frac{3}{2}\left(\frac{|\langle z, u\rangle|}{\mu(|z|)}+\frac{|u|}{\sigma_{\mu}(|z|)}\right) \end{equation}
(2.2)

对所有 t_{0} < |z| < 1 成立.实际上,由(2.1)式明显有

G_{z}^{\mu}(u) = \frac{|u|^{2}}{\sigma^{2}_{\mu}(|z|)}+\frac{|\langle z, u\rangle|^{2}}{\mu^{2}(|z|)}\left\{1-\left(\frac{\mu(|z|)}{\sigma_{\mu}(|z|)}\right)^{2}\right\}\frac{1}{|z|^{2}}

\lim\limits_{|z|\rightarrow 1^{-}}\left\{1-\left(\frac{\mu(|z|)}{\sigma_{\mu}(|z|)}\right)^{2}\right\}\frac{1}{|z|^{2}} = 1.

为了给出主要结果,我们首先给出一些引理.

引理2.1  设 \mu [0, 1) 上一个正规函数且 f\in H(B) ,则下列条件是等价的:

(1) f\in {\cal Z}_{\mu}(B) ;

(2) {I_{1} = |f(0)|+\sup\limits_{z\in B}\mu(|z|)|R^{(2)}f(z)|} < \infty ,这里 R^{(2)}f = R(Rf) ;

(3) {I_{2} = |f(0)|+\sum\limits_{j = 1}^{n}\left|\frac{\partial f}{\partial z_{j}}(0)\right|+\sup\limits_{z\in B}W_{f}^{\mu}(z) < \infty} ,这里

W_{f}^{\mu}(z) = \sup\limits_{u\in {\bf C}^{n}\mbox{-}\{0\}}\sum\limits_{j = 1}^{n}\frac{|\langle \nabla (D_{j}f)(z), \overline{u}\rangle|}{\sqrt{G_{z}^{\mu}(u)}}, \ \ D_{j} = \frac{\partial}{\partial z_{j}} \ \ \ \mbox{$(j = 1, 2, \cdots, n)$};

(4) {I_{3} = |f(0)|+\sum\limits_{j = 1}^{n}\left|\frac{\partial f}{\partial z_{j}}(0)\right|+\sup\limits_{z\in B}P_{f}^{\mu}(z)} < \infty ,这里

{P_{f}^{\mu}(z) = \sup\limits_{u\in {\bf C}^{n}\mbox{-}\{0\}}\frac{|\langle uH_{f}(z), \overline{u}\rangle|}{E_{z}^{\mu}(u)}}, \ H_{f}(z) \ \mbox{表示矩阵} \ \left(\frac{\partial^{2}f(z)}{\partial z_{i}\partial z_{j}}\right)_{n\times n},

E_{z}^{\mu}(u) = \frac{|u|^{2}}{\sigma_{\mu}(|z|)}+\frac{|\langle z, u\rangle|^{2}}{\mu(|z|)}.

进一步, I_{1}\asymp I_{2}\asymp I_{3}\asymp \| f\| _{{\cal Z}_{\mu}} ,其中控制常数与 f 无关.

  这些结果来自文献[13]中的引理2.1.

引理2.2  设 \mu [0, 1) 上的一个正规函数.

(1)如果 f\in {\cal Z}_{\mu}(B) ,则有

|Rf(z)|\leq |\nabla f(z)|\leq c\bigg(1+\int_{0}^{|z|}\frac{1}{\mu(t)}\ {\rm d}t\bigg)\| f\| _{{\cal Z}_{\mu}}

|f(z)|\leq c\bigg\{1+\int_{0}^{1}\bigg(\int_{0}^{\rho|z|}\frac{1}{\mu(t)}\ {\rm d}t\bigg){\rm d}\rho\bigg\}\| f\| _{{\cal Z}_{\mu}} \ \ (z\in B ).

(2)如果 f\in {\cal B}_{\mu}(B) ,则有

|f(z)|\leq c\bigg(1+\int_{0}^{|z|}\frac{{\rm d}t}{\mu(t)}\bigg)\| f\| _{{\cal B}_{\mu}} \ \ (z\in B ).

  结果(1)来自文献[17],结果(2)来自文献[31]中的引理2.2.

引理2.3  设 \mu [0, 1) 上的一个正规函数且

g(\xi) = 1+\sum\limits_{s = 1}^{\infty}2^{s}\ \xi^{n_{s}}\ \ (\xi\in D).

那么,下列结果成立: (1) g(r) [0, 1) 上严格单调递增且

\inf\limits_{r\in [0, 1)}\mu(r)g(r) = N_{0}>0, \ \ \ \ \sup\limits_{\xi\in D}\mu(|\xi|)|g(\xi)| = M_{0}<\infty.

(2)设 l 是一个正整数,则存在常数 M_{1} > 0 N_{1} > 0 使得 {\mu(\rho)g^{(l)}(\rho)\leq \frac{N_{1}}{(1-\rho)^{l}}} 对所有 {0\leq \rho < 1} 成立且 {\mu(\rho)g^{(l)}(\rho)\geq \frac{M_{1}} {(1-\rho)^{l}}} 对所有 {\max\{r_{1}, 1-1/2l\} < \rho < 1} 成立.

其中 n_{s} (1-r_{s})^{-1} 的整数部分, r_{0} = 0, \ \ \mu(r_{s}) = 2^{-s}\ \ (s = 1, 2, \cdots) .

  这些结果来自文献[32]中的引理2.4.其他与引理2.3有关的结果也能在文献[16, 27, 33]中找到.

引理2.4  设 \mu [0, 1) 上的一个正规函数, k 为一个正整数.给定 0 < r_{0} < 1 ,则有

\int_{0}^{\rho|w|}\frac{{\rm d}t}{\mu(t)} \asymp \int_{0}^{\rho|w|^{k}}\frac{{\rm d}t}{\mu(t)} \ \mbox{和} \ \int_{0}^{|w|}\frac{{\rm d}t}{\sqrt{1-t}\mu(t)}+\frac{1}{\mu(0)} \asymp \int_{0}^{|w|^{k}}\frac{{\rm d}t}{\sqrt{1-t}\mu(t)}

对一切 r_{0} < |w| < 1 0 < \rho\leq 1 成立.

  这些结果来自文献[13]中的引理2.4.

引理2.5  设 \mu [0, 1) 上的一个正规函数,函数列 \{f_{j}(z)\} {\cal Z}_{\mu}(B) 上有界且在 B 中任何紧子集上一致收敛于0.

(1)若 {\int_{0}^{1}\frac{{\rm d}t}{\mu(t)} < \infty} ,则 {\lim\limits_{j\rightarrow\infty}\sup\limits_{z\in B}|\nabla f_{j}(z)| = 0 = \lim\limits_{j\rightarrow\infty}\sup\limits_{z\in B}| f_{j}(z)|.}

(2)若 {\int_{0}^{1}\left(\int_{0}^{\rho}\frac{{\rm d}t}{\mu(t)}\right){\rm d}\rho < \infty} ,则 {\lim\limits_{j\rightarrow\infty}\sup\limits_{z\in B}| f_{j}(z)| = 0.}

  结果来源于文献[34].

引理2.6  设 \mu [0, 1) 上的一个正规函数满足

{\int_{0}^{1}\left(\int_{0}^{\rho}\frac{{\rm d}t}{\mu(t) \sqrt{1-t}}\right){\rm d}\rho<\infty}.

0 < r_{0} < 1 f\in {\cal Z}_{\mu}(B) ,若 |z|\leq r_{0} 时有 |\nabla f(z)|\leq m ,则有常数 c > 0 使得

|\langle \nabla f(z), \overline{\xi}\rangle|\leq m+c\| f\| _{{\cal Z}_{\mu}}\int_{r_{0}}^{1}\left(\int_{0}^{\rho}\frac{{\rm d}t}{\mu(t)\sqrt{1-t}}\right){\rm d}\rho

对所有 r_{0} < |z| < 1 成立,其中 \xi\in \partial B 满足 \langle z, \xi\rangle = 0 .

  利用酉变换,我们可设 z = (|z|, 0, \cdots, 0) 满足 |z| < 1 \xi = (0, 1, 0, \cdots, 0). 就固定的 0\leq\rho < 1 ,我们设 h(\eta) = D_{1}(Rf)(\rho, \eta, 0, \cdots, 0) .如果 f\in {\cal Z}_{\mu}(B) ,则有

|h(z_{2})|\leq \frac{c_{1}\| f\| _{{\cal Z}_{\mu}}}{\mu(\sqrt{\rho^{2}+|z_{2}|^{2}})}\leq \frac{c_{1}\| f\| _{{\cal Z}_{\mu}}}{\mu(\sqrt{\frac{\rho^{2}+1}{2}})}\leq \frac{c_{1}4^{b}\| f\| _{{\cal Z}_{\mu}}}{\mu(\rho)}

对所有 |z_{2}|^{2}\leq (1-\rho^{2})/2 成立.

因此,对任意 r_{0} < |z| < 1 0\leq t\leq |z| ,我们有

\begin{eqnarray*} |D_{2}(Rf)(t, 0, \cdots, 0)-D_{2}(Rf)(0, 0, \cdots, 0)| & = &\left|\int_{0}^{t}h'(0)\ {\rm d}\rho\right| \\ & = &\frac{1}{2\pi}\left|\int_{0}^{t}\left(\int_{|w| = \sqrt{\frac{1-\rho^{2}}{2}}}\frac{h(w) {\rm d}w}{w^{2}}\right){\rm d}\rho\right|\\ &\leq &c_{2}\| f\| _{{\cal Z}_{\mu}} \int_{0}^{t}\frac{{\rm d}\rho}{\sqrt{1-\rho} \mu(\rho)}. \end{eqnarray*}

r_{0} < |z| < 1 时,我们可得

\begin{eqnarray*} |\langle \nabla f(z), \overline{\xi}\rangle|& = &|D_{2}f(|z|, 0, \cdots, 0)|\\ & = & \frac{1}{|z|}\left|r_{0}D_{2}f(r_{0}, 0, \cdots, 0)+\int_{r_{0}}^{|z|}D_{2}(Rf)(t, 0, \cdots, 0){\rm d}t\right|\\ &\leq& m+c\| f\| _{{\cal Z}_{\mu}}\int_{r_{0}}^{1}\left(\int_{0}^{\rho}\frac{{\rm d}t}{\mu(t)\sqrt{1-t}}\right){\rm d}\rho. \end{eqnarray*}

本引理证完.

3 主要结果

定理3.1  设 n > 1 , \mu [0, 1) 上的一个正规函数, \psi\in H(B) \varphi B 上满足对所有 l\in \{1, \cdots, n\} 都有 \varphi_{l}\in {\cal Z}_{\mu}(B) 的一个全纯自映射.

(1)如果 0 < a\leq b < 1 ,则 \psi C_{\varphi} {\cal Z}_{\mu}(B) 上有界算子的充要条件为 \psi\in {\cal Z}_{\mu}(B) 且对所有 l\in \{1, \cdots, n\} 都有 \psi\varphi_{l}\in{\cal Z}_{\mu}(B) .

(2)如果 {1/2 < a\leq 1\leq b < a/2+3/4 } ,则 \psi C_{\varphi} {\cal Z}_{\mu}(B) 上有界算子的充要条件为 \psi\in {\cal Z}_{\mu}(B) 且对所有 l\in \{1, \cdots, n\} 都有 \psi\varphi_{l}\in{\cal Z}_{\mu}(B) 以及下列两个条件同时成立:

\begin{equation} \sup\limits_{z\in B}\frac{\mu(|z|)|\psi(z)\| \langle R\varphi(z), \varphi(z)\rangle|^{2}}{\mu(|\varphi(z)|)}<\infty, \end{equation}
(3.1)

\begin{equation} \sup\limits_{z\in B}\mu(|z|)\{|\langle 2R\psi(z)R\varphi(z)+\psi(z)R^{(2)}\varphi(z), \varphi(z)\rangle|\int_{0}^{|\varphi(z)|}\frac{{\rm d}\rho}{\mu(\rho)}<\infty. \end{equation}
(3.2)

(3)如果 b\geq a > 1 ,则 \psi C_{\varphi} {\cal Z}_{\mu}(B) 上有界当且仅当下列三条同时成立:

\begin{equation} \sup\limits_{z\in B}\frac{\mu(|z|)|\psi(z)|(1-|\varphi(z)|^{2})|\langle R\varphi(z), \varphi(z)\rangle|}{(1-|z|^{2})\mu(|\varphi(z)|)}<\infty, \end{equation}
(3.3)

\begin{equation} \sup\limits_{z\in B}\frac{\mu(|z|)|\psi(z)\| R\varphi(z)|}{1-|z|^{2}}\bigg(1+\int_{0}^{|\varphi(z)|}\frac{\sqrt{1-\rho^{2}} }{\mu(\rho)}\ {\rm d}\rho\bigg)<\infty, \end{equation}
(3.4)

\begin{equation} \sup\limits_{z\in B}\frac{\mu(|z|)|R\psi(z)|}{1-|z|^{2}}\bigg(1+\int_{0}^{|\varphi(z)|}\frac{1-\rho^{2} }{\mu(\rho)}\ {\rm d}\rho\bigg)<\infty. \end{equation}
(3.5)

  首先,如果 f\in H(B) ,则有

\begin{eqnarray} R^{(2)}[(\psi C_{\varphi})f](z)& = &\langle (\nabla f)[\varphi(z)], \overline{2R\psi(z)R\varphi(z)+\psi(z)R^{(2)}\varphi(z)}\rangle \\ &&+ R^{(2)}\psi(z)f[\varphi(z)]+\psi(z)\langle R\varphi(z)H_{f}[\varphi(z)], \overline{R\varphi(z)}\rangle. \end{eqnarray}
(3.6)

(1)如果 \psi\in {\cal Z}_{\mu}(B) 且对所有 l\in \{1, \cdots, n\} 都有 \psi\varphi_{l}\in{\cal Z}_{\mu}(B) ,通过 R^{(2)}(\psi \varphi_{l})(z) = R^{(2)}\psi(z)\varphi_{l}(z) + 2R\psi(z)R\varphi_{l}(z)+\psi(z)R^{(2)}\varphi_{l}(z) 和引理2.1可得

\begin{eqnarray} \mu(|z|)|2R\psi(z)R\varphi(z)+\psi(z)R^{(2)}\varphi(z)| &\leq& \sum\limits_{l = 1}^{n}\mu(|z|)|2R\psi(z)R\varphi_{l}(z)+\psi(z)R^{(2)}\varphi_{l}(z)| \\ & \leq& \sum\limits_{l = 1}^{n}\mu(|z|)\{|R^{(2)}(\psi \varphi_{l})(z)|+|R^{(2)}\psi(z)\varphi_{l}(z)|\} \\ &\leq& \sum\limits_{l = 1}^{n}(\| \psi\varphi_{l}\| _{{\cal Z}_{\mu}}+\| \psi\| _{{\cal Z}_{\mu}}). \end{eqnarray}
(3.7)

b < 1 时,通过 \psi, \varphi_{l}\in {\cal Z}_{\mu}(B) 以及引理2.2和不等式 (1-|z|^{2})/(1-|\varphi(z)|^{2})\leq (1+|\varphi(0)|)/(1-|\varphi(0)|) (这个不等式在很多文献中可见,例如文献[35,引理2.4]或文献[36])结合 {\int_{0}^{1}\frac{{\rm d}t}{\mu(t)} < \infty} \sigma_{\mu} 的定义,我们可以得到

\begin{eqnarray} \frac{\mu(|z|)|\psi(z)\| R\varphi(z)|^{2}}{\sigma_{\mu}(|\varphi(z)|)} &\leq& \frac{c\mu(|z|)|R\varphi(z)|^{2}\| \psi\| _{{\cal Z}_{\mu}}}{\sigma_{\mu}(|\varphi(z)|)} \\ &\leq& \frac{c_{1}\mu(|z|)}{\sigma_{\mu}(|\varphi(z)|)} \bigg(\int_{0}^{|z|}\frac{{\rm d}t}{\mu(t)}\bigg)^{2}\| \psi\| _{{\cal Z}_{\mu}} \bigg(\sum\limits_{l = 1}^{n}\| \varphi_{l}\| ^{2}_{{\cal Z}_{\mu}}\bigg) \\ & \leq& c_{2}\mu(|z|)\bigg(\frac{1}{\mu(0)}+\int_{0}^{|\varphi(z)|}\frac{{\rm d}t}{\sqrt{1-t}\ \mu(t)}\bigg)\| \psi\| _{{\cal Z}_{\mu}}\bigg(\sum\limits_{l = 1}^{n}\| \varphi_{l}\| ^{2}_{{\cal Z}_{\mu}}\bigg) \\ & \leq& c_{3}\bigg\{1+\int_{0}^{|\varphi(z)|}\left(\frac{(1-|z|)^{a}}{(1-t)^{a+\frac{1}{2}}}+\frac{(1-|z|)^{b}} {(1-t)^{b+\frac{1}{2}}}\right){\rm d}t\bigg\}\| \psi\| _{{\cal Z}_{\mu}}\bigg(\sum\limits_{l = 1}^{n}\| \varphi_{l}\| ^{2}_{{\cal Z}_{\mu}}\bigg) \\ & \leq& c_{4}\bigg\{1+\left(\frac{1+|\varphi(0)|}{1-|\varphi(0)|}\right)^{b}\bigg\}\| \psi\| _{{\cal Z}_{\mu}}\bigg(\sum\limits_{l = 1}^{n}\| \varphi_{l}\| ^{2}_{{\cal Z}_{\mu}}\bigg). \end{eqnarray}
(3.8)

类似地,我们也可得到

\begin{equation} \frac{\mu(|z|)|\psi(z)\| \langle R\varphi(z), \varphi(z)\rangle|^{2}}{\mu(|\varphi(z)|)}\leq c\left(\frac{1+|\varphi(0)|}{1-|\varphi(0)|}\right)^{b}\| \psi\| _{{\cal Z}_{\mu}}\sum\limits_{l = 1}^{n}\| \varphi_{l}\| _{{\cal Z}_{\mu}}^{2}. \end{equation}
(3.9)

对任意 f\in {\cal Z}_{\mu}(B) ,如果 \psi\in{\cal Z}_{\mu}(B) 且对所有 l\in \{1, 2, \cdots, n\} \psi\varphi_{l}\in {\cal Z}_{\mu}(B) ,通过(3.6)–(3.9)式和引理2.1,引理2.2,我们有

\begin{eqnarray*} \mu(|z|)|R^{(2)}[(\psi C_{\varphi})f](z)| &\leq &c_{1}\| \psi\| _{{\cal Z}_{\mu}}\| f\| _{{\cal Z}_{\mu}}+c_{2}\sum\limits_{l = 1}^{n}(\| \psi\varphi_{l}\| _{{\cal Z}_{\mu}}+\| \psi\| _{{\cal Z}_{\mu}})\| f\| _{{\cal Z}_{\mu}}\\ && + c_{3}\mu(|z|)|\psi(z)|E_{\varphi(z)}^{\mu}[R\varphi(z)] \frac{|\langle R\varphi(z)H_{f}[\varphi(z)], \overline{R\varphi(z)}\rangle|}{E_{\varphi(z)}^{\mu}[R\varphi(z)]}\\ & \leq &c_{1}\| \psi\| _{{\cal Z}_{\mu}}\| f\| _{{\cal Z}_{\mu}}+c_{2}\sum\limits_{l = 1}^{n}(\| \psi\varphi_{l}\| _{{\cal Z}_{\mu}}+\| \psi\| _{{\cal Z}_{\mu}}) \| f\| _{{\cal Z}_{\mu}}\\ && + c_{4}\mu(|z|)|\psi(z)|\left\{\frac{|R\varphi(z)|^{2}}{\sigma_{\mu}(|\varphi(z)|)}+\frac{|\langle R\varphi(z), \varphi(z)\rangle|^{2}}{\mu(|\varphi(z)|)}\right\}\| f\| _{{\cal Z}_{\mu}}\\ &\leq &c_{5}\| f\| _{{\cal Z}_{\mu}}. \end{eqnarray*}

再利用引理2.1就有 \psi C_{\varphi} {\cal Z}_{\mu}(B) 上有界.

反过来,如果 \psi C_{\varphi} {\cal Z}_{\mu}(B) 上有界,则通过取 f(z) = 1 可得 \psi\in{\cal Z}_{\mu}(B) ,通过取 f(z) = z_{l} 就可得到 \psi\varphi_{l}\in {\cal Z}_{\mu}(B) ( l\in \{1, \cdots, n\} ).

(2)如果 \psi\in{\cal Z}_{\mu}(B) 且对所有 l\in \{1, 2, \cdots, n\} 都有 \varphi_{l}\in {\cal Z}_{\mu}(B) ,则由引理2.2和不等式 (1-|z|^{2})/(1-|\varphi(z)|^{2})\leq (1+|\varphi(0)|)/(1-|\varphi(0)|) 可知:当 1/2 < a\leq 1\leq b < a/2+3/4 时,我们可得到

\begin{eqnarray} \frac{\mu(|z|)|\psi(z)\| R\varphi(z)|^{2}}{\sigma_{\mu}(|\varphi(z)|)} & \leq &\frac{c\mu(|z|)}{\sigma_{\mu}(|\varphi(z)|)}\left(\int_{0}^{|z|}\frac{{\rm d}t}{\mu(t)} \right)^{2}\left(\sum\limits_{l = 1}^{n}(\| \psi\varphi_{l}\| _{{\cal Z}_{\mu}}+\| \psi\| _{{\cal Z}_{\mu}})\right) \left(\sum\limits_{l = 1}^{n}\| \varphi_{l}\| _{{\cal Z}_{\mu}}\right) \\ &\leq&\frac{c_{1}(1-|z|)^{a}}{\mu(0)\sigma_{\mu}(|\varphi(z)|)}\left(\int_{0}^{|z|}\frac{{\rm d}t}{(1-t)^{a}} \right)\int_{0}^{|z|}\frac{{\rm d}t}{(1-t)^{b}} \\ &&\times\left(\sum\limits_{l = 1}^{n}(\| \psi\varphi_{l}\| _{{\cal Z}_{\mu}}+\| \psi\| _{{\cal Z}_{\mu}})\right)\left(\sum\limits_{l = 1}^{n}\| \varphi_{l}\| _{{\cal Z}_{\mu}}\right) \\ &\leq&\frac{c_{2}(1-|z|)^{a}}{(1-|\varphi(z)|)^{b-a}}\left\{1+\int_{0}^{|\varphi(z)|}\frac{{\rm d}t}{(1-t)^{a+\frac{1}{2}}} \right\}\left(\int_{0}^{|z|}\frac{{\rm d}t}{(1-t)^{a}}\right) \\ &&\times\int_{0}^{|z|}\frac{{\rm d}t}{(1-t)^{b}} \left(\sum\limits_{l = 1}^{n}(\| \psi\varphi_{l}\| _{{\cal Z}_{\mu}}+\| \psi\| _{{\cal Z}_{\mu}})\right) \left(\sum\limits_{l = 1}^{n}\| \varphi_{l}\| _{{\cal Z}_{\mu}}\right) \\ &\leq &c_{3}. \end{eqnarray}
(3.10)

同时还有当 b < 2

\begin{eqnarray} \mu(|z|)\{| 2R\psi(z)R\varphi(z)+\psi(z)R^{(2)}\varphi(z)|\} \int_{0}^{|\varphi(z)|}\frac{{\rm d}\rho}{\sigma_{\mu}(\rho)} \leq c\sum\limits_{l = 1}^{n}(\| \varphi_{l}\| _{{\cal Z}_{\mu}}+\| \psi\varphi_{l}\| _{{\cal Z}_{\mu}}) . \end{eqnarray}
(3.11)

另一方面,对任意 f\in {\cal Z}_{\mu}(B) ,我们有

\begin{eqnarray} &&\langle(\nabla f)[\varphi(z)], \overline{2R\psi(z)R\varphi(z)+\psi(z)R^{(2)}\varphi(z)}\rangle - \langle(\nabla f)(0), \overline{2R\psi(z)R\varphi(z)+\psi(z)R^{(2)}\varphi(z)}\rangle \\ & = &\sum\limits_{j = 1}^{n}\{2R\psi(z)R\varphi_{j}(z)+\psi(z)R^{(2)}\varphi_{j}(z)\}\int_{0}^{1}\frac{\rm d}{{\rm d}t}\{D_{j}f[t\varphi(z)]\} {\rm d}t \\ & = &\sum\limits_{l = 1}^{n}\varphi_{l}(z)\int_{0}^{1}\langle \nabla (D_{l}f)[t\varphi(z)], \overline{2R\psi(z)R\varphi(z)+\psi(z)R^{(2)}\varphi(z)}\rangle {\rm d}t. \end{eqnarray}
(3.12)

通过(3.7)式和(3.12)式以及引理2.1和(2.2)式有

\begin{eqnarray} && \mu(|z|)|\langle(\nabla f)[\varphi(z)], \overline{2R\psi(z)R\varphi(z)+\psi(z)R^{(2)}\varphi(z)}\rangle| \\ &\leq &c_{1}\left(\sum\limits_{l = 1}^{n}(\| \psi\varphi_{l}\| _{{\cal Z}_{\mu}}+ \| \psi\| _{{\cal Z}_{\mu}})\right)\| f\| _{{\cal Z}_{\mu}} \\ && + c_{2}|\varphi(z)|\mu(|z|)\int_{0}^{1}\left(\sum\limits_{l = 1}^{n}|\langle \nabla (D_{l}f)[t\varphi(z)], \overline{2R\psi(z)R\varphi(z)+\psi(z)R^{(2)}\varphi(z)}\rangle|\right){\rm d}t \\ & \leq& c_{1}\left(\sum\limits_{l = 1}^{n}(\| \psi\varphi_{l}\| _{{\cal Z}_{\mu}}+\| \psi\| _{{\cal Z}_{\mu}})\right)\| f\| _{{\cal Z}_{\mu}} \\ &&+ c_{3}|\varphi(z)|\mu(|z|)\left(\int_{0}^{1}\sqrt{G_{t\varphi(z)}^{\mu}[2R\psi(z)R\varphi(z)+\psi(z)R^{(2)}\varphi(z)]}\ {\rm d}t\right)\| f\| _{{\cal Z}_{\mu}} \\ &\leq &c_{4}\| f\| _{{\cal Z}_{\mu}}+ c_{5}\mu(|z|)|2R\psi(z)R\varphi(z)+\psi(z)R^{(2)}\varphi(z)|\left(\int_{0}^{|\varphi(z)|} \frac{{\rm d}t}{\sigma_{\mu}(t)}\right)\| f\| _{{\cal Z}_{\mu}} \\ &&+ c_{6}\mu(|z|)|\langle 2R\psi(z)R\varphi(z)+\psi(z)R^{(2)}\varphi(z), \varphi(z)\rangle|\left(\int_{0}^{|\varphi(z)|}\frac{{\rm d}t}{\mu(t)}\right)\| f\| _{{\cal Z}_{\mu}}. \end{eqnarray}
(3.13)

如果(3.1)–(3.2)式成立,由(3.6)式, (3.10)–(3.11)式和(3.13)式以及引理2.1,我们可得 \psi C_{\varphi} {\cal Z}_{\mu}(B) 上有界.

反过来,如果 \psi C_{\varphi} {\cal Z}_{\mu}(B) 上有界,立即可得 \psi, \ \psi\varphi_{l}, \ \psi\varphi_{l}^{2}\in {\cal Z}_{\mu}(B) 成立.

对任意 w\in B ,若 |\varphi(w)|\leq 1/2 ,则有

\begin{equation} \frac{\mu(|w|)|\psi(w)\| \langle R\varphi(w), \varphi(w)\rangle|^{2}}{\mu(|\varphi(w)|)}\leq \frac{c}{\mu(1/2)}\sum\limits_{l = 1}^{n}(\| \psi\varphi_{l}^{2}\| _{{\cal Z}_{\mu}}+\| \psi\varphi_{l}\| _{{\cal Z}_{\mu}}). \end{equation}
(3.14)

|\varphi(w)| > 1/2 ,设 g 为引理2.3中的那个函数,我们选取示性函数

\begin{eqnarray*} f_{w}(z)& = &\int_{0}^{\langle z, \varphi(w)\rangle^{3}}\left(\int_{0}^{\rho}g(t){\rm d}t\right){\rm d} \rho-2\int_{0}^{|\varphi(w)|^{2}\langle z, \varphi(w)\rangle^{2}}\left(\int_{0}^{\rho}g(t){\rm d}t\right){\rm d}\rho \\ &&+ \int_{0}^{|\varphi(w)|^{4}\langle z, \varphi(w)\rangle}\left(\int_{0}^{\rho}g(t){\rm d}t\right){\rm d}\rho \ \ (z\in B). \end{eqnarray*}

通过引理2.1和引理2.3不难证明 \| f_{w}\| _{{\cal Z}_{\mu}}\leq c .同时有 C_{\varphi}f_{w}(w) = 0 , R[C_{\varphi}f_{w}](w) = 0 以及

\begin{equation} R^{(2)}[C_{\varphi}f_{w}](w) = 2\left(|\varphi(w)|^{8}g(|\varphi(w)|^{6})+|\varphi(w)|^{2}\int_{0}^{|\varphi(w)|^{6}}g(t) {\rm d}t\right)\langle R\varphi(w), \varphi(w)\rangle^{2}. \end{equation}
(3.15)

由引理2.1和(3.15)式以及引理2.3可得

\begin{eqnarray} c\| \psi C_{\varphi}\| &\geq &\mu(|w|)|R^{(2)}[(\psi C_{\varphi})f_{w}](w)| = \mu(|w|)|\psi(w)R^{(2)}[C_{\varphi}f_{w}](w)| \\ & \geq& 2\mu(|w|)|\psi(w)\| \varphi(w)|^{8}g(|\varphi(w)|^{6})|\langle R\varphi(w), \varphi(w)\rangle|^{2} \\ & \geq& \frac{c_{1}\mu(|w|)|\psi(w)\| \langle R\varphi(w), \varphi(w)\rangle|^{2}}{\mu(|\varphi(w)|)}. \end{eqnarray}
(3.16)

(3.14)式和(3.16)式表明(3.1)式成立.我们再取示性函数

h_{w}(z) = \int_{0}^{\langle z, \varphi(w)\rangle}\left(\int_{0}^{\rho}g(t){\rm d}t\right){\rm d}\rho \ \ (z\in B).

由引理2.1和引理2.3可得 \| h_{w}\| _{{\cal Z}_{\mu}}\leq c .

|\varphi(w)| > 1/2 ,则由引理2.1 –引理2.4和(3.1)式有

\begin{eqnarray} c\| \psi C_{\varphi}\| &\geq& \mu(|w|)|R^{(2)}[(\psi C_{\varphi})h_{w}](w)| \\ &\geq &-\mu(|w|)|R^{(2)}\psi(w)\| h_{w}[\varphi(w)]| \\ &&+|2R\psi(w)\langle R\varphi(w), \varphi(w)\rangle+\psi(w)\langle R^{(2)}\varphi(w), \varphi(w)\rangle|\int_{0}^{|\varphi(w)|^{2}}g(t){\rm d}t \\ && -\mu(|w|)g(|\varphi(w)|^{2})|\langle R\varphi(w), \varphi(w)\rangle|^{2} \\ & \geq& -c_{1}\| \psi\| _{{\cal Z}_{\mu}}-\frac{c_{2}\mu(|w|)|\psi(w)\| \langle R\varphi(w), \varphi(w)\rangle|^{2}}{\mu(|\varphi(w)|)} \\ &\;& + c_{3}\mu(|w|)|\langle 2R\psi(w)R\varphi(w)+\psi(w)R^{(2)}\varphi(w), \varphi(w)\rangle|\int_{0}^{|\varphi(w)|}\frac{{\rm d}t}{\mu(t)} \\ &\Rightarrow & \mu(|w|)|\langle 2R\psi(w)R\varphi(w)+\psi(w)R^{(2)}\varphi(w), \varphi(w)\rangle|\int_{0}^{|\varphi(w)|}\frac{{\rm d}t}{\mu(t)} \\ &\leq& c_{4}. \end{eqnarray}
(3.17)

(3.11)式和(3.17)式表明(3.2)式成立.

(3)如果 b\geq a > 1 ,则空间 {\cal Z}_{\mu}(B) 上的复合算子问题恰好是权为 \nu(r) = \mu(r)/(1-r) 的Bloch型空间 {\cal B}_{\nu}(B) 上的复合算子问题.实际上,对任意 f\in {\cal B}_{\nu}(B) ,如果在文献[35]的定理3.1(1)中取 h = Rf t = 0 ,则有 f\in {\cal Z}_{\mu}(B) \| f\| _{{\cal Z}_{\mu}}\leq c\| f\| _{{\cal B}_{\nu}} .反过来,对任意 f\in {\cal Z}_{\mu}(B) ,由引理2.2可得

\nu(|z|)|Rf(z)|\leq \frac{c\| f\| _{{\cal Z}_{\mu}}\mu(|z|)}{1-|z|}\int_{0}^{|z|}\frac{{\rm d}t}{\mu(t)}\leq c\| f\| _{{\cal Z}_{\mu}}\int_{0}^{|z|}\frac{(1-|z|)^{a-1}\ {\rm d}t}{(1-t)^{a}}\leq \frac{c\| f\| _{{\cal Z}_{\mu}}}{a-1}.

通过文献[14]中的定理2可得 f\in {\cal B}_{\nu}(B) \| f\| _{{\cal B}_{\nu}}\leq c\| f\| _{{\cal Z}_{\mu}} .

对任意 f\in {\cal Z}_{\mu}(B) ,我们有 f\in {\cal B}_{\nu}(B) .如果(3.3)–(3.5)式成立,由引理2.2以及文献[14]中的定理2和(2.2)式,我们可得

\begin{eqnarray*} \sup\limits_{z\in B}\mu(|z|)|R^{(2)}[(\psi C_{\varphi})f](z)| &\leq& c_{1}\sup\limits_{z\in B}\nu(|z|)|R[(\psi C_{\varphi})f](z)|\\ & \leq& c_{1}\| f\| _{{\cal B}_{\nu}}\sup\limits_{z\in B}\bigg\{\nu(|z|)|R\psi(z)|\bigg(1+\int_{0}^{|\varphi(z)|}\frac{{\rm d}t}{\nu(t)}\bigg)\bigg\}\\ &\;& + c_{2}\sup\limits_{z\in B}\nu(|z|)|\psi(z)|\sqrt{G^{\nu}_{\varphi(z)}[R\varphi(z)]} \| f\| _{{\cal B}_{\nu}} \\ &\leq &c_{3}\| f\| _{{\cal B}_{\nu}} \leq c_{4}\| f\| _{{\cal Z}_{\mu}}. \end{eqnarray*}

这表明 \psi C_{\varphi} {\cal Z}_{\mu}(B) 上有界.

反过来,设 \psi C_{\varphi} {\cal Z}_{\mu}(B) 上有界.对任意 w\in B ,仅需考虑情形 |\varphi(w)| > 1/2 .

f_{w}(z) = \int_{0}^{\langle z, \varphi(w)\rangle^{2}}g_{1}(t){\rm d}t- \int_{0}^{|\varphi(w)|^{2}\langle z, \varphi(w)\rangle}g_{1}(t){\rm d}t,

其中 g_{1} 是引理2.3中与 \nu 对应的函数.我们可以证明(3.3)式成立.如果我们取示性函数

f_{w}(z) = \int_{0}^{\langle z, \varphi(w)\rangle^{2}}g_{1}(t){\rm d}t- 2\int_{0}^{|\varphi(w)|^{2}\langle z, \varphi(w)\rangle}g_{1}(t){\rm d}t,

则可以证明(3.5)式成立.设 \langle \varphi(w), \xi\rangle = 0 满足 \xi\in\partial B .我们再取

f_{w}(z) = \langle z, \xi\rangle\int_{0}^{\langle z, \varphi(w)\rangle}\frac{g_{1}(t){\rm d}t}{\sqrt{1-t}}.

通过这个示性函数, (2.1)式和(3.3)式,我们可以证明(3.4)式成立.本定理证完.

定理3.2  设 n > 1 , \mu [0, 1) 上的一个正规函数, \varphi B 上的一个全纯自映射且满足对一切 l\in \{1, \cdots, n\} 都有 \varphi_{l}\in {\cal Z}_{\mu}(B) .

(1)如果 {\| \varphi\| _{\infty} < 1} ,则 \psi C_{\varphi} {\cal Z}_{\mu}(B) 上紧算子当且仅当 \psi\in{\cal Z}_{\mu}(B) 且对所有 l\in \{1, \cdots, n\} 都有 \psi\varphi_{l}, \psi\varphi_{l}^{2}\in {\cal Z}_{\mu}(B) .

(2)如果 {\| \varphi\| _{\infty} = 1} , 0 < a\leq b < 1 1/2 < a\leq 1\leq b < a/2+3/4 \int_{0}^{1}\mu^{-1}(t){\rm d}t < \infty ,则 \psi C_{\varphi} {\cal Z}_{\mu}(B) 上紧算子当且仅当对所有 l\in \{1, \cdots, n\} 都有 \psi, \psi\varphi_{l}\in {\cal Z}_{\mu}(B)

\begin{equation} \lim\limits_{|\varphi(z)|\rightarrow 1^{-}}\frac{\mu(|z|)|\psi(z)\| \langle R\varphi(z), \varphi(z)\rangle|^{2}}{\mu(|\varphi(z)|)} = 0. \end{equation}
(3.18)

(3)如果 {\| \varphi\| _{\infty} = 1} , 1/2 < a\leq 1\leq b < a/2+3/4 \int_{0}^{1}\mu^{-1}(t){\rm d} t = \infty ,则 \psi C_{\varphi} {\cal Z}_{\mu}(B) 上紧算子当且仅当对所有 l\in \{1, \cdots, n\} 都有 \psi, \psi\varphi_{l}\in {\cal Z}_{\mu}(B) , (3.18)式成立且

\begin{equation} \lim\limits_{|\varphi(z)|\rightarrow 1^{-}}\mu(|z|)|\langle 2R\psi(z)R\varphi(z)+\psi(z)R^{(2)}\varphi(z), \varphi(z)\rangle|\int_{0}^{|\varphi(z)|}\frac{{\rm d}\rho}{\mu(\rho)} = 0. \end{equation}
(3.19)

(4)如果 {\| \varphi\| _{\infty} = 1} , b\geq a > 1 \int_{0}^{1}\mu^{-1}(t)\sqrt{1-t}{\rm d}t < \infty ,则 \psi C_{\varphi} {\cal Z}_{\mu}(B) 上紧算子当且仅当 \psi\in{\cal Z}_{\mu}(B) 且对所有 l\in \{1, \cdots, n\} 都有 \psi\varphi_{l}\in {\cal Z}_{\mu}(B) 以及

\begin{equation} \lim\limits_{|\varphi(z)|\rightarrow 1^{-}}\frac{\mu(|z|)|\psi(z)|(1-|\varphi(z)|^{2})|\langle R\varphi(z), \varphi(z)\rangle|}{(1-|z|^{2})\mu(|\varphi(z)|)} = 0. \end{equation}
(3.20)

(5)如果 {\| \varphi\| _{\infty} = 1} , b\geq a > 1 \int_{0}^{1}\mu^{-1}(t)\sqrt{1-t}{\rm d}t = \infty > \int_{0}^{1}(1-t)\mu^{-1}(t){\rm d}t ,则 \psi C_{\varphi} {\cal Z}_{\mu}(B) 上紧算子当且仅当 \psi\in{\cal Z}_{\mu}(B) 且对所有 l\in \{1, \cdots, n\} 都有 \psi\varphi_{l}\in {\cal Z}_{\mu}(B) , (3.20)式成立且还满足

\begin{equation} \lim\limits_{|\varphi(z)|\rightarrow 1^{-}}\frac{\mu(|z|)|\psi(z)\| R\varphi(z)|}{1-|z|^{2}}\int_{0}^{|\varphi(z)|}\frac{\sqrt{1-\rho^{2}} }{\mu(\rho)}\ {\rm d}\rho = 0. \end{equation}
(3.21)

(6)如果 {\| \varphi\| _{\infty} = 1} , b\geq a > 1 \int_{0}^{1}(1-t)\mu^{-1}(t){\rm d}t = \infty ,则 \psi C_{\varphi} {\cal Z}_{\mu}(B) 上紧算子当且仅当 \psi\in{\cal Z}_{\mu}(B) 且对所有 l\in \{1, \cdots, n\} \psi\varphi_{l}\in {\cal Z}_{\mu}(B) , (3.20)–(3.21)式成立且

\begin{equation} \lim\limits_{|\varphi(z)|\rightarrow 1^{-}}\frac{\mu(|z|)|R\psi(z)|}{1-|z|^{2}}\int_{0}^{|\varphi(z)|}\frac{1-\rho^{2} }{\mu(\rho)}\ {\rm d}\rho = 0. \end{equation}
(3.22)

   (1)设 \{f_{j}(z)\} 是任一满足在 B 上内闭一致收敛于0且 \| f_{j}\| _{{\cal Z}_{\mu}}\leq 1 的函数列,则 \{|\nabla f_{j}(z)|\} \{|\nabla (D_{l}f_{j})(z)|\} \ (l = 1, \cdots, n) 也在 B 上内闭一致收敛于0.

如果 \psi\in{\cal Z}_{\mu}(B) 且对所有 l\in \{1, \cdots, n\} \psi\varphi_{l}, \psi\varphi_{l}^{2}\in {\cal Z}_{\mu}(B) ,那么就有

\begin{eqnarray} \mu(|z|)|\psi(z)\| R\varphi(z)|^{2}&\leq&\sum\limits_{l = 1}^{n}\mu(|z|)|\psi(z)\| R\varphi_{l}(z)|^{2} \\ &\leq&\sum\limits_{l = 1}^{n}\frac{\mu(|z|)\{2|R^{(2)}[\psi(z)\varphi_{l}(z)]|+|R^{(2)}[\psi(z)\varphi_{l}^{2}(z)]|+|R^{(2)}\psi(z)|\}}{2} \ \ \\ &\leq& c\sum\limits_{l = 1}^{n}(\| \psi\| _{{\cal Z}_{\mu}}+\| \psi\varphi_{l}\| _{{\cal Z}_{\mu}}+\| \psi\varphi_{l}^{2}\| _{{\cal Z}_{\mu}}) . \end{eqnarray}
(3.23)

\| \varphi\| _{\infty} < 1 以及(3.23)式和引理2.1可得

\begin{eqnarray*} c\| (\psi C_{\varphi})f_{j}\| _{{\cal Z}_{\mu}} &\leq &|\psi(0)f_{j}[\varphi(0)]|+\sup\limits_{z\in B}\mu(|z|)|R^{(2)}[(\psi C_{\varphi}) f_{j}](z)|\\ & = &|\psi(0)f_{j}[\varphi(0)]| + \sup\limits_{z\in B} \mu(|z|)| \langle (\nabla f_{j})[\varphi(z)], \overline{2R\psi(z)R\varphi(z)+\psi(z)R^{(2)}\varphi(z)}\rangle\\ &\;&+ R^{(2)}\psi(z)f_{j}[\varphi(z)] + \psi(z)\sum\limits_{l = 1}^{n}\langle \nabla (D_{l}f_{j})[\varphi(z)], \overline{R\varphi_{l}(z)}\ \overline{R\varphi(z)}\rangle |\\ & \leq& c_{1}\| \psi\| _{{\cal Z}_{\mu}}\sup\limits_{|w|\leq \| \varphi\| _{\infty}}|f_{j}(w)|+ c_{2}\sum\limits_{l = 1}^{n}(\| \psi\| _{{\cal Z}_{\mu}}+\| \psi\varphi_{l}\| _{{\cal Z}_{\mu}})\sup\limits_{|w|\leq\| \varphi\| _{\infty}}|\nabla f_{j}(w)|\\ &\;& + c_{3}\sum\limits_{l = 1}^{n}(\| \psi\| _{{\cal Z}_{\mu}}+\| \psi\varphi_{l}\| _{{\cal Z}_{\mu}}+\| \psi\varphi_{l}^{2}\| _{{\cal Z}_{\mu}})\sup\limits_{|w|\leq \| \varphi\| _{\infty}}\sum\limits_{l = 1}^{n}|\nabla (D_{l}f_{j})(w)|\\ &\;& + |\psi(0)f_{j}[\varphi(0)]| \rightarrow 0 \ \ (j\rightarrow\infty). \end{eqnarray*}

这意味着 \psi C_{\varphi} {\cal Z}_{\mu}(B) 上是紧算子.

反之是显然的.

(2)如果(3.18)式成立,则对任意 \varepsilon > 0 ,存在 0 < \delta_{1} < 1 ,当 |\varphi(z)| > \delta_{1} 时有

\begin{equation} \frac{\mu(|z|)|\psi(z)\| \langle R\varphi(z), \varphi(z)\rangle|^{2}}{\mu(|\varphi(z)|)}<\varepsilon. \end{equation}
(3.24)

另一方面,当 1/2 < a\leq 1\leq b < a/2+ 3/4 0 < a\leq b < 1 时有

\begin{eqnarray} \frac{\mu(|z|)|\psi(z)\| R\varphi(z)|^{2}}{\sigma_{\mu}(|\varphi(z)|)} &\leq &\frac{\mu(|z|)(|R(\psi\varphi)(z)|+|R\psi(z)|)|R\varphi(z)|}{\sigma_{\mu}(|\varphi(z)|)} \\ &\leq& \frac{c\mu(|z|)}{\sigma_{\mu}(|\varphi(z)|)} \bigg(\int_{0}^{|z|}\frac{{\rm d}t}{\mu(t)}\bigg)^{2}\bigg(\sum\limits_{l = 1}^{n}(\| \psi\varphi_{l}\| _{{\cal Z}_{\mu}}+\| \psi\| _{{\cal Z}_{\mu}})\bigg) \bigg(\sum\limits_{l = 1}^{n}\| \varphi_{l}\| _{{\cal Z}_{\mu}}\bigg) \\ &\leq&\frac{c_{2}(1-|z|)^{a}}{(1-|\varphi(z)|)^{b-a}}\bigg\{1+\int_{0}^{|\varphi(z)|}\frac{{\rm d}t}{(1-t)^{a+\frac{1}{2}}} \bigg\}\bigg(\int_{0}^{|z|}\frac{{\rm d}t}{(1-t)^{a}}\bigg) \\ &&\times \int_{0}^{|z|}\frac{{\rm d}t}{(1-t)^{b}} \bigg(\sum\limits_{l = 1}^{n}(\| \psi\varphi_{l}\| _{{\cal Z}_{\mu}}+\| \psi\| _{{\cal Z}_{\mu}})\bigg)\bigg(\sum\limits_{l = 1}^{n}\| \varphi_{l}\| _{{\cal Z}_{\mu}}\bigg) \\ & \rightarrow & 0 \ \ (|\varphi(z)|\rightarrow 1^{-}). \end{eqnarray}
(3.25)

因此,存在 0 < \delta_{1}\leq \delta < 1 ,当 |\varphi(z)| > \delta 时有

\begin{equation} \frac{\mu(|z|)|\psi(z)\| R\varphi(z)|^{2}}{\sigma_{\mu}(|\varphi(z)|)}<\varepsilon. \end{equation}
(3.26)

\{f_{j}(z)\} 是任一满足在 B 上内闭一致收敛于0且 \| f_{j}\| _{{\cal Z}_{\mu}}\leq 1 的函数列.

如果 \psi\in{\cal Z}_{\mu}(B) 且对所有 l\in \{1, \cdots, n\} 都有 \psi\varphi_{l}\in {\cal Z}_{\mu}(B) 以及(3.18)式成立,由引理2.1和引理2.5, (3.24)式和(3.26)式,我们可得

\begin{eqnarray*} c\| (\psi C_{\varphi})f_{j}\| _{{\cal Z}_{\mu}} &\leq& |\psi(0)f_{j}[\varphi(0)]|+c_{1}\sum\limits_{l = 1}^{n}(\| \psi\| _{{\cal Z}_{\mu}}+\| \psi\varphi_{l}\| _{{\cal Z}_{\mu}})\sup\limits_{w\in B}|\nabla f_{j}(w)|\\ &\;& + c_{2}\| \psi\| _{{\cal Z}_{\mu}}\sup\limits_{w\in B}|f_{j}(w)|+c_{3}\| f_{j}\| _{{\cal Z}_{\mu}}\sup\limits_{|\varphi(z)|>\delta}\frac{\mu(|z|)|\psi(z)\| R\varphi(z)|^{2}}{\sigma_{\mu}(|\varphi(z)|)}\\ &\;& + c_{4}\| f_{j}\| _{{\cal Z}_{\mu}}\sup\limits_{|\varphi(z)|>\delta}\frac{\mu(|z|)|\psi(z)\| \langle R\varphi(z), \varphi(z)\rangle|^{2}}{\mu(|\varphi(z)|)} \\ &\;& + c_{5}\sum\limits_{l = 1}^{n}(\| \psi\| _{{\cal Z}_{\mu}}+\| \psi\varphi_{l}\| _{{\cal Z}_{\mu}})^{2}\sup\limits_{|w|\leq \delta}\sum\limits_{l = 1}^{n}|\nabla (D_{l}f_{j})(w)|\\ & \Rightarrow & \overline{\lim\limits_{j\rightarrow\infty}}\ \| (\psi C_{\varphi})f_{j}\| _{{\cal Z}_{\mu}}\leq c_{6}\varepsilon. \end{eqnarray*}

根据 \varepsilon 的任意性,这意味着 \psi C_{\varphi} {\cal Z}_{\mu}(B) 上的紧算子.

反过来,设 \psi C_{\varphi} {\cal Z}_{\mu}(B) 上是紧算子,则 \psi C_{\varphi} {\cal Z}_{\mu}(B) 上有界,这样就有 \psi\in {\cal Z}_{\mu}(B) 且对任意 l\in \{1, 2, \cdots, n\} 都有 \psi\varphi_{l}\in {\cal Z}_{\mu}(B) .对任意满足 {\lim\limits_{j\rightarrow\infty}|\varphi(z^{j})| = 1} |\varphi(z^{j})| > t_{0} \ \ (j = 1, 2, \cdots) 的点列 \{z^{j}\}\subset B ,我们选取函数列

\begin{eqnarray*} f_{j}(z)& = &(1-|\varphi(z^{j})|^{2})\bigg(\int_{0}^{\langle z, \varphi(z^{j})\rangle^{3}}g(t){\rm d}t+\int_{0}^{|\varphi(z^{j})|^{4}\langle z, \varphi(z^{j})\rangle}g(t){\rm d}t\bigg) \\ && - \ 2(1-|\varphi(z^{j})|^{2})\int_{0}^{|\varphi(z^{j})|^{2}\langle z, \varphi(z^{j})\rangle^{2}}g(t){\rm d}t. \end{eqnarray*}

容易验证 \{f_{j}(z)\} B 的任一紧子集上一致收敛于0.此外,利用引理2.1和引理2.3可得 \| f_{j}\| _{{\cal Z}_{\mu}}\leq c .这意味着

\begin{equation} \lim\limits_{j\rightarrow\infty}\| C_{\varphi}f_{j}\| _{{\cal Z}_{\mu}} = 0. \end{equation}
(3.27)

对所有 j\in \{1, 2, \cdots\} ,我们有 C_{\varphi}f_{j}(z^{j}) = 0 = R[C_{\varphi}f_{j}](z^{j}) ,

\begin{equation} R^{(2)}[C_{\varphi}f_{j}](z^{j}) = 2(1-|\varphi(z^{j})|^{2})\{|\varphi(z^{j})|^{8}g'(|\varphi(z^{j})|^{6})+|\varphi(z^{j})|^{2}g(|\varphi(z^{j})|^{6})\}\langle R\varphi(z^{j}), \varphi(z^{j})\rangle^{2}. \end{equation}
(3.28)

通过引理2.1和引理2.3以及(3.27)–(3.28)式有

\begin{eqnarray*} c\| (\psi C_{\varphi})f_{j}\| _{{\cal Z}_{\mu}} &\geq &\mu(|z^{j}|)|R^{(2)}[(\psi C_{\varphi})f_{j}](z^{j})| = \mu(|z^{j}|)|\psi(z^{j})\| R^{(2)}[ C_{\varphi}f_{j}](z^{j})|\\ & \geq& 2(1-|\varphi(z^{j})|^{2})|\varphi(z^{j})|^{8}\mu(|z^{j}|)|\psi(z^{j})|g'(|\varphi(z^{j})|^{6})|\langle R\varphi(z^{j}), \varphi(z^{j})\rangle|^{2}\\ & \geq& \frac{c_{1}\mu(|z^{j}|)|\psi(z^{j})\| \langle R\varphi(z^{j}), \varphi(z^{j})\rangle|^{2}}{\mu(|\varphi(z^{j})|)} \ \Rightarrow \ \mbox{(3.18)式成立.} \end{eqnarray*}

(3)由 b < 5/4 可得 {\int_{0}^{1}\frac{{\rm d}t}{\sigma_{\mu}(t)} < \infty} .如果(3.18)–(3.19)式成立, \psi\in{\cal Z}_{\mu}(B) 且对所有 l\in \{1, 2, \cdots, n\} \psi\varphi_{l}\in {\cal Z}_{\mu}(B) ,则同样可以有(3.24)式和(3.26)式成立.同时,对上述 \varepsilon > 0 ,存在 \delta_{1} < \delta_{2} < 1 ,当 |\varphi(z)| > \delta_{2} 时有

\begin{equation} \mu(|z|)|\langle 2R\psi(z)R\varphi(z)+\psi(z)R^{(2)}\varphi(z), \varphi(z)\rangle|\int_{0}^{|\varphi(z)|}\frac{{\rm d}\rho}{\mu(\rho)}<\varepsilon. \end{equation}
(3.29)

通过 {\int_{0}^{1}\frac{{\rm d}t}{\sigma_{\mu}(t)} < \infty} 和引理2.6可知,存在 \delta_{2} < r_{0} < 1 使得

\begin{equation} |\langle\nabla f_{j}[\varphi(z)], \overline{\xi}\rangle|\leq \sup\limits_{|z|\leq r_{0}}|\nabla f_{j}[\varphi(z)]|+c\| f_{j}\| _{{\cal Z}_{\mu}}\varepsilon, \end{equation}
(3.30)

其中 \xi\in \partial B \langle \varphi(z), \xi\rangle = 0 .

由(3.24)式和(3.26)式, (3.29)–(3.30)式,引理2.1和引理2.5,我们可以证明 \psi C_{\varphi} {\cal Z}_{\mu}(B) 上是紧算子.

反过来,设 \psi C_{\varphi} {\cal Z}_{\mu}(B) 上是紧算子,可以得到 \psi\in{\cal Z}_{\mu}(B) 且对任意 l\in \{1, 2, \cdots, n\} \psi\varphi_{l}\in {\cal Z}_{\mu}(B) .在情形(2)中我们已证(3.18)式成立,接下来只需证明(3.19)式成立.

对任意满足 {\lim\limits_{j\rightarrow\infty}|\varphi(z^{j})| = 1} |\varphi(z^{j})| > t_{0} \ (j = 1, 2, \cdots) 的点列 \{z^{j}\}\subset B ,取

h_{j}(z) = \int_{0}^{1}\frac{H_{j}(\rho z)}{\rho}\ {\rm d}\rho/\int_{0}^{|\varphi(z^{j})|^{2}}g(t){\rm d}t,

其中 H_{j}(z) = \left(\int_{0}^{\langle z, \varphi(z^{j})\rangle}g(t){\rm d}t\right)^{2}.

通过简单计算可以验证 \| h_{j}\| _{{\cal Z}_{\mu}}\leq c \{h_{j}(z)\} B 上内闭一致收敛于0.

同时,我们又有

R[C_{\varphi}h_{j}](z^{j}) = \frac{\langle R\varphi(z^{j}), \varphi(z^{j})\rangle}{|\varphi(z^{j})|^{2}}\int_{0}^{|\varphi(z^{j})|^{2}}g(t){\rm d}t, \ \ \ \ \

\begin{eqnarray} R^{(2)}[C_{\varphi}h_{j}](z^{j})& = &\frac{\langle R^{(2)}\varphi(z^{j}), \varphi(z^{j})\rangle}{|\varphi(z^{j})|^{2}}\int_{0}^{|\varphi(z^{j})|^{2}}g(t){\rm d}t \\ && + \frac{\langle R\varphi(z^{j}), \varphi(z^{j})\rangle^{2}}{|\varphi(z^{j})|^{4}}\bigg(2g(|\varphi(z^{j})|^{2})-\int_{0}^{|\varphi(z^{j})|^{2}}g(t) {\rm d}t\bigg). \end{eqnarray}
(3.31)

通过引理2.1以及(3.31)式可得

\begin{eqnarray} c\| (\psi C_{\varphi})h_{j}\| _{{\cal Z}_{\mu}} &\geq& -\| \psi\| _{{\cal Z}_{\mu}}\sup\limits_{w\in B}|h_{j}(w)|-\frac{3\mu(|z^{j}|) g(|\varphi(z^{j})|^{2})|\psi(z^{j})|\langle R\varphi(z^{j}), \varphi(z^{j})\rangle^{2}}{|\varphi(z^{j})|^{4}} \\ &&+ \frac{\mu(|z^{j}|)|\langle 2R\psi(z^{j})R\varphi(z^{j})+\psi(z^{j})R^{(2)}\varphi(z^{j}), \varphi(z^{j})\rangle|}{|\varphi(z^{j})|^{2}}\int_{0}^{|\varphi(z^{j})|^{2}}g(t){\rm d}t. \end{eqnarray}
(3.32)

由(3.18)式和(3.32)式以及引理2.3–2.5可得(3.19)式成立.

(4)–(6)如果 b\geq a > 1 ,那么在 {\cal Z}_{\mu}(B) 上的加权复合算子问题恰好与权为 \nu(r) = \mu(r)/(1-r) 的Bloch型空间 {\cal B}_{\nu}(B) 上的加权复合算子问题相同.通过(2.2)式和文献[15]中的定理B,我们可以获得这些结果.

本定理证完.

  定理3.1和定理3.2含有下列情形:

\mu(r) = (1-r)^{s}\log^{t}\frac{e}{1-r} \ \ \mbox{或} \ \ \mu(r) = (1-r)^{s}\log^{t}\frac{e}{1-r}\left(\log\log\frac{e^{2}}{1-r}\right)^{p}

( s > 0 , t p 是实数)等.

对于上述注记中的 \mu ,存在许多 \psi \varphi 满足定理3.1的条件,例如, \psi(z) = z_{1} \varphi B 上的任何自同构就满足.至于紧性,当 \| \varphi\| _{\infty} = 1 时会复杂些.

参考文献

Stević S .

On new Bloch-type spaces

Appl Math Comput, 2009, 215, 841- 849

URL     [本文引用: 1]

Stević S .

Weighted composition operators from the logarithmic weighted-type space to the weighted Bergman space in {\bf C}^{n}

Appl Math Comput, 2010, 216, 924- 928

[本文引用: 1]

Li S X, Stević S. Volterra type operators on Zygmund space. J Inequal Appl, 2007, Article ID: 32124

[本文引用: 2]

Choe B , Koo H , Smith W .

Compact composition operators on small spaces

Inte Equ Oper Theory, 2006, 56, 357- 380

DOI:10.1007/s00020-006-1420-x      [本文引用: 2]

Li S X , Stević S .

Generalized composition operators on Zygmund spaces and Bloch type spaces

J Math Anal Appl, 2008, 338, 1282- 1295

DOI:10.1016/j.jmaa.2007.06.013      [本文引用: 2]

Li S X , Stević S .

Products of Volterra type operator and composition operator from H^{\infty} and Bloch spaces to the Zygmund space

J Math Anal Appl, 2008, 345, 40- 52

DOI:10.1016/j.jmaa.2008.03.063      [本文引用: 1]

Li S X , Stević S .

Weighted composition operators from Zygmund spaces into Bloch spaces

Appl Math Comput, 2008, 206 (2): 825- 831

URL    

Li S X , Stević S .

Integral-type operators from Bloch-type spaces to Zygmund-type spaces

Appl Math Comput, 2009, 215, 464- 473

URL     [本文引用: 2]

Li S X , Stević S .

On an integral-type operator from ω-Bloch spaces to μ-Zygmund spaces

Appl Math Comput, 2010, 215, 4385- 4391

URL     [本文引用: 1]

Stević S. Composition operators from the weighted Bergman space to the n-th weighted spaces on the unit disc. Discrete Dyn Nat Soc, 2009, Article ID: 742019

[本文引用: 1]

Stević S .

Composition followed by differentiation from H^{\infty} and the Bloch space to nth weighted-type spaces on the unit disk

Appl Math Comput, 2010, 216, 3450- 3458

[本文引用: 2]

Zhang X J , Li M , Guan Y .

The equivalent norms and the Gleason's problem on μ-Zygmund spaces in {\bf C}^{n}

J Math Anal Appl, 2014, 419, 185- 199

DOI:10.1016/j.jmaa.2014.04.058      [本文引用: 1]

Zhang X J , Li S L .

The composition operator on the normal weight Zygmund space in high dimensions

Complex Var Elli Equ, 2019, 64 (11): 1932- 1953

DOI:10.1080/17476933.2018.1542689      [本文引用: 4]

Chen H H , Gauthier P H .

Composition operators on μ-Bloch spaces

Canad J Math, 2009, 61, 50- 75

DOI:10.4153/CJM-2009-003-1      [本文引用: 6]

张学军, 李菊香.

{\bf C}^{n}中单位球上μ-Bloch空间之间的复合算子

数学物理学报, 2009, 29A (3): 573- 583

[本文引用: 4]

Zhang X J , Li J X .

Weighted composition operators between μ-Bloch spaces on the unit ball of {\bf C}^{n}

Acta Math Sci, 2009, 29A, 573- 583

[本文引用: 4]

Tang X M .

Extended Cesáro operators between Bloch-type spaces in the unit ball of {\bf C}^{n}

J Math Anal Appl, 2007, 326 (2): 1199- 1211

[本文引用: 2]

Stević S. On an integral-type operator from Zygmund-type spaces to mixed-norm spaces on the unit ball. Abstr Appl Anal, 2010, Article ID: 198608

[本文引用: 2]

Zhu X .

A new characterization of the generalized weighted composition operator from H^{\infty} into the Zygmund space

Math Ineq Appl, 2015, 18, 1135- 1142

Li S X , Stević S .

Products of composition and differentiation operators from Zygmund spaces to Bloch spaces and Bers spaces

Appl Math Comput, 2010, 217, 3144- 3154

URL    

Liu Y M , Yu Y Y .

Weighted differentiation composition operators from mixed-norm to Zygmund spaces

Numer Funct Anal Optim, 2010, 31, 936- 954

DOI:10.1080/00268976.2010.505108     

叶善力, 林彩淑.

Zygmund空间上的微分复合算子

数学学报, 2016, 59 (1): 11- 20

URL    

Ye S L , Lin C S .

Composition followed by differentiation on the Zygmund space

Acta Math Sin, 2016, 59 (1): 11- 20

URL    

Ye S L, Hu Q X. Weighted composition operators on the Zygmund space. Abstr Appl Anal, 2012, Artical ID: 462482

[本文引用: 2]

Dai J N .

Composition operators on Zygmund spaces of the unit ball

J Math Anal Appl, 2012, 394, 696- 705

DOI:10.1016/j.jmaa.2012.04.027      [本文引用: 1]

Han X , Xu H M .

Composition operators between Besov spaces and Zygmund spaces (in Chinese)

J of Math Study, 2009, 42, 310- 319

Liang Y X , Wang C J , Zhou Z H .

Weighted composition operators from Zygmund spaces to Bloch spaces on the unit ball

Ann Polo Math, 2015, 114 (2): 101- 114

DOI:10.4064/ap114-2-1      [本文引用: 1]

张学军, 刘竟成.

加权Bergman空间到μ-Bloch空间的复合算子

数学年刊, 2007, 28A (2): 255- 266

DOI:10.3321/j.issn:1000-8134.2007.02.011     

Zhang X J , Liu J C .

Composition operators from weighted Bergman spaces to μ-Bloch spaces

Chin Ann Math, 2007, 28A (2): 255- 266

DOI:10.3321/j.issn:1000-8134.2007.02.011     

Hu Z J .

Composition operators between Bloch-type spaces in the polydisc

Science in China Ser A, 2005, 48 (Supp): 1- 15

[本文引用: 1]

Shapiro J .

Compact composition operators on spaces of boundary-regular holomorphic functions

Proc Amer Math Soc, 1987, 100, 49- 57

DOI:10.1090/S0002-9939-1987-0883400-9     

Zhang X J , Li S L , Shang Q L , Guo Y T .

An integral estimate and the equivalent norms on F(p, q, s, k) spaces in the unit ball

Acta Math Sci, 2018, 38B (6): 1861- 1880

郭雨婷, 尚清丽, 张学军.

单位球上正规权Zygmund空间上的点乘子

数学物理学报, 2018, 38A (6): 1041- 1048

DOI:10.3969/j.issn.1003-3998.2018.06.001      [本文引用: 1]

Guo Y T , Shang Q L , Zhang X J .

The pointwise multiplier on the normal weight Zygmund space in the unit ball

Acta Math Sci, 2018, 38A (6): 1041- 1048

DOI:10.3969/j.issn.1003-3998.2018.06.001      [本文引用: 1]

Zhang X J , Xiao J B .

Weighted composition operators between μ-Bloch spaces on the unit ball

Science in China Ser A, 2005, 48, 1349- 1368

DOI:10.1360/04ys0142      [本文引用: 1]

Zhang X J , Xu S .

Weighted differentiation composition operators between normal weight Zygmund spaces and Bloch spaces in the unit ball of {\bf C}^{n} for n>1

Complex Anal Oper Theory, 2019, 13 (3): 859- 878

DOI:10.1007/s11785-018-0810-9      [本文引用: 1]

Hu Z J , Wang S S .

Composition operators on Bloch-type spaces

Proc Roy Soc Edinburgh Sect A, 2005, 135, 1229- 1239

DOI:10.1017/S0308210500004340      [本文引用: 1]

Stević S .

On an integral operator from the Zygmund space to the Bloch type space on the unit ball

Glasgow Math J, 2009, 51, 275- 287

DOI:10.1017/S0017089508004692      [本文引用: 1]

Li S L , Zhang X J , Xu S .

The compact composition operator on the μ-Bergman space in the unit ball

Acta Math Sci, 2017, 37B, 425- 438

[本文引用: 2]

Chen Z H , Liu Y .

Schwarz-Pick estimates for bounded holomorphic functions in the unit ball of {\bf C}^{n}

Acta Math Sin, 2010, 26B, 901- 908

[本文引用: 1]

Zhang X J , Xi L H , Fan H X , Li J F .

Atomic decomposition of μ-Bergman space in {\bf C}^{n}

Acta Math Sci, 2014, 34B, 779- 789

[本文引用: 1]

Zhang X J , Li S L , Shang Q L , Guo Y T .

An integral estimate and the equivalent norms on F(p, q, s, k) spaces in the unit ball

Acta Math Sci, 2018, 38B (6): 1861- 1880

赵艳辉, 张学军.

单位球上Dirichlet型空间到Zu型空间的积分型算子

数学物理学报, 2017, 37A (2): 217- 227

DOI:10.3969/j.issn.1003-3998.2017.02.001     

Zhao Y H , Zhang X J .

On an integral-type operator from Dirichlet spaces to Zygmund type spaces on the unit ball

Acta Math Sci, 2017, 37A (2): 217- 227

DOI:10.3969/j.issn.1003-3998.2017.02.001     

Li S L , Zhang X J , Xu S .

The equivalent characterization of F(p, q, s) space on bounded symmetric domains of {\bf C}^{n}

Acta Math Sci, 2017, 37B (6): 1791- 1802

唐鹏程, 张学军, 吕睿昕.

全纯函数空间上几个量的等价刻画问题

数学物理学报, 2019, 39A (6): 1291- 1299

URL     [本文引用: 1]

Tang P C , Zhang X J , Lv R X .

Equivalent characterization of several quantities on homorphic function spaces

Acta Math Sci, 2019, 39A (6): 1291- 1299

URL     [本文引用: 1]

/