数学物理学报, 2020, 40(1): 187-199 doi:

论文

一个新的可积广义超孤子族及其自相容源、守恒律

魏含玉,1, 夏铁成2, 胡贝贝3, 张燕1

A New Integrable Generalization of Super Soliton Hierarchy and Its Self-Consistent Sources and Conservation Laws

Wei Hanyu,1, Xia Tiecheng2, Hu Beibei3, Zhang Yan1

通讯作者: 魏含玉, E-mail: weihanyu8207@163.com

收稿日期: 2018-10-11  

基金资助: 国家自然科学基金项目.  11547175
河南省高等学校青年骨干教师培养计划项目.  2017GGJS145
安徽省高校优秀人才基金.  gxyq2019096
安徽省高校自然科学研究项目.  KJ2019A0637

Received: 2018-10-11  

Fund supported: the NSFC.  11547175
the Aid Project for the Mainstay Young Teachers in Henan Provincial Institutions of Higher Education of China.  2017GGJS145
the University Excellent Talent Fund of Anhui Province.  gxyq2019096
the Natural Science Research Projects in Colleges and Universities of Anhui Province.  KJ2019A0637

摘要

该文利用Lie超代数B(0,1)导出一个新的广义超孤子族,借助超迹恒等式将广义超孤子族写成超双-Hamilton结构形式.其次,建立了广义超孤子族的自相容源.最后,给出了广义超孤子族的无穷守恒律.

关键词: 超迹恒等式 ; 超Hamilton结构 ; 自相容源 ; 守恒律

Abstract

Based on a Lie super algebra B(0, 1), a new generalized super soliton hierarchy is obtained. By making use of the super trace identity, the resulting super soliton hierarchy can be put into a super bi-Hamiltonian form. Then, the self-consistent sources of the generalized super soliton hierarchy is established. Furthermore, we present the infinitely many conservation laws for the integrable super soliton hierarchy.

Keywords: Super trace identity ; Super Hamiltonian structures ; Self-consistent sources ; Conservation laws

PDF (345KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

魏含玉, 夏铁成, 胡贝贝, 张燕. 一个新的可积广义超孤子族及其自相容源、守恒律. 数学物理学报[J], 2020, 40(1): 187-199 doi:

Wei Hanyu, Xia Tiecheng, Hu Beibei, Zhang Yan. A New Integrable Generalization of Super Soliton Hierarchy and Its Self-Consistent Sources and Conservation Laws. Acta Mathematica Scientia[J], 2020, 40(1): 187-199 doi:

1 引言

近年来,随着可积系统的发展,超可积系统越来被重视.自从1986年, Chowdhury和Roy开始考虑超迹恒等式[1], 1997年胡星标给出了超迹恒等式,但他没有给出其严格的证明[2].后来马文秀给出了超迹恒等式的系统证明和常数$ \gamma $的计算公式[3],并作为应用给出了超AKNS族和超Dirac族的超Hamilton结构.之后,很多超可积族及其超Hamilton结构被给出[4-9].在文献[10]中给出了超AKNS族在隐式对称约束下的双非线性化,它在超可积系统发展中具有重要意义.

带自相容源的孤子方程越来越被重视,它的研究在物理方面具有重要应用.例如,带自相容源非线性Schrödinger方程描述了等离子物理和固体物理的相关性质.现已有多种方法给出带自相容源孤子方程的精确解,例如利用反散射变换方法[11]、对称约束导出方法[12].带自相容源方程族已有一些研究成果[13-15],近年来,超JM族和广义超AKNS族的自相容源也被给出[16-17].

守恒律在考虑孤子族的可积性方面起了重要作用. 1968年, Miura等人首次发现了KdV方程的无穷守恒律[18].之后,人们寻找了多种方法求方程的守恒律,例如:直接通过Lax对方法[19]、通过特征函数形式解和Bäcklund变换方法[19]、Lagrangian方法等[20-21].

本文安排如下:第2节,给出一个新的广义超孤子族;第3节,利用超迹恒等式给出所得广义超孤子族的超双- Hamilton结构;第4节,给出广义超孤子族的自相容源;第5节,给出广义超孤子族的无穷守恒律;最后,给出一些结论和探讨.

2 一个新的广义超孤子方程族

基于Lie超代数$ B(0, 1) $一组基

$ \begin{eqnarray} && e_1 = \frac{1}{2}\left( \begin{array}{ccc} 1&{\quad} 0{\quad} &0 \\ 0&-1&0\\ 0&0&0\\ \end{array} \right), {\quad} e_2 = \frac{1}{2}\left( \begin{array}{ccc} 0 &{\quad} 1{\quad}&0 \\ 1&0&0 \\ 0&0&0\\ \end{array} \right), {\quad} e_3 = \frac{1}{2}\left( \begin{array}{ccc} 0&{\quad} 1{\quad}&0 \\ -1&0&0 \\ 0&0&0\\ \end{array} \right), {}\\ && e_4 = \frac{1}{2}\left( \begin{array}{ccc} 0 &{\quad} 0{\quad} &1\\ 0&0&0 \\ 0&-1&0\\ \end{array} \right), {\quad} e_5 = \frac{1}{2}\left( \begin{array}{ccc} 0 &{\quad} 0{\quad}&0\\ 0&0&1 \\ 1&0&0\\ \end{array} \right), \end{eqnarray} $

其中$ e_1, e_2, e_3 $是偶元, $ e_4, e_5 $是奇元,它们满足如下的交换关系$ [e_1, e_2] = e_3, [e_1, e_3] = e_2, $$ [e_1, e_4] = [e_2, e_5] = [e_3, e_5] = \frac{1}{2}e_4, [e_2, e_4] = [e_5, e_1] = [e_4, e_3] = \frac{1}{2}e_5, $$ [e_2, e_3] = -e_1, $$ [e_4, e_4]_+ = -\frac{1}{2}(e_2+e_3), $$ [e_4, e_5]_+ = \frac{1}{2}e_1, [e_5, e_5]_+ = \frac{1}{2}(e_2-e_3). $

受以前工作启发[7, 22],考虑如下的谱问题

$ \begin{eqnarray} \left\{ \begin{array}{ll} \varphi_x = U\varphi, \\ \varphi_t = V\varphi, \\ \end{array}\right. \end{eqnarray} $

其中

这里$ w = \mu(u_{1}^{2}-u_{2}^{2}+2u_3u_4) $, $ \mu $是常数, $ \lambda $是谱参数, $ u_1 $$ u_2 $是偶变量, $ u_3 $$ u_4 $是奇变量.很显然,在谱问题(2.2)中令$ \mu = 0 $,则可约化成标准的超孤子族情形[23].

$ \begin{equation} A = \sum\limits_{m\geq 0} a_m\lambda^{m}, B = \sum\limits_{m\geq 0} b_m\lambda^{m}, C = \sum\limits_{m\geq 0} c_m\lambda^{m}, \delta = \sum\limits_{m\geq 0} \delta_m\lambda^{m}, \rho = \sum\limits_{m\geq 0} \rho_m\lambda^{m}. \end{equation} $

利用驻定零曲率方程$ V_{x} = [U, V], $并比较两端$ \lambda $同次幂系数,得

$ \begin{eqnarray} &&a_{mx} = u_2b_m-u_1c_m+\frac{1}{2}u_3\rho_m+\frac{1}{2}u_4\delta_m, {}\\ &&b_{mx} = c_{m+1}-u_2a_m-\frac{1}{2}u_3\delta_m+\frac{1}{2}u_4\rho_m+wc_m, {}\\ &&c_{mx} = b_{m+1}-u_1a_m-\frac{1}{2}u_3\delta_m-\frac{1}{2}u_4\rho_m+wb_m, \\ &&\delta_{mx} = \frac{1}{2}\delta_{m+1}+\frac{1}{2}(u_1+u_2)\rho_m-\frac{1}{2}u_3a_m-\frac{1}{2}u_4(b_m+c_m)+\frac{1}{2}w\delta_m, {}\\ &&\rho_{mx} = -\frac{1}{2}\rho_{m+1}+\frac{1}{2}(u_1-u_2)\delta_m-\frac{1}{2}u_3(b_m-c_m)+\frac{1}{2}u_4a_m-\frac{1}{2}w\rho_m, {} \end{eqnarray} $

于是得到递归关系

$ \begin{equation} \left(\begin{array}{c} b_{m+1}\\ c_{m+1}\\ \rho_{m+1}\\ \delta_{m+1} \end{array}\right) = L\left(\begin{array}{c} b_{m}\\ -c_{m}\\ -\rho_{m}\\ -\delta_{m} \end{array}\right), \quad m\geqslant 0, \end{equation} $

这里递归算子$ L $如下

取初值

$ \begin{equation} a_0 = 1, \quad b_0 = c_0 = \delta_0 = \rho_0 = 0. \end{equation} $

由递归关系(2.4),可得前几组如下

$ \begin{eqnarray} & &a_1 = 0, b_1 = u_1, c_1 = u_2, \delta_1 = u_3, \rho_1 = u_4, a_2 = \frac{1}{2}u_2^{2}-\frac{1}{2}u_1^{2}-u_3u_4, {}\\ &&b_2 = u_{2x}-wu_1, c_2 = u_{1x}-wu_2, \delta_{2} = 2u_{3x}-wu_3, \rho_2 = -2u_{4x}-wu_4, {}\\ &&a_3 = u_2u_{1x}-u_1u_{2x}+2(u_4u_{3x}-u_{4x}u_3)+w(u_1^{2}-u_2^{2}+2u_3u_4), {}\\ &&b_3 = u_{1xx}+\frac{1}{2}u_1u_{2}^{2}-\frac{1}{2}u_1^{3}-u_1u_3u_4+u_3u_{3x}-u_4u_{4x}-w_xu_2-2wu_{2x}+w^{2}u_1, \\ &&c_3 = u_{2xx}+\frac{1}{2}u_{2}^{3}-\frac{1}{2}u_2u_1^{2}-u_2u_3u_4+u_3u_{3x}+u_4u_{4x}-w_xu_1-2wu_{1x}+w^{2}u_2, {}\\ &&\delta_3 = 4u_{3xx}+\frac{1}{2}u_3u_{2}^{2}-\frac{1}{2}u_3u_1^{2}+u_4u_{1x}+u_4u_{2x}+2u_1u_{4x}+2u_2u_{4x}-2w_xu_3-4wu_{3x}+w^{2}u_3, {}\\ &&\rho_3 = 4u_{4xx}+\frac{1}{2}u_4u_{2}^{2}-\frac{1}{2}u_4u_1^{2}+u_3u_{1x}-u_3u_{2x}+2u_1u_{3x}-2u_2u_{3x}+2w_xu_4+4wu_{4x}+w^{2}u_4.{} \end{eqnarray} $

考虑辅助谱问题

$ \begin{equation} \varphi_{t_{n}} = V^{(n)}\varphi, \end{equation} $

其中

这里$ \Delta_n $是修正项,但在标准的超孤子族[23]中不会出现.令

$ \begin{equation} \Delta_n = \frac{1}{2}\left( \begin{array}{ccc} a& {\quad} b+c{\quad} &e\\ b-c&-a&f \\ f& -e&0\\ \end{array} \right), \end{equation} $

谱问题(2.2)和(2.8)的相容性导出了下面的零曲率方程

$ \begin{equation} U_{t_{n}}-V^{(n)}_{x}+[U, V^{(n)}] = 0, \end{equation} $

其中$ n\geq0 $.利用关系(2.4)给出

$ \begin{eqnarray} \left\{ \begin{array}{ll} w_{t_{n}} = a_x, b = c = e = f = 0, \\ { } u_{1t_{n}} = b_{nx}-wc_n+u_2a_n+\frac{1}{2}u_3\delta_n-\frac{1}{2}u_4\rho_n+u_2a = c_{n+1}+u_2a, \\ { } u_{2t_{n}} = c_{nx}-wb_n+u_1a+\frac{1}{2}u_3\delta_n+\frac{1}{2}u_4\rho_n = b_{n+1}+u_1a, \\ { } u_{3t_{n}} = \delta_{nx}-\frac{1}{2}w\delta_n-\frac{1}{2}u_1\rho_n-\frac{1}{2}u_2\rho_n+\frac{1}{2}u_3a_n +\frac{1}{2}u_4b_n+\frac{1}{2}u_4c_n+\frac{1}{2}u_3a\\ { } \, {\qquad} = \frac{1}{2}\delta_{n+1}+\frac{1}{2}u_3a, \\ { } u_{4t_{n}} = \rho_{nx}+\frac{1}{2}w\rho_n-\frac{1}{2}u_1\delta_n+\frac{1}{2}u_2\delta_n+\frac{1}{2}u_3b_n -\frac{1}{2}u_3c_n-\frac{1}{2}u_4a_n-\frac{1}{2}u_4a\\ {\qquad}{ }\, = -\frac{1}{2}\rho_{n+1}-\frac{1}{2}u_4a, \end{array}\right. \end{eqnarray} $

易知

$ \begin{equation} (u_2^{2}-u_1^{2}+2u_4u_3)_{tn} = 2u_2b_{n+1}-2u_1c_{n+1}+u_3\rho_{n+1}+u_4\delta_{n+1} = 2a_{n+1x}. \end{equation} $

$ a = -2\mu a_{n+1} $,可得下面的广义超孤子族

$ \begin{equation} u_{t_n} = \left(\begin{array}{c} u_1\\ u_2\\ u_3\\ u_4\\ \end{array}\right)_{t_n} = \left(\begin{array}{c} c_{n+1}-2\mu u_2a_{n+1}\\ b_{n+1}-2\mu u_1a_{n+1}\\ { } \frac{1}{2}\delta_{n+1}-\mu u_3a_{n+1}\\ { } -\frac{1}{2}\rho_{n+1}+\mu u_4a_{n+1} \end{array}\right), \end{equation} $

其中$ n\geq0 $.在(2.13)式中令$ \mu = 0 $,则可约化为标准的超孤子族[23].

若在(2.13)式中取$ n = 1 $,可得一族平凡流.若取$ n = 2 $,超孤子族(2.13)约化为2 -阶超非线性可积耦合方程

$ \begin{eqnarray} \left\{ \begin{array}{rl} u_{1t_2} = &{ } u_{2xx}+\frac{1}{2}u_2^{3}-\frac{1}{2}u_2u_1^{2}-u_2u_3u_4+u_3u_{3x}+u_4u_{4x} +2\mu(u_{4x}u_3u_1-u_{3x}u_4u_1-2u_1^{2}u_{1x}\\ &{ } +2u_1u_2u_{2x} -2u_3u_4u_{1x}-2u_2u_4u_{3x}+2u_2u_{4x}u_3)-\mu^{2}u_2(u_1^{2}-u_2^{2}+2u_3u_4), \\ u_{2t_{2}} = &{ } u_{1xx}-\frac{1}{2}u_1^{3}+\frac{1}{2}u_1u_2^{2}-u_1u_3u_4+u_3u_{3x}-u_4u_{4x}\\ &{ } +2\mu(u_{4x}u_3u_2-u_{3x}u_4u_2-2u_1u_2u_{1x} -2u_1u_4u_{3x}+2u_1u_{4x}u_3-2u_3u_4u_{2x}+2u_2^{2}u_{2x})\\ &{ } -\mu^{2}u_1(u_1^{2}-u_2^{2}+2u_3u_4)^{2}, \\ u_{3t_2} = &{ } 2u_{3xx}+\frac{1}{4}u_3u_2^{2}-\frac{1}{4}u_3u_1^{2}+\frac{1}{2}u_4u_{1x} +\frac{1}{2}u_4u_{2x}+u_1u_{4x}+u_2u_{4x}\\ &{ } +\mu(u_{3}u_1u_{2x}-u_3u_2u_{1x} +2u_2u_{2x}u_{3}-2u_1u_{1x}u_3-2u_1^{2}u_{3x}+2u_2^{2}u_{3x}-4u_3u_4u_{3x})\\ &{ } -\frac{1}{2}\mu^{2}u_3(u_1^{2}-u_2^{2}+2u_3u_4), \\ u_{4t_2} = &{ } -2u_{4xx}-\frac{1}{4}u_4u_2^{2}+\frac{1}{4}u_4u_1^{2}-u_1u_{3x}+u_2u_{3x} +\frac{1}{2}u_3u_{2x}-\frac{1}{2}u_3u_{1x}\\ &{ } +\mu(u_{4}u_2u_{1x}-u_4u_1u_{2x} -2u_1u_{1x}u_{4}+2u_2u_{2x}u_4-2u_1^{2}u_{4x}+2u_2^{2}u_{4x}-4u_3u_4u_{4x})\\ &{ } +\frac{1}{2}\mu^{2}u_4(u_1^{2}-u_2^{2}+2u_3u_4)^{2}. \end{array}\right. \end{eqnarray} $

它的Lax对由(2.2)中的$ U $$ V^{(2)} $确定,这里

$ \begin{equation} V^{(2)} = \left( \begin{array}{ccc} V_{11}^{(2)}&{\quad} V_{12}^{(2)}{\quad} &V_{13}^{(2)}\\ V_{21}^{(2)}&-V_{11}^{(2)}&V_{23}^{(2)} \\ V_{23}^{(2)}& -V_{13}^{(2)}&0\\ \end{array} \right), \end{equation} $

其中

$ \begin{eqnarray} \left\{ \begin{array}{ll} { } V_{11}^{(2)} = \frac{1}{2}\lambda^{-2}+\frac{1}{4}u_2^{2}-\frac{1}{4}u_1^{2}-\frac{1}{4}u_3u_4-\mu(u_2u_{1x}-u_1u_{2x}+2u_4u_{3x}-2u_{4x}u_3)\\ \quad\quad\quad-\mu^{2}(u_1^{2}-u_2^{2}+2u_3u_4), \\ { } V_{12}^{(2)} = \frac{1}{2}(u_1+u_2)\lambda^{-1}+\frac{1}{2}(u_1+u_2)_x-\frac{1}{2}\mu(u_1^{2}-u_2^{2}+2u_3u_4)(u_1+u_2), \\ { } V_{13}^{(2)} = \frac{1}{2}u_3\lambda^{-1}+u_{3x}-\frac{1}{2}\mu(u_1^{2}-u_2^{2}+2u_3u_4)u_3, \\ { } V_{21}^{(2)} = \frac{1}{2}(u_1-u_2)\lambda^{-1}+\frac{1}{2}(u_2-u_1)_x+\frac{1}{2}\mu(u_1^{2}-u_2^{2}+2u_3u_4)(u_2-u_1), \\ { } V_{23}^{(2)} = \frac{1}{2}u_4\lambda^{-1}-u_{4x}-\frac{1}{2}\mu(u_1^{2}-u_2^{2}+2u_3u_4)u_4. \end{array}\right. \end{eqnarray} $

3 广义超孤子族的超Hamilton结构

本节将利用如下的超迹恒等式[3-4]建立广义超孤子族(2.13)的超Hamilton结构

$ \begin{equation} \frac{\delta}{\delta u}\int Str(V\frac{\partial U}{\partial\lambda}){\rm d}x = \lambda^{-\gamma}\frac{\partial}{\partial\lambda}\lambda^{\gamma}Str(\frac{\partial U}{\partial u}V), \end{equation} $

常数$ \gamma $

$ \begin{equation} \gamma = -\frac{\lambda}{2}\frac{\rm d}{{\rm d}\lambda}\ln|Str(VV)|. \end{equation} $

通过直接的计算得

$ \begin{eqnarray} &&{ } Str(V\frac{\partial U}{\partial\lambda}) = -\frac{1}{2}\lambda^{-2}A, \quad Str(\frac{\partial U}{\partial u_1}V) = \frac{1}{2}(B+2\mu u_1A), {}\\ && Str(\frac{\partial U}{\partial u_2}V) = -\frac{1}{2}(C+2\mu u_2A), {\quad} { } Str(\frac{\partial U}{\partial u_3}V) = \frac{1}{2}(-\rho+2\mu u_4A), {}\\ &&Str(\frac{\partial U}{\partial u_4}V) = \frac{1}{2}(-\delta+2\mu u_3A). \end{eqnarray} $

把上面结果代入超迹恒等式(3.1),并比较两端$ \lambda^{n+2} $同次幂系数

$ \begin{equation} \frac{\delta}{\delta u}\int( -a_{n+2}){\rm d}x = (\gamma+n+1)\left(\begin{array}{c} b_{n+1}+2\mu u_1a_{n+1}\\ -c_{n+1}-2\mu u_2a_{n+1}\\ -\rho_{n+1}+2\mu u_4a_{n+1}\\ -\delta_{n+1}+2\mu u_3a_{n+1} \end{array}\right), \quad n\geq0. \end{equation} $

在(3.4)式中令$ n = 0 $,得$ \gamma = 0 $.于是有

$ \begin{equation} H_{n+1} = \int-\frac{a_{n+2}}{n+1}{\rm d}x, \quad \frac{\delta H_{n+1}}{\delta u} = \left(\begin{array}{c} b_{n+1}+2\mu u_1a_{n+1}\\ -c_{n+1}-2\mu u_2a_{n+1}\\ -\rho_{n+1}+2\mu u_4a_{n+1}\\ -\delta_{n+1}+2\mu u_3a_{n+1} \end{array}\right), {\quad} n\geqslant 0. \end{equation} $

另外,易得

$ \begin{equation} \left(\begin{array}{c} b_{n+1}\\ c_{n+1}\\ \rho_{n+1}\\ \delta_{n+1} \end{array}\right) = R_{1}\left(\begin{array}{c} b_{n+1}+2\mu u_1a_{n+1}\\ -c_{n+1}-2\mu u_2a_{n+1}\\ -\rho_{n+1}+2\mu u_4a_{n+1}\\ -\delta_{n+1}+2\mu u_3a_{n+1} \end{array}\right), {\quad} n\geqslant 0, \end{equation} $

其中$ R_{1} $

$ \begin{equation} R_1 = \left(\begin{array}{cccc} 1-2\mu u_1\partial^{-1}u_2&-2\mu u_1\partial^{-1}u_1&\mu u_1\partial^{-1}u_3&\mu u_1\partial^{-1}u_4\\ -2\mu u_2\partial^{-1}u_2&\ -1-2\mu u_2\partial^{-1}u_1\ &\mu u_2\partial^{-1}u_3&\mu u_2\partial^{-1}u_4\\ 2\mu u_4\partial^{-1}u_2&2\mu u_4\partial^{-1}u_1&-1-\mu u_4\partial^{-1}u_3&-\mu u_4\partial^{-1}u_4\\ 2\mu u_3\partial^{-1}u_2&2\mu u_3\partial^{-1}u_1&-\mu u_3\partial^{-1}u_3&-1-\mu u_3\partial^{-1}u_4 \end{array}\right). \end{equation} $

因此,广义超孤子族(2.13)具有如下的Hamilton结构

$ \begin{equation} u_{t_n} = R_2\left(\begin{array}{c} b_{n+1}\\ c_{n+1}\\ \rho_{n+1}\\ \delta_{n+1}\\ \end{array}\right) = R_2R_1\left(\begin{array}{c} b_{n+1}+2\mu u_1a_{n+1}\\ -c_{n+1}-2\mu u_2a_{n+1}\\ -\rho_{n+1}+2\mu u_4a_{n+1}\\ -\delta_{n+1}+2\mu u_3a_{n+1} \end{array}\right) = J\frac{\delta H_{n+1}}{\delta u}, \quad n\geq0, \end{equation} $

其中

$ \begin{equation} R_2 = \left(\begin{array}{cccc} -2\mu u_2\partial^{-1}u_2&1+2\mu u_2\partial^{-1}u_1&-\mu u_2\partial^{-1}u_3&-\mu u_2\partial^{-1}u_4\\ 1-2\mu u_1\partial^{-1}u_2&2\mu u_1\partial^{-1}u_1&-\mu u_1\partial^{-1}u_3&-\mu u_1\partial^{-1}u_4\\ -\mu u_3\partial^{-1}u_2&\mu u_3\partial^{-1}u_1& { } -\frac{1}{2}\mu u_3\partial^{-1}u_3&{ } -\frac{1}{2}-\frac{1}{2}\mu u_3\partial^{-1}u_4\\ \mu u_4\partial^{-1}u_2&-\mu u_4\partial^{-1}u_1& { } \frac{1}{2}+\frac{1}{2}\mu u_4\partial^{-1}u_3&{ } \frac{1}{2}\mu u_4\partial^{-1}u_4 \end{array}\right), \end{equation} $

超Hamiltonian算子

$ \begin{equation} J = R_2R_1 = \left(\begin{array}{cccc} -4\mu u_2\partial^{-1}u_2&-1-4\mu u_2\partial^{-1}u_1&2\mu u_2\partial^{-1}u_3&2\mu u_2\partial^{-1}u_4\\ 1-4\mu u_1\partial^{-1}u_2&-4\mu u_1\partial^{-1}u_1&2\mu u_1\partial^{-1}u_3&2\mu u_1\partial^{-1}u_4\\ -2\mu u_3\partial^{-1}u_2&-2\mu u_3\partial^{-1}u_1&\mu u_3\partial^{-1}u_3& { } \frac{1}{2}+\mu u_3\partial^{-1}u_4\\ 2\mu u_4\partial^{-1}u_2&2\mu u_4\partial^{-1}u_1& { } -\frac{1}{2}-\mu u_4\partial^{-1}u_3&\mu u_4\partial^{-1}u_4 \end{array}\right). \end{equation} $

另外,利用递归关系(2.4),广义超孤子族(2.13)可写为如下形式

$ \begin{equation} u_{t_n} = R_2L\left(\begin{array}{c} b_{n}\\ c_{n}\\ \rho_{n}\\ \delta_{n}\\ \end{array}\right) = R_2LR_1\left(\begin{array}{c} b_{n}+2\mu u_1a_{n}\\ -c_{n}-2\mu u_2a_{n}\\ -\rho_{n}+2\mu u_4a_{n}\\ -\delta_{n}+2\mu u_3a_{n} \end{array}\right) = M\frac{\delta H_{n}}{\delta u}, \quad n\geq0, \end{equation} $

其中$ M = R_2LR_1 = (M_{ij})_{4\times4} $是第二个超Hamilton算子.

4 广义超孤子族的自相容源

考虑线性系统

$ \begin{equation} \left(\begin{array}{c} \varphi_{1j}\\ \varphi_{2j} \\ \varphi_{3j}\\ \end{array}\right)_{x} = U\left(\begin{array}{c} \varphi_{1j}\\ \varphi_{2j} \\ \varphi_{3j}\\ \end{array}\right), \quad \left(\begin{array}{c} \varphi_{1j}\\ \varphi_{2j} \\ \varphi_{3j}\\ \end{array}\right)_{t} = V\left(\begin{array}{c} \varphi_{1j}\\ \varphi_{2j} \\ \varphi_{3j}\\ \end{array}\right). \end{equation} $

基于文献[24],可得

$ \begin{equation} \frac{\delta \lambda_{j}}{\delta u_i} = \frac{1}{3}Str(\Psi_j\frac{\partial U(u, \lambda_j)}{\delta u_i}), \ \ i = 1, 2, \cdots4, \end{equation} $

这里$ Str $表示矩阵的超迹和

$ \begin{equation} \Psi_j = \left( \begin{array}{ccc} \varphi_{1j} \varphi_{2j}& -\varphi_{1j} ^{2} &\varphi_{1j}\varphi_{3j} \\ \varphi_{2j} ^{2}&{\quad} - \varphi_{1j} \varphi_{2j}{\quad} & \varphi_{2j} \varphi_{3j}\\ \varphi_{2j}\varphi_{3j}&- \varphi_{1j} \varphi_{3j}&0\\ \end{array} \right), \quad j = 1, 2, \cdots N. \end{equation} $

利用(4.1)式,可得$ \frac{\delta \lambda_{j}}{\delta u} $

$ \begin{equation} \sum\limits_{j = 1}^N \frac{\delta\lambda_j}{\delta u_i} = \sum\limits_{j = 1}^N \left( \begin{array}{cccccc} { } Str(\Psi_j\frac{\delta U}{\delta u_1})\\ { } Str(\Psi_j\frac{\delta U}{\delta u_2})\\ { } Str(\Psi_j\frac{\delta U}{\delta u_3})\\ { } Str(\Psi_j\frac{\delta U}{\delta u_4})\\ \end{array} \right) = \left( \begin{array}{cccccc} { } 2\mu u_1\langle\Phi_1, \Phi_2\rangle-\frac{1}{2}\langle\Phi_1, \Phi_1\rangle+\frac{1}{2}\langle\Phi_2, \Phi_2\rangle\\ { } -2\mu u_2\langle\Phi_1, \Phi_2\rangle+\frac{1}{2}\langle\Phi_1, \Phi_1\rangle+\frac{1}{2}\langle\Phi_2, \Phi_2\rangle\\ 2\mu u_4\langle\Phi_1, \Phi_2\rangle-\langle\Phi_2, \Phi_3\rangle\\ 2\mu u_3\langle\Phi_1, \Phi_2\rangle+\langle\Phi_1, \Phi_3\rangle\\ \end{array} \right), \end{equation} $

其中$ \Phi_i = (\varphi_{i1}, \cdots\varphi_{iN})^{T}, i = 1, 2, 3. $

因此,带自相容源的广义超孤子族(2.13)如下

$ \begin{eqnarray} u_{t_n}& = &\left(\begin{array}{cccc} u_1 \\ u_2 \\ u_3 \\ u_4 \\ \end{array}\right)_{t_n} = J\frac{\delta H_{n+1}}{\delta u_i}+J\sum\limits_{j = 1}^N \frac{\delta\lambda_j}{\delta u_i}{}\\ & = &J\left(\begin{array}{c} b_{n+1}+2\mu u_1a_{n+1}\\ -c_{n+1}-2\mu u_2a_{n+1}\\ -\rho_{n+1}+2\mu u_4a_{n+1}\\ -\delta_{n+1}+2\mu u_3a_{n+1} \end{array}\right)+J\left( \begin{array}{cccccc} { } 2\mu u_1\langle\Phi_1, \Phi_2\rangle-\frac{1}{2}\langle\Phi_1, \Phi_1\rangle+\frac{1}{2}\langle\Phi_2, \Phi_2\rangle\\ { } -2\mu u_2\langle\Phi_1, \Phi_2\rangle+\frac{1}{2}\langle\Phi_1, \Phi_1\rangle+\frac{1}{2}\langle\Phi_2, \Phi_2\rangle\\ 2\mu u_4\langle\Phi_1, \Phi_2\rangle-\langle\Phi_2, \Phi_3\rangle\\ 2\mu u_3\langle\Phi_1, \Phi_2\rangle+\langle\Phi_1, \Phi_3\rangle\\ \end{array} \right). \end{eqnarray} $

$ n = 2 $,可得一组带自相容源的超孤子方程

$ \begin{eqnarray} \left\{ \begin{array}{rl} u_{1t_2} = &{ } u_{2xx}+\frac{1}{2}u_2^{3}-\frac{1}{2}u_2u_1^{2}-u_2u_3u_4+u_3u_{3x}+u_4u_{4x} +2\mu(u_{4x}u_3u_1-u_{3x}u_4u_1\\ &{ } -2u_1^{2}u_{1x} +2u_1u_2u_{2x}-2u_3u_4u_{1x}-2u_2u_4u_{3x}+2u_2u_{4x}u_3)\\ &{ } -\mu^{2}u_2(u_1^{2}-u_2^{2}+2u_3u_4) +2\mu u_1\sum\limits_{j = 1}^N \varphi_{1j}\varphi_{2j}-\frac{1}{2}\sum\limits_{j = 1}^N (\varphi_{1j}^{2}-\varphi_{2j}^2), \\ u_{2t_{2}} = &{ } u_{1xx}-\frac{1}{2}u_1^{3}+\frac{1}{2}u_1u_2^{2}-u_1u_3u_4+u_3u_{3x}-u_4u_{4x} +2\mu(u_{4x}u_3u_2-u_{3x}u_4u_2\\ &{ } -2u_1u_2u_{1x} -2u_1u_4u_{3x}+2u_1u_{4x}u_3-2u_3u_4u_{2x}+2u_2^{2}u_{2x})\\ &{ } -\mu^{2}u_1(u_1^{2}-u_2^{2}+2u_3u_4)^{2} -2\mu u_1\sum\limits_{j = 1}^N \varphi_{1j}\varphi_{2j}+\frac{1}{2}\sum\limits_{j = 1}^N (\varphi_{1j}^{2}+\varphi_{2j}^2), \\ u_{3t_2} = &{ } 2u_{3xx}+\frac{1}{4}u_3u_2^{2}-\frac{1}{4}u_3u_1^{2}+\frac{1}{2}u_4u_{1x}+\frac{1}{2}u_4u_{2x}+u_1u_{4x} +u_2u_{4x} +\mu(u_{3}u_1u_{2x}\\ &-u_3u_2u_{1x} +2u_2u_{2x}u_{3}-2u_1u_{1x}u_3-2u_1^{2}u_{3x}+2u_2^{2}u_{3x}-4u_3u_4u_{3x})\\ &{ } -\frac{1}{2}\mu^{2}u_3(u_1^{2}-u_2^{2}+2u_3u_4) +2\mu u_4\sum\limits_{j = 1}^N \varphi_{1j}\varphi_{2j}-\sum\limits_{j = 1}^N \varphi_{2j}\varphi_{3j}, \\ u_{4t_2} = &{ } -2u_{4xx}-\frac{1}{4}u_4u_2^{2}+\frac{1}{4}u_4u_1^{2}-u_1u_{3x}+u_2u_{3x}+\frac{1}{2}u_3u_{2x} -\frac{1}{2}u_3u_{1x}\\ &+\mu(u_{4}u_2u_{1x}-u_4u_1u_{2x} -2u_1u_{1x}u_{4}+2u_2u_{2x}u_4-2u_1^{2}u_{4x}+2u_2^{2}u_{4x} \\ &{ }-4u_3u_4u_{4x}) +\frac{1}{2}\mu^{2}u_4(u_1^{2}-u_2^{2}+2u_3u_4)^{2} +2\mu u_3\sum\limits_{j = 1}^N \varphi_{1j}\varphi_{2j}+\sum\limits_{j = 1}^N \varphi_{1j}\varphi_{3j}, \\ \varphi_{1jx} = &{ } \frac{1}{2}(\lambda^{-1}+w)\varphi_{1j}+\frac{1}{2}(u_1+u_2)\varphi_{2j}+\frac{1}{2}u_3\varphi_{3j}, \\ \varphi_{2jx} = &{ } \frac{1}{2}(u_1-u_2)\varphi_{1j}-\frac{1}{2}(\lambda^{-1}+w)\varphi_{2j}+\frac{1}{2}u_4\varphi_{3j}, \quad j = 1, \cdots N.\\ \varphi_{3jx} = &{ } \frac{1}{2}u_4\varphi_{1j}-\frac{1}{2}u_3\varphi_{2j}, \end{array} \right. \end{eqnarray} $

5 广义超孤子族的守恒律

本节给出广义超孤子族的守恒律.引进变量

$ \begin{equation} K = \frac{\varphi_{2}}{\varphi_{1}}, \quad G = \frac{\varphi_{3}}{\varphi_{1}}, \end{equation} $

可得

$ \begin{equation} \begin{array}{l} { } K_{x} = \frac{1}{2}(u_1-u_2)-(\lambda^{-1}+w) K+\frac{1}{2}u_4G-\frac{1}{2}(u_1+u_2)K^{2}-\frac{1}{2}u_3 KG, \\ { } G_{x} = \frac{1}{2}u_4-\frac{1}{2}u_3K-\frac{1}{2}(\lambda ^{-1}+w)G-\frac{1}{2}(u_1+u_2)GK-\frac{1}{2}u_3G^{2}. \end{array} \end{equation} $

$ K $$ G $$ \lambda $级数展开如下

$ \begin{equation} K = \sum\limits_{j = 1}^\infty k_j\lambda^{j}, \ \ G = \sum\limits_{j = 1}^\infty g_j\lambda^{j}. \end{equation} $

把(5.3)式代入(5.2)式,并比较$ \lambda $的同次幂系数,得$ k_j $$ g_j $的递归关系式如下

$ \begin{equation} \begin{array}{l} { } k_{j+1} = -k_{jx}-wk_j+\frac{1}{2}u_4g_j-\frac{1}{2}(u_1+u_2)\sum\limits_{l = 1}^{j-1}k_lk_{j-l}-\frac{1}{2}u_3\sum\limits_{l = 1}^{j-1}k_lg_{j-l}, \\ { } g_{j+1} = -2g_{jx}+u_3k_j-wg_j-(u_1+u_2)\sum\limits_{l = 1}^{j-1}g_lk_{j-l}-u_3\sum\limits_{l = 1}^{j-1}g_lg_{j-l}, \quad j\geq2. \end{array} \end{equation} $

$ k_j $$ g_j $的前几项为

$ \begin{eqnarray} k_1& = &\frac{1}{2}(u_1-u_2), g_1 = u_4, k_2 = \frac{1}{2}(u_2-u_1)x-\frac{1}{2}\mu(u_1-u_2)(u_1^{2}-u_2^{2}+2u_3u_4), {}\\ g_2& = &-2u_{4x}-\frac{1}{2}(u_1-u_2)u_3-\mu(u_1^{2}-u_2^{2})u_4, {}\\ k_3& = &\frac{1}{2}(u_1-u_2)_{xx}+\frac{1}{2}w_{x}(u_1-u_2)+\frac{1}{2}w^{2}(u_1-u_2)-\frac{1}{8}(u_1+u_2)(u_1-u_2)^{2} {}\\ &&+w(u_1-u_2)_x-u_4u_{4x}, {}\\ g_3& = &4u_{4xx}+\frac{3}{2}(u_2-u_1)_xu_3-(u_1-u_2)u_{3x}+(u_1-u_2w u_3)+\frac{1}{2}(u_1^{2}-u_2^{2})u_4 {}\\ &&+2wu_{4x}+w^{2}u_4+4w(u_1u_{1x}-u_2u_{2x}), \cdots. \end{eqnarray} $

由于

$ \begin{equation} \frac{\partial}{\partial t} \bigg[\frac{1}{2}(\lambda^{-1}+w)+\frac{1}{2}(u_1+u_2)K+\frac{1}{2}u_3G\bigg] = \frac{\partial}{\partial x}\bigg[\frac{1}{2}A+\frac{1}{2}(B+C)K+\frac{1}{2}\delta G\bigg], \end{equation} $

$ \sigma = \frac{1}{2}(\lambda^{-1}+w)+\frac{1}{2}(u_1+u_2)K+\frac{1}{2}u_3G $, $ \theta = \frac{1}{2}A+\frac{1}{2}(B+C)K+\frac{1}{2}\delta G $,则(5.6)式可写成$ \sigma_t = \theta_x $,这正是守恒律的标准形式.利用(2.14)式得

$ \begin{equation} \begin{array}{l} { } A = \lambda^{-2}+\frac{1}{2}u_2^{2}-\frac{1}{2}u_1^{2}-u_3u_4, \\ B = u_1\lambda^{-1}+u_{2x}-\mu u_1(u_1^{2}-u_2^{2}+2u_3u_4), \\ C = u_2\lambda^{-1}+u_{1x}-\mu u_2(u_1^{2}-u_2^{2}+2u_3u_4), \\ \delta = u_3\lambda^{-1}+2u_{3x}-\mu u_3(u_1^{2}-u_2^{2}). \end{array} \end{equation} $

$ \sigma $$ \theta $$ \lambda $的级数展开,相应的系数分别被称为守恒密度和流

$ \begin{equation} \sigma = \frac{1}{2}\lambda^{-1}+\frac{1}{2}w+\sum\limits_{j = 1}^\infty \sigma_j\lambda^{j}, \ \ \theta = \frac{1}{2}(\lambda^{-2}+\frac{1}{2}u_2^{2}-\frac{1}{2}u_1^{2}-u_3u_4)+\sum\limits_{j = 1}^\infty \theta_j\lambda^{j}, \end{equation} $

其前2个守恒密度和流为

$ \begin{eqnarray} \sigma_1 & = & \frac{1}{4}(u_1^{2}-u_2^{2})+\frac{1}{2}u_3u_4 , {}\\ \theta _1& = &\frac{1}{4}(u_1+u_2)[(u_2-u_1)x-\mu(u_1-u_2)(u_1^{2}-u_2^{2}+2u_3u_4)]{}\\ &&+\frac{1}{4}(u_1-u_2)[u_{1x}+\mu(u_2^{3} -u_1^{3}+u_1u_2^{2}-u_2u_1^{2}-2u_1u_3u_4-2u_2u_3u_4)]{}\\ &&-\frac{1}{2}u_3[2u_{4x}+\frac{1}{2}(u_1-u_2)u_3+\mu(u_1^{2}-u_2^{2})u_4] +\frac{1}{2}(2u_{3x}-\mu u_3u_1^{2}+\mu u_3u_2^{2})u_4, {} \\ \sigma _2 & = & \frac{1}{4}(u_1+u_2)[(u_2-u_1)_x-\mu(u_1-u_2)(u_1^{2}-u_2^{2}+2u_3u_4)]-u_3[u_{4x}+\frac{1}{2}\mu(u_1^{2}-u_2^{2})u_4] , {}\\ \theta_2& = &\frac{1}{2}(u_1+u_2)k_{3}+\frac{1}{4}[u_{1x}+\mu(u_2^{3}-u_1^{3}+u_1u_2^{2} -u_2u_1^{2}-2u_1u_3u_4-2u_2u_3u_4)]{}\\ &&\times[(u_2-u_1)x\mu(u_1-u_2)(u_1^{2}-u_2^{2}+2u_3u_4)]+\frac{1}{2}u_3g_{3}- \frac{1}{2}(2u_{3x}-\mu u_3u_1^{2}+\mu u_3u_2^{2}){}\\ &&\times [2u_{4x}+\frac{1}{2}(u_1-u_2)u_3+\mu(u_1^{2}-u_2^{2})u_4], \end{eqnarray} $

其中$ k_3 $$ g_3 $由(5.5)式给出.而$ \sigma_j $$ \theta_j $的递归关系如下

$ \begin{eqnarray} \sigma_j& = &\frac{1}{2}(u_1+u_2)k_{j}+\frac{1}{2}u_3g_j, {}\\ \theta_j& = &\frac{1}{2}(u_1+u_2)k_{j+1}+\frac{1}{2}[u_{1x}+\mu(u_2^{3}-u_1^{3}+u_1u_2^{2}-u_2u_1^{2}-2u_1u_3u_4-2u_2u_3u_4)]k_j{}\\ &&+\frac{1}{2}u_3g_{j+1}+\frac{1}{2}(2u_{3x}-\mu u_3u_1^{2}+\mu u_3u_2^{2})g_j, \end{eqnarray} $

$ k_j $$ g_j $可分别由(5.4)式推出.我们可以给出(2.14)式的前2个守恒律如下

$ \begin{equation} \sigma_{1t} = \theta_{1x}, \quad \sigma_{2t} = \theta_{2x}, \end{equation} $

其中$ \sigma_1, \theta_1, \sigma_2 $$ \theta_2 $由(5.9)式定义.则(2.13)式的无穷守恒律可由方程(5.2)-(5.11)容易地给出.

6 小结

利用Lie超代数$ B(0, 1) $,我们建立了新的广义超孤子族,借助超迹恒等式将它写成双-Hamilton结构形式.同时,也给出了广义超孤子族的自相容源和守恒律.需要特别指出,广义超孤子族涉及到费米变量,扩展的费米变量运算构成一Grassmann代数.有时称(2.13)式为费米扩展,而对于其它的超可积系统,是否可以用类似的方法给出它的费米扩展?另外,在文献[25-26]中给出了超AKNS族和超经典Boussinesq族的双非线性化,本文是否也可以给出其双非线性化?近来,怪波解等[27-32]给出可积系统精确解一类特殊的可积性.作为约化,我们得到了非线性可积方程,如何获得约化方程的解是项重要和困难的工作,下一步我们将考虑这个问题.

参考文献

Chowdhury A R , Roy S .

On the Bäcklund transformation and Hamiltonian properties of superevaluation equations

J Math Phys, 1986, 27 (10): 2464- 2468

DOI:10.1063/1.527309      [本文引用: 1]

Hu X B .

An approach to generate superextensions of integrable systems

J Phys A: Math Gen, 1997, 30 (2): 619- 632

DOI:10.1088/0305-4470/30/2/023      [本文引用: 1]

Ma W X , He J S , Qin Z Y .

A supertrace identity and its applications to superintegrable systems

J Math Phys, 2008, 49 (3): 033511

DOI:10.1063/1.2897036      [本文引用: 2]

Ma W X. Nonlinear and Modern Mathematical Physics. New York: AIP Conference Proceedings, 2010

[本文引用: 2]

Yu F J , Feng L L , Li L .

Darboux transformations for super-Schrödinger equation, super-Dirac equation and their exact solutions

Nonlinear Dynam, 2017, 88 (2): 1257- 1271

Yu F J , Li L .

A new matrix Lie algebra, the multicomponent Yang hierarchy and its super-integrable coupling system

Appl Math Comput, 2009, 207 (2): 380- 387

URL    

Zhang Y F , Tam H W , Mei J Q .

Some 2+1 dimensional super-integrable systems

Z Naturforsch, 2015, 70 (10): 791- 796

DOI:10.1515/zna-2015-0213      [本文引用: 1]

Tao S X , Xia T C .

Lie algebra and Lie super algebra for integrable couplings of C-KdV hierarchy

Chin Phys Lett, 2010, 27 (4): 040202

DOI:10.1088/0256-307X/27/4/040202     

Tao S X , Xia T C .

Two super-integrable hierarchies and their super-Hamiltonian structures

Commun Nonlinear Sci Numer Simulat, 2011, 16 (1): 127- 132

DOI:10.1016/j.cnsns.2010.04.009      [本文引用: 1]

Yu J , Han W , He J S .

Binary nonlinearization of the super AKNS system under an implicit symmetry constraint

J Phys A: Math Theor, 2009, 42 (46): 465201

DOI:10.1088/1751-8113/42/46/465201      [本文引用: 1]

Meŕnikov V K .

Integration of the nonlinear Schrodinger equation with a source

Inverse Probl, 1992, 8 (1): 133- 147

URL     [本文引用: 1]

Ma W X , Strampp W .

An explicit symmetry constraint for the Lax pairs and the adjoint Lax pairs of AKNS systems

Phys Lett A, 1994, 185 (3): 277- 286

DOI:10.1016/0375-9601(94)90616-5      [本文引用: 1]

Yu F J , Li L .

Integrable coupling system of JM equations hierarchy with self-consistent sources

Commun Theor Phys, 2010, 53 (1): 6- 12

DOI:10.1088/0253-6102/53/1/02      [本文引用: 1]

Yu F J .

An integrable couplings of G-WKI equations hierarchy with self-consistent sources

Comput Math Appl, 2011, 61 (8): 2085- 2089

DOI:10.1016/j.camwa.2010.08.079     

魏含玉, 夏铁成.

超Guo族的自相容源和守恒律

数学物理学报, 2013, 33A (6): 1133- 1141

URL     [本文引用: 1]

Wei H Y , Xia T C .

Conservation laws and self-consistent sources for a super-Guo equation hierarchy

Acta Math Sci (Ser A), 2013, 33A (6): 1133- 1141

URL     [本文引用: 1]

Wang H , Xia T C .

Super Jaulent-Miodek hierarchy and its super Hamiltonian structure, conservation laws and its self-consistent sources

Front Math China, 2014, 9 (6): 1367- 1379

DOI:10.1007/s11464-014-0419-x      [本文引用: 1]

Yu J , Ma W X , Han J W , Chen S T .

An integrable generalization of the super AKNS hierarchy and its bi-Hamiltonian formulation

Commun Nonlinear Sci Numer Simulat, 2017, 43, 151- 157

DOI:10.1016/j.cnsns.2016.06.033      [本文引用: 1]

Miura R M , Gardner C S , Kruskal M D .

Korteweg-de Vries equation and generalizations. I. A remarkable explicit nonlinear transformation

J Math Phys, 9 (8): 1204- 1209

DOI:10.1063/1.1664701      [本文引用: 1]

Wadati M , Sanuki H , Konno K .

Relationships among inverse method, Bäcklund transformation and an infinite number of conservation laws

Progr Theoret Phys, 1975, 53 (2): 419- 436

DOI:10.1143/PTP.53.419      [本文引用: 2]

Ibragimov N H , Kolsrud T .

Lagrangian approach to evolution equations: symmetries and conservation laws

Nonlinear Dyn, 2004, 36 (1): 29- 40

[本文引用: 1]

Yang J J , Ma W X .

Conservation laws of a perturbed Kaup-Newell equation

Mod Phys Lett B, 2016, 30 (32): 1650381

URL     [本文引用: 1]

Geng X G , Ma W X .

A generalized Kaup-Newell spectral problem, soliton equations and finite-dimensional integrable systems

Il Nuovo Cimento A, 1995, 108 (4): 1965- 1970

[本文引用: 1]

Li Z , Dong H H , Yang H W .

A super-soliton hierarchy and its super-Hamiltonian structure

Int J Theor Phys, 2009, 48 (7): 2172- 2176

DOI:10.1007/s10773-009-9995-z      [本文引用: 3]

Tu G Z .

An extension of a theorem on gradients of conserved densities of integrable systems

Northeastern Math J, 1990, 6 (1): 28- 32

[本文引用: 1]

He J S , Yu J , Zhou R G .

Binary nonlinearization of the super AKNS system

Mod Phys Lett B, 2008, 22 (4): 275- 288

DOI:10.1142/S0217984908014778      [本文引用: 1]

Tao S X , Wang H , Shi H .

Binary nonlinearization of the super classical-Boussinesq hierarchy

Chin Phys B, 2011, 20 (7): 070201

DOI:10.1088/1674-1056/20/7/070201      [本文引用: 1]

Yu F J .

Dynamics of nonautonomous discrete rogue wave solutions for an Ablowitz-Musslimani equation with PT-symmetric potential

Chaos, 2017, 27 (2): 023108

DOI:10.1063/1.4975763      [本文引用: 1]

Ma W X , Yong X L , Zhang H Q .

Diversity of interaction solutions to the (2+1)-dimensional Ito equation

Comput Math Appl, 2018, 75 (1): 289- 295

DOI:10.1016/j.camwa.2017.09.013     

Ma W X , Zhou Y .

Lump solutions to nonlinear partial differential equations via Hirota bilinear forms

J Differ Equ, 264 (4): 2633- 2659

DOI:10.1016/j.jde.2017.10.033     

Ma W X , Li J , Khalique C M .

A study on lump solutions to a generalized Hirota-Satsuma-Ito equation in (2+1)-dimensions

Complexity, 2018, 2018, 9059858

Chen S T , Ma W X .

Lump solutions of a generalized Calogero-Bogoyavlenskii-Schiff equation

Comput Math Appl, 2018, 76 (7): 1680- 1685

DOI:10.1016/j.camwa.2018.07.019     

Ma W X .

Abundant lumps and their interaction solutions of (3+1)-dimensional linear PDEs

J Geom Phys, 2018, 133, 10- 16

DOI:10.1016/j.geomphys.2018.07.003      [本文引用: 1]

Yang J J , Ma W X , Qin Z Y .

Lump and lump-soliton solutions to the (2+1)-dimensional Ito equation

Anal Math Phys, 2018, 8 (3): 427- 436

DOI:10.1007/s13324-017-0181-9     

Ma W X .

Lump and interaction solutions of linear PDEs in (3+1)-dimensions

E Asian J Appl Math, 2019, 9 (1): 185- 194

DOI:10.4208/eajam.100218.300318     

魏含玉, 夏铁成.

广义Broer-Kaup-Kupershmidt孤子方程的拟周期解

数学物理学报, 2016, 36A (2): 317- 327

URL    

Wei H Y , Xia T C .

Quasi-periodic solution of the generalized Broer-Kaup-Kupershmidt soliton equation

Acta Math Sci (Ser A), 2016, 36A (2): 317- 327

URL    

孙玉娟, 丁琦, 梅建琴, 张鸿庆.

D-AKNS方程的代数几何解

数学物理学报, 2013, 33A (2): 276- 284

DOI:10.3969/j.issn.1003-3998.2013.02.011     

Sun Y J , Ding Q , Mei J Q , Zhang H Q .

Algebro-Geometric solutions of the D-AKNS equations

Acta Math Sci (Ser A), 2013, 33A (2): 276- 284

DOI:10.3969/j.issn.1003-3998.2013.02.011     

/