一个新的可积广义超孤子族及其自相容源、守恒律
A New Integrable Generalization of Super Soliton Hierarchy and Its Self-Consistent Sources and Conservation Laws
通讯作者:
收稿日期: 2018-10-11
基金资助: |
|
Received: 2018-10-11
Fund supported: |
|
该文利用Lie超代数B(0,1)导出一个新的广义超孤子族,借助超迹恒等式将广义超孤子族写成超双-Hamilton结构形式.其次,建立了广义超孤子族的自相容源.最后,给出了广义超孤子族的无穷守恒律.
关键词:
Based on a Lie super algebra B(0, 1), a new generalized super soliton hierarchy is obtained. By making use of the super trace identity, the resulting super soliton hierarchy can be put into a super bi-Hamiltonian form. Then, the self-consistent sources of the generalized super soliton hierarchy is established. Furthermore, we present the infinitely many conservation laws for the integrable super soliton hierarchy.
Keywords:
本文引用格式
魏含玉, 夏铁成, 胡贝贝, 张燕.
Wei Hanyu, Xia Tiecheng, Hu Beibei, Zhang Yan.
1 引言
本文安排如下:第2节,给出一个新的广义超孤子族;第3节,利用超迹恒等式给出所得广义超孤子族的超双- Hamilton结构;第4节,给出广义超孤子族的自相容源;第5节,给出广义超孤子族的无穷守恒律;最后,给出一些结论和探讨.
2 一个新的广义超孤子方程族
基于Lie超代数
其中
其中
这里
设
利用驻定零曲率方程
于是得到递归关系
这里递归算子
取初值
由递归关系(2.4),可得前几组如下
考虑辅助谱问题
其中
这里
谱问题(2.2)和(2.8)的相容性导出了下面的零曲率方程
其中
易知
取
其中
若在(2.13)式中取
它的Lax对由(2.2)中的
其中
3 广义超孤子族的超Hamilton结构
常数
通过直接的计算得
把上面结果代入超迹恒等式(3.1),并比较两端
在(3.4)式中令
另外,易得
其中
因此,广义超孤子族(2.13)具有如下的Hamilton结构
其中
超Hamiltonian算子
另外,利用递归关系(2.4),广义超孤子族(2.13)可写为如下形式
其中
4 广义超孤子族的自相容源
考虑线性系统
基于文献[24],可得
这里
利用(4.1)式,可得
其中
因此,带自相容源的广义超孤子族(2.13)如下
取
5 广义超孤子族的守恒律
本节给出广义超孤子族的守恒律.引进变量
可得
将
把(5.3)式代入(5.2)式,并比较
其
由于
设
将
其前2个守恒密度和流为
其中
其中
6 小结
利用Lie超代数
参考文献
On the Bäcklund transformation and Hamiltonian properties of superevaluation equations
,DOI:10.1063/1.527309 [本文引用: 1]
An approach to generate superextensions of integrable systems
,DOI:10.1088/0305-4470/30/2/023 [本文引用: 1]
A supertrace identity and its applications to superintegrable systems
,DOI:10.1063/1.2897036 [本文引用: 2]
Darboux transformations for super-Schrödinger equation, super-Dirac equation and their exact solutions
,
A new matrix Lie algebra, the multicomponent Yang hierarchy and its super-integrable coupling system
,
Some 2+1 dimensional super-integrable systems
,DOI:10.1515/zna-2015-0213 [本文引用: 1]
Lie algebra and Lie super algebra for integrable couplings of C-KdV hierarchy
,DOI:10.1088/0256-307X/27/4/040202
Two super-integrable hierarchies and their super-Hamiltonian structures
,DOI:10.1016/j.cnsns.2010.04.009 [本文引用: 1]
Binary nonlinearization of the super AKNS system under an implicit symmetry constraint
,DOI:10.1088/1751-8113/42/46/465201 [本文引用: 1]
Integration of the nonlinear Schrodinger equation with a source
,
An explicit symmetry constraint for the Lax pairs and the adjoint Lax pairs of AKNS systems
,DOI:10.1016/0375-9601(94)90616-5 [本文引用: 1]
Integrable coupling system of JM equations hierarchy with self-consistent sources
,DOI:10.1088/0253-6102/53/1/02 [本文引用: 1]
An integrable couplings of G-WKI equations hierarchy with self-consistent sources
,DOI:10.1016/j.camwa.2010.08.079
超Guo族的自相容源和守恒律
,
Conservation laws and self-consistent sources for a super-Guo equation hierarchy
Super Jaulent-Miodek hierarchy and its super Hamiltonian structure, conservation laws and its self-consistent sources
,DOI:10.1007/s11464-014-0419-x [本文引用: 1]
An integrable generalization of the super AKNS hierarchy and its bi-Hamiltonian formulation
,DOI:10.1016/j.cnsns.2016.06.033 [本文引用: 1]
Korteweg-de Vries equation and generalizations. I. A remarkable explicit nonlinear transformation
,DOI:10.1063/1.1664701 [本文引用: 1]
Relationships among inverse method, Bäcklund transformation and an infinite number of conservation laws
,DOI:10.1143/PTP.53.419 [本文引用: 2]
Lagrangian approach to evolution equations: symmetries and conservation laws
,
Conservation laws of a perturbed Kaup-Newell equation
,
A generalized Kaup-Newell spectral problem, soliton equations and finite-dimensional integrable systems
,
A super-soliton hierarchy and its super-Hamiltonian structure
,DOI:10.1007/s10773-009-9995-z [本文引用: 3]
An extension of a theorem on gradients of conserved densities of integrable systems
,
Binary nonlinearization of the super AKNS system
,DOI:10.1142/S0217984908014778 [本文引用: 1]
Binary nonlinearization of the super classical-Boussinesq hierarchy
,DOI:10.1088/1674-1056/20/7/070201 [本文引用: 1]
Dynamics of nonautonomous discrete rogue wave solutions for an Ablowitz-Musslimani equation with PT-symmetric potential
,DOI:10.1063/1.4975763 [本文引用: 1]
Diversity of interaction solutions to the (2+1)-dimensional Ito equation
,DOI:10.1016/j.camwa.2017.09.013
Lump solutions to nonlinear partial differential equations via Hirota bilinear forms
,
A study on lump solutions to a generalized Hirota-Satsuma-Ito equation in (2+1)-dimensions
,
Lump solutions of a generalized Calogero-Bogoyavlenskii-Schiff equation
,DOI:10.1016/j.camwa.2018.07.019
Abundant lumps and their interaction solutions of (3+1)-dimensional linear PDEs
,DOI:10.1016/j.geomphys.2018.07.003 [本文引用: 1]
Lump and lump-soliton solutions to the (2+1)-dimensional Ito equation
,
Lump and interaction solutions of linear PDEs in (3+1)-dimensions
,DOI:10.4208/eajam.100218.300318
广义Broer-Kaup-Kupershmidt孤子方程的拟周期解
,
Quasi-periodic solution of the generalized Broer-Kaup-Kupershmidt soliton equation
D-AKNS方程的代数几何解
,DOI:10.3969/j.issn.1003-3998.2013.02.011
Algebro-Geometric solutions of the D-AKNS equations
DOI:10.3969/j.issn.1003-3998.2013.02.011
/
〈 | 〉 |