数学物理学报, 2020, 40(1): 169-186 doi:

论文

具非线性中立项的二阶延迟微分方程的Philos型准则

李继猛1, 杨甲山,2

Philos-Type Criteria for Second-Order Delay Differential Equations with Nonlinear Neutral Term

Li Jimeng1, Yang Jiashan,2

通讯作者: 杨甲山, E-mail: syxyyjs@163.com

收稿日期: 2019-03-8  

基金资助: 国家自然科学基金项目.  51765060
湖南省自然科学基金.  12JJ3008
湖南省教育厅教学改革研究项目.  2016JG671

Received: 2019-03-8  

Fund supported: the NSFC.  51765060
the Natural Science Foundation of Hunan Province.  12JJ3008
the Research Project on Teaching Reform of Hunan Education Department.  2016JG671

作者简介 About authors

李继猛,E-mail:syxyljm@163

摘要

利用黎卡提变换技术,结合伯努利、杨氏不等式以及数学分析技巧,研究了具有非线性中立项的Emden-Fowler型微分方程

的振动性,获得了该方程的若干新Philos型振动定理,所举例子说明,这些准则不仅推广并改进了一些已有的结果,而且具有较好的实用性和可操作性.

关键词: 振动性 ; Emden-Fowler型微分方程 ; 非线性中立项 ; Riccati变换

Abstract

We study the oscillatory behavior of Emden-Fowler-type differential equations with a nonlinear neutral term

in this article. By using the generalized Riccati transformation, and Bernoulli inequality, Yang inequality and integral averaging technique, we establish some new oscillation criterions for the equations. The illustrative examples are provided to show that our results obtained extend and improve those reported in the literature, and have practicability and maneuverability.

Keywords: Oscillation ; Emden-Fowle differential equation ; Nonlinear neutral ; Riccati transformation

PDF (417KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

李继猛, 杨甲山. 具非线性中立项的二阶延迟微分方程的Philos型准则. 数学物理学报[J], 2020, 40(1): 169-186 doi:

Li Jimeng, Yang Jiashan. Philos-Type Criteria for Second-Order Delay Differential Equations with Nonlinear Neutral Term. Acta Mathematica Scientia[J], 2020, 40(1): 169-186 doi:

1 引言

研究如下的具有非线性中立项的二阶延迟Emden-Fowler型微分方程

$ \begin{equation} \{a(t)|[x(t)+p(t)x^\alpha(\tau(t))]'|^{\beta-1}[x(t)+p(t) x^\alpha(\tau(t))]'\}'+q(t)f(|x(\delta(t))|^{\gamma-1}x(\delta(t))) = 0, t\geqslant t_0 \end{equation} $

的振动性.考虑下列条件(C$ _1) $–(C$ _4) $

(C$ _1) $实常数$ \alpha, \gamma $均为2个正奇数之商,且$ 0 < \alpha\leqslant1 $,而$ \beta $为任意正的实常数;

(C$ _2) $函数$ a\in C^1([t_0, +\infty), (0, +\infty)), p, q\in C([t_0, +\infty), \mathbb{R}) $并且$ q(t) > 0, 0\leqslant p(t) < 1; $

(C$ _3) $滞量函数$ \tau, \delta:[t_0, +\infty)\rightarrow(0, +\infty) $满足: $ \tau(t)\leqslant t $$ \lim\limits_{t\rightarrow+\infty}\tau(t) = +\infty, $$ \delta(t)\leqslant t, $$ \lim\limits_{t\rightarrow+\infty}\delta(t) = +\infty $,并且$ \delta'(t) > 0; $

(C$ _4) $函数$ f\in C(\mathbb{R}, \mathbb{R}) $,满足$ uf(u) > 0(u\neq0) $,且存在常数$ L > 0 $使得$ \frac{f(u)}{u}\geqslant L(u\neq0) $.方程(1.1)的解及其振动的定义,可参见文献[1-2].方程(1.1)包含了许多特殊类型的方程,如下列方程

$ \begin{equation} [a(t)|x'(t)|^{\beta-1}x'(t)]'+q(t)|x(\delta(t))|^{\beta-1}x(\delta(t)) = 0, \end{equation} $

$ \begin{equation} \{a(t)|[x(t)+p(t)x(\tau(t))]'|^{\beta-1}[x(t)+p(t)x(\tau(t))]'\}'+q(t)|x(\delta(t))|^{\gamma-1}x(\delta(t)) = 0, \end{equation} $

$ \begin{equation} \{a(t)|[x(t)+p(t)x(\tau(t))]'|^{\beta-1}[x(t)+p(t)x(\tau(t))]'\}'+q(t)f(|x(\delta(t))|^{\gamma-1}x(\delta(t))) = 0 \end{equation} $

等等,对于这些典型的Emden-Fowler型微分方程,现有文献得到了诸多振动性成果.如Dzurina等[3], Sun等[4]研究了二阶半线性微分方程$ (1.2) $的振动性,但文献[3-4]有较严格的条件"$ a'(t)\geqslant0 $$ \delta'(t) > 0 $".在此基础上,黄记洲等[5]研究了较一般的方程$ (1.3) $的振动性,得到了若干新结果,部分地改进并拓展了文献[3-4]的结果,其基本振动结果如下.

定理A[5]  设$ \beta\geqslant\gamma, a'(t)\geqslant0, \delta'(t) > 0, 0\leqslant p(t) < 1, $且有

$ \begin{equation} \int_{t_0}^{+\infty}a^{-\frac{1}{\beta}}(t){\rm d}t = +\infty, \end{equation} $

如果$ \exists\varphi\in C^1([t_0, +\infty), (0, +\infty)) $,使得

其中常数$ k > 0 $,则方程(1.3)振动.

显然,定理A也有较为严格的条件"$ a'(t)\geqslant0 $$ \delta'(t) > 0 $, "且$ \beta < \gamma $时作者没有得到方程(1.3)的振动准则.紧接着, Yang等[6]研究了更一般的方程$ (1.4) $的振动性,得到了若干新振动准则,其基本结论如下.

定理B[6]  设条件$ (1.5) $成立, $ \tau'(t)\geqslant\tau_0 > 0 $,且$ 0\leqslant p(t)\leqslant p_0 < +\infty $ ($ p_0 $为常数), $ \delta\circ\tau = \tau\circ\delta, \delta(t)\leqslant\tau(t) $并且$ \delta'(t) > 0, $如果存在函数$ \varphi\in C^1([t_0, +\infty), (0, +\infty)) $使得当$ \beta\leqslant\gamma $

$ \beta > \gamma $

其中$ \eta > 0 $为常数,则方程$ (1.4) $振动.

可以看到,定理B中没有了限制条件$ a'(t)\geqslant0, $中立项的系数函数$ p(t) $放宽到了$ 0\leqslant p(t)\leqslant p_0 < +\infty, $且当$ \beta > \gamma $$ \beta < \gamma $时都有振动准则,遗憾的是对时滞函数却有新的要求"$ \delta\circ\tau = \tau\circ\delta, \delta(t)\leqslant\tau(t) $".

因此,对微分方程

$ \begin{equation} \bigg[t^{-2}|(x(t)+\frac{1}{2}x(\sqrt{t}))'|^{\frac{1}{3}}(x(t)+\frac{1}{2}x(\sqrt{t}))' \bigg]'+2t^{-2}|x(\frac{t}{2})|x(\frac{t}{2}) = 0, t\geqslant1 \end{equation} $

而言,由于不满足条件"$ a'(t)\geqslant0, \beta\geqslant\gamma $",也不满足条件"$ \delta\circ\tau = \tau\circ\delta, \delta(t)\leqslant\tau(t) $",所以定理A和定理B都不适用于方程$ (1.6). $

如果方程是非正则的(即条件$ (1.5) $不满足,亦即该积分收敛),黄记洲等[5]得到如下结果.

定理C[5]  设$ \beta\geqslant\gamma, a'(t)\geqslant0, $$ \tau'(t) > 0, 0\leqslant p(t) < 1, p'(t)\geqslant0, $如果

$ \begin{equation} \int_{t_0}^{+\infty}a^{\frac{-1}{\beta}}(t){\rm d}t<+\infty, \end{equation} $

且有$ \int_{t_0}^{+\infty}q(t)[1-p(\delta(t))]^\gamma{\rm d}t = +\infty $$ \int_{t_0}^{+\infty}[a^{-1}(t)\int_{t_0}^tq(s){\rm d}s]^{\frac{1}{\beta}}{\rm d}t = +\infty, $则方程$ (1.3) $的每一个解$ x(t) $或者振动或者$ \lim\limits_{t\rightarrow+\infty}x(t) = 0. $

定理C就是文献[5]中的定理2.4.显然,定理C中的条件"$ p'(t)\geqslant0, \tau'(t) > 0 $"也较为苛刻,而且其结论是不确定的(其它文献,如文献[16]所得到的结论也是如此),因此在应用时就会有种种制约,自然也就不能确定非正则Euler (欧拉)方程

$ \begin{equation} (t^2x'(t))'+mx(t) = 0, t\geqslant1 \end{equation} $

是否振动了.

本文将利用Riccati变换技术并结合经典不等式来研究方程(1.1)的振动性,在方程是正则和非正则两种情形下得到了该方程的一系列新型的Philos型振动条件,放宽了对方程的条件限制,改进且拓展了已有的结果.

2 主要结论及证明

引理2.1[7]  设$ X, Y $为非负实数,则当$ 0 < \lambda\leqslant1 $$ X^\lambda+Y^\lambda\leqslant2^{1-\lambda}(X+Y)^\lambda $.

引理2.2 (伯努利不等式)[7]  对实数$ x > -1 $,当$ 0\leqslant r\leqslant1 $时, $ (1+x)^r\leqslant1+rx $,当$ r\leqslant0 $$ r\geqslant1 $时, $ (1+x)^r\geqslant1+rx $.

引理2.3[7]  设$ A > 0, $$ B > 0 $$ \alpha > 0 $均为常数,则当$ x > 0 $时, $ Ax-Bx^{\frac{\alpha+1}{\alpha}}\leqslant\frac{\alpha^\alpha A^{\alpha+1}}{(\alpha+1)^{\alpha+1}B^\alpha}. $

引理2.4[7]  设$ \lambda\geqslant1 $是两个正奇数之商, $ X, Y $为实数且$ XY\geqslant0 $,则

考虑集合$ D = \{(t, s)|t\geqslant s\geqslant t_0\} $$ D_0 = \{(t, s)|t > s\geqslant t_0\}, $如果二元函数$ H(t, s)\in C({\Bbb D}, \mathbb{R}), $且当$ t\geqslant t_0 $$ H(t, t) = 0; $$ (t, s)\in D_0 $$ H(t, s) > 0 $$ H(t, s) $对第二个变量$ s $有连续非正的偏导数:$ \frac{\partial H(t, s)}{\partial s}\leqslant0, $则记为$ H\in\Omega. $

引入记号:$ z(t) = x(t)+p(t)x^\alpha(\tau(t)), \varphi_+(t) = \max\{\varphi(t), 0\}. $

定理2.1  如果(C$ _1) $–(C$ _4) $$ (1.5) $式成立,若有函数$ \varphi\in C^1([t_0, +\infty), (0, +\infty)) $$ H\in\Omega $,使得当$ \beta\geqslant\gamma $

$ \begin{equation} \limsup\limits_{t\rightarrow+\infty}\frac{1}{H(t, t_0)}\int_{t_1}^tH(t, s) \bigg[L\varphi(s)Q(s)-\frac{\varphi(s)a^{\frac{\gamma}{\beta}}(\delta(s))}{(\gamma+1)^{\gamma+1}k_2^{\frac{\gamma-\beta}{\beta}}(\delta'(s))^\gamma} \Big(\frac{\varphi'_+(s)}{\varphi(s)}\Big)^{\gamma+1}\bigg]{\rm d}s = +\infty, \end{equation} $

$ \beta < \gamma $

$ \begin{equation} \limsup\limits_{t\rightarrow+\infty}\frac{1}{H(t, t_0)}\int_{t_1}^tH(t, s) \bigg[L\varphi(s)Q(s)-\frac{(\frac{\beta}{\gamma})^\beta\varphi(s)a(\delta(s))}{(\beta+1)^{\beta+1}k_1^{(\gamma-\beta)}(\delta'(s))^\beta}\Big(\frac{\varphi'_+(s)}{\varphi(s)}\Big)^{\beta+1}\bigg]{\rm d}s = +\infty, \end{equation} $

其中函数$ Q(t) = q(t)\{1-[\alpha2^{1-\alpha}+k_1^{-1}(2^{1-\alpha}-1)]p(\delta(t))\}^\gamma, $$ t_1\geqslant t_0, k_i > 0\ (i = 1, 2) $为常数,则方程(1.1)振动.

  若不然,则方程(1.1)存在一个非振动解$ x(t) $.如果$ x(t) $为最终正解,则存在$ t_1\geqslant t_0, $使得$ x(t) > 0, x(\delta(t)) > 0(t\geqslant t_1) $,由函数$ z(t) $的定义得$ z(t)\geqslant x(t) > 0(t\geqslant t_1) $,由方程(1.1),得

$ \begin{equation} [a(t)|z'(t)|^{\beta-1}z'(t)]'\leqslant-Lq(t)x^\gamma(\delta(t))<0. \end{equation} $

于是,由(2.3)式并利用条件(1.5),则不难推出$ z'(t) > 0(t\geqslant t_1) $.$ z(t) $的定义并分别利用引理2.1和引理2.2,则可得

$ \begin{eqnarray}x(t)&=&z(t)-p(t)x^\alpha(\tau(t))=z(t)-p(t)[1+x^\alpha(\tau(t))]+p(t)\\&\geqslant &z(t)-2^{1-\alpha}p(t)[1+x(\tau(t))]^\alpha+p(t)\geqslant z(t)-2^{1-\alpha}p(t)[1+\alpha x(\tau(t))]+p(t)\\&=&z(t)-\alpha2^{1-\alpha}p(t)x(\tau(t))+(1-2^{1-\alpha})p(t)\\&\geqslant &z(t)-\alpha2^{1-\alpha}p(t)z(\tau(t))+(1-2^{1-\alpha})p(t)\\&\geqslant&[1-\alpha2^{1-\alpha}p(t)]z(t)-(2^{1-\alpha}-1)p(t).\end{eqnarray}$

$ \begin{equation} w(t) = \varphi(t)\frac{a(t)(z'(t))^\beta}{z^\gamma(\delta(t))}, t\geqslant t_1, \end{equation} $

则有$ w(t) > 0(t\geqslant t_1) $.再由$ (2.5) $式,并利用(2.3), (2.4)式及$ a(t)(z'(t))^\beta\leqslant a(\delta(t))(z'(\delta(t)))^\beta $,得

$\begin{eqnarray}w'(t)&=&\varphi'(t)\frac{a(t)(z'(t))^\beta}{z^\gamma(\delta(t))}+\varphi(t)\frac{[a(t)(z'(t))^\beta]'z^\gamma(\delta(t))-a(t)(z'(t))^\beta\gamma z^{\gamma-1}(\delta(t))z'(\delta(t))\delta'(t)} {z^{2\gamma}(\delta(t))}\\&\leqslant&\frac{\varphi'(t)}{\varphi(t)}w(t)-\varphi(t)\frac{Lq(t)x^\gamma(\delta(t))}{z^\gamma(\delta(t))}-\gamma\frac{\varphi(t)a(t)(z'(t))^\beta\delta'(t)}{z^{\gamma+1}(\delta(t))}\frac{a^{\frac{1}{\beta}}(t)z'(t)}{a^{\frac{1}{\beta}}(\delta(t))}\\&\leqslant&\frac{\varphi'(t)}{\varphi(t)}w(t)-L\varphi(t)q(t)\bigg[\frac{(1-\alpha2^{1-\alpha}p(\delta(t)))z(\delta(t))-(2^{1-\alpha}-1)p(\delta(t))}{z(\delta(t))}\bigg]^\gamma\\&&-\gamma\frac{\varphi(t)a^{\frac{\beta+1}{\beta}}(t)(z'(t))^{\beta+1}\delta'(t)}{z^{\gamma+1}(\delta(t))a^{\frac{1}{\beta}}(\delta(t))}.\end{eqnarray} $

情形(a)  $ \beta\geqslant\gamma $.由于当$ t\geqslant t_1 $$ z(t) > 0, z'(t) > 0 $,所以当$ t\geqslant t_1 $时,有

$ \begin{equation} z(\delta(t))\geqslant z(\delta(t_1)) = k_1, \end{equation} $

这里$ k_1 > 0 $为常数.另一方面,由$ z'(t) > 0 $及(2.3)式知,当$ t\geqslant t_1 $时,有$ a(t)(z'(t))^\beta\leqslant a(t_1)(z'(t_1))^\beta = k_2 $ (这里$ k_2 > 0 $为常数),即$ z'(t)\leqslant\frac{k_2^{\frac{1}{\beta}}}{a^{\frac{1}{\beta}}(t)}, $亦即

$ \begin{equation} (z'(t))^{\frac{\gamma-\beta}{\gamma}}\geqslant\frac{k_2^{\frac{\gamma-\beta}{\beta\gamma}}}{a^{\frac{\gamma-\beta}{\beta\gamma}}(t)}. \end{equation} $

于是,分别利用(2.5), (2.7)及(2.8)式,由(2.6)式,则当$ t\geqslant t_1 $时,得

$ \begin{eqnarray} w'(t)&\leqslant&\frac{\varphi'(t)}{\varphi(t)}w(t)-L\varphi(t)q(t)\bigg[(1-\alpha2^{1-\alpha}p(\delta(t)))-\frac{(2^{1-\alpha}-1)p(\delta(t))}{k_1}\bigg]^\gamma \\ &&-\frac{\gamma(z'(t))^{\frac{\gamma-\beta}{\gamma}}\delta'(t)a^{\frac{\gamma-\beta}{\beta\gamma}}(t)}{\varphi^{\frac{1}{\gamma}}(t)a^{\frac{1}{\beta}}(\delta(t))}w^{\frac{\gamma+1}{\gamma}}(t) \\ &\leqslant&\frac{\varphi'_+(t)}{\varphi(t)}w(t)-L\varphi(t)Q(t)-\frac{\gamma k_2^{\frac{\gamma-\beta}{\beta\gamma}}\delta'(t)}{\varphi^{\frac{1}{\gamma}}(t)a^{\frac{1}{\beta}}(\delta(t))}w^{\frac{\gamma+1}{\gamma}}(t). \end{eqnarray} $

分别注意到$ \frac{\partial H(t, s)}{\partial s}\leqslant0 $及引理2.3,由上式就可导出

$ \begin{eqnarray} &&\int_{t_1}^tLH(t, s)\varphi(s)Q(s){\rm d}s\\ &\leqslant&-\int_{t_1}^tH(t, s)w'(s){\rm d}s+\int_{t_1}^tH(t, s)\bigg[\frac{\varphi'_+(s)}{\varphi(s)}w(s)-\frac{\gamma k_2^{\frac{\gamma-\beta}{\beta\gamma}}\delta'(s)}{\varphi^{\frac{1}{\gamma}}(s)a^{\frac{1}{\beta}}(\delta(s))}w^{\frac{\gamma+1}{\gamma}}(s)\bigg]{\rm d}s\\ &\leqslant & H(t, t_1)w(t_1)+\int_{t_1}^tH(t, s)\bigg[\frac{\varphi'_+(s)}{\varphi(s)}w(s)-\frac{\gamma k_2^{\frac{\gamma-\beta}{\beta\gamma}}\delta'(s)}{\varphi^{\frac{1}{\gamma}}(s)a^{\frac{1}{\beta}}(\delta(s))}w^{\frac{\gamma+1}{\gamma}}(s)\bigg]{\rm d}s\\ &\leqslant & H(t, t_1)w(t_1)+\int_{t_1}^tH(t, s)\frac{\varphi(s)a^{\frac{\gamma}{\beta}}(\delta(s))}{(\gamma+1)^{\gamma+1}k_2^{\frac{\gamma-\beta}{\beta}}(\delta'(s))^\gamma}\Big(\frac{\varphi'_+(s)}{\varphi(s)}\Big)^{\gamma+1}{\rm d}s, \end{eqnarray} $

整理上式可得

$ \begin{eqnarray} &&\int_{t_1}^tH(t, s)\bigg[L\varphi(s)Q(s)-\frac{\varphi(s)a^{\frac{\gamma}{\beta}}(\delta(s))}{(\gamma+1)^{\gamma+1}k_2^{\frac{\gamma-\beta}{\beta}}(\delta'(s))^\gamma}\Big(\frac{\varphi'_+(s)}{\varphi(s)}\Big)^{\gamma+1}\bigg]{\rm d}s\\ &\leq &H(t, t_1)w(t_1)\leqslant H(t, t_0)w(t_1), \end{eqnarray} $

这与(2.1)式矛盾.

情形(b)  $ \beta < \gamma $.由(2.6)式,并利用(2.5), (2.7)式,则当$ t\geqslant t_1 $时,可得

$ \begin{eqnarray} w'(t)&\leqslant&\frac{\varphi'(t)}{\varphi(t)}w(t)-L\varphi(t)q(t)\bigg[(1-\alpha2^{1-\alpha}p(\delta(t))) -\frac{(2^{1-\alpha}-1)p(\delta(t))}{k_1}\bigg]^\gamma\\ &&-\gamma\frac{z^{\frac{\gamma-\beta}{\beta}}(\delta(t)) \delta'(t)}{\varphi^{\frac{1}{\beta}}(t)a^{\frac{1}{\beta}}(\delta(t))}w^{\frac{\beta+1}{\beta}}(t) \\ &\leqslant&-L\varphi(t)Q(t)+\frac{\varphi'_+(t)}{\varphi(t)}w(t)-\frac{k_1^{\frac{\gamma-\beta}{\beta}}\gamma\delta'(t)}{\varphi^{\frac{1}{\beta}}(t)a^{\frac{1}{\beta}}(\delta(t))}w^{\frac{\beta+1}{\beta}}(t). \end{eqnarray} $

分别注意到$ \frac{\partial H(t, s)}{\partial s}\leqslant0 $及引理2.3,由上式就可推出

$ \begin{eqnarray} &&\int_{t_1}^tLH(t, s)\varphi(s)Q(s){\rm d}s\\ &\leqslant&-\int_{t_1}^tH(t, s)w'(s){\rm d}s+\int_{t_1}^tH(t, s)\bigg[\frac{\varphi'_+(s)}{\varphi(s)}w(s)-\frac{ k_1^{\frac{\gamma-\beta}{\beta}}\gamma\delta'(s)}{\varphi^{\frac{1}{\beta}}(s)a^{\frac{1}{\beta}}(\delta(s))}w^{\frac{\beta+1}{\beta}}(s)\bigg]{\rm d}s\\ &\leqslant & H(t, t_1)w(t_1)+\int_{t_1}^tH(t, s)\bigg[\frac{\varphi'_+(s)}{\varphi(s)}w(s)-\frac{ k_1^{\frac{\gamma-\beta}{\beta}}\gamma\delta'(s)}{\varphi^{\frac{1}{\beta}}(s)a^{\frac{1}{\beta}}(\delta(s))}w^{\frac{\beta+1}{\beta}}(s)\bigg]{\rm d}s\\ &\leqslant & H(t, t_1)w(t_1)+\int_{t_1}^tH(t, s)\frac{(\frac{\beta}{\gamma})^\beta\varphi(s)a(\delta(s))}{(\beta+1)^{\beta+1}k_1^{(\gamma-\beta)}(\delta'(s))^\beta}\Big(\frac{\varphi'_+(s)}{\varphi(s)}\Big)^{\beta+1}{\rm d}s, \end{eqnarray} $

因此

$ \begin{eqnarray} &&\int_{t_1}^t\bigg[LH(t, s)\varphi(s)Q(s)-\frac{(\frac{\beta}{\gamma})^\beta H(t, s)\varphi(s)a(\delta(s))}{(\beta+1)^{\beta+1}k_1^{(\gamma-\beta)}(\delta'(s))^\beta}\Big(\frac{\varphi'_+(s)}{\varphi(s)}\Big)^{\beta+1}\bigg]{\rm d}s\\ &\leqslant &H(t, t_1)w(t_1)\leqslant H(t, t_0)w(t_1), \end{eqnarray} $

这就意味着

这与(2.2)式矛盾.

如果$ x(t) $为最终负解,则令$ y(t) = -x(t) $,则方程(1.1)就转化为

上式中函数$ F(|y(\delta(t))|^{\gamma-1}y(\delta(t))) = -f(|y(\delta(t))|^{\gamma-1}(-y(\delta(t)))), $易知函数$ F(u) = -f(-u) $$ f(u) $具有完全相同的性质,注意到$ y(t) $是方程$ (1.1)^* $的最终正解,于是,用与上面完全相同的方法可推出矛盾.定理证毕.

定理2.2  如果条件(C$ _1) $–(C$ _4) $及(1.5)式成立,若有函数$ \varphi\in C^1([t_0, +\infty), (0, +\infty)) $$ H\in\Omega $,使得当$ \beta\geqslant\gamma $

$ \begin{equation} \limsup\limits_{t\rightarrow+\infty}\frac{1}{H(t, t_0)}\int_{t_1}^t\bigg[L\varphi(s)Q(s)H(t, s)-\frac{\varphi(s)a^{\frac{\gamma}{\beta}}(\delta(s))|h(t, s)|^{\gamma+1}}{(\gamma+1)^{\gamma+1}k_2^{\frac{\gamma-\beta}{\beta}}(H(t, s)\delta'(s))^\gamma}\bigg]{\rm d}s = +\infty, \end{equation} $

$ \beta < \gamma $

$ \begin{equation} \limsup\limits_{t\rightarrow+\infty}\frac{1}{H(t, t_0)}\int_{t_1}^t\bigg[L\varphi(s)Q(s)H(t, s)-\frac{(\frac{\beta}{\gamma})^\beta\varphi(s)a(\delta(s))|h(t, s)|^{\beta+1}}{(\beta+1)^{\beta+1}k_1^{(\gamma-\beta)}(H(t, s)\delta'(s))^\beta}\bigg]{\rm d}s = +\infty, \end{equation} $

其中函数$ h(t, s) = \frac{\partial H(t, s)}{\partial s}w(s)+H(t, s)\frac{\varphi'_+(s)}{\varphi(s)}, Q(t) $如定理2.1,常数$ t_1\geqslant t_0, k_i > 0\ (i = 1, 2) $,则方程(1.1)振动.

  同定理2.1的证明可得(2.9)式和(2.12)式.于是,当$ \beta\geqslant\gamma $时,由(2.9)式得

两边同乘以$ H(t, s) $后积分,并注意到函数$ h(t, s) $的定义及引理2.3,就可推得

整理得

进一步有

这与条件(2.15)矛盾.

$ \beta < \gamma $时,由(2.12)式得

则类似于上面的情形,可得

进一步有

因此

这与条件(2.16)矛盾.定理证毕.

如果定理2.1中的条件(2.1)或(2.2)不成立,亦或定理2.2中的条件(2.15)或(2.16)不成立,则方程(1.1)有下列振动准则.

定理2.3  如果条件(C$ _1) $–(C$ _4) $$ (1.5) $式成立,且$ \beta\geqslant\gamma $,若有函数$ \varphi\in C^1([t_0, +\infty), (0, +\infty)), $$ \xi\in L^2([t_0, +\infty), \mathbb{R}) $$ H\in\Omega $,使得当$ s\geq t_1 $

$ \begin{equation} \limsup\limits_{t\rightarrow+\infty}\frac{1}{H(t, t_0)}\int_{t_1}^t\frac{H(t, s)\varphi(s)a^{\frac{\gamma}{\beta}}(\delta(s))}{(\delta'(s))^\gamma}\Big(\frac{\varphi'_+(s)}{\varphi(s)}\Big)^{\gamma+1}{\rm d}s<+\infty, \end{equation} $

$ \begin{equation} \limsup\limits_{t\rightarrow+\infty}\frac{1}{H(t, t_0)}\int_u^tH(t, s)\bigg[L\varphi(s)Q(s)-\frac{\varphi(s)a^{\frac{\gamma}{\beta}}(\delta(s))}{(\gamma+1)^{\gamma+1}k_2^{\frac{\gamma-\beta}{\beta}}(\delta'(s))^\gamma}\Big(\frac{\varphi'_+(s)}{\varphi(s)}\Big)^{\gamma+1}\bigg]{\rm d}s\geqslant\xi(u), \end{equation} $

并且函数$ \xi $满足

$ \begin{equation} \liminf\limits_{t\rightarrow+\infty}\frac{1}{H(t, t_0)}\int_{t_1}^t\frac{H(t, s)\delta'(s)[\xi(s)]_+^{\frac{\gamma+1}{\gamma}}}{\varphi^{\frac{1}{\gamma}}(s)a^{\frac{1}{\beta}}(\delta(s))}{\rm d}s = +\infty, \end{equation} $

其中函数$ Q(s) $如定理2.1,常数$ t_1\geqslant t_0 $,则方程(1.1)振动.

  同定理2.1的证明,当$ \beta\geqslant\gamma $时可得(2.10)式和(2.11)式.于是由(2.11)式,当$ t\geqslant u\geqslant t_1\geqslant t_0 $时,有

注意到(2.18)式,则当$ u\geqslant t_1 $时,有

$ \begin{equation} \xi(u)\leqslant w(u),~~~~ \limsup\limits_{t\rightarrow+\infty}\frac{1}{H(t, t_0)}\int_{t_1}^tLH(t, s)\varphi(s)Q(s){\rm d}s\geqslant\xi(t_1). \end{equation} $

再根据(2.10)式,可得

注意到(2.20)式,于是由上式就可导出

$ \begin{equation} \liminf\limits_{t\rightarrow+\infty}\frac{1}{H(t, t_0)}\int_{t_1}^t\bigg[\frac{\gamma k_2^{\frac{\gamma-\beta}{\beta\gamma}}\delta'(s)H(t, s)}{\varphi^{\frac{1}{\gamma}}(s)a^{\frac{1}{\beta}}(\delta(s))}w^{\frac{\gamma+1}{\gamma}}(s)-H(t, s)\frac{\varphi'_+(s)}{\varphi(s)}w(s)\bigg]{\rm d}s\leqslant C_1, \end{equation} $

这里$ C_1 = w(t_1)-\xi(t_1) $是常数.这样一来,就可断定

$ \begin{equation} \liminf\limits_{t\rightarrow+\infty}\frac{1}{H(t, t_0)}\int_{t_1}^t\frac{\gamma k_2^{\frac{\gamma-\beta}{\beta\gamma}}\delta'(s)H(t, s)}{\varphi^{\frac{1}{\gamma}}(s)a^{\frac{1}{\beta}}(\delta(s))}w^{\frac{\gamma+1}{\gamma}}(s){\rm d}s<+\infty. \end{equation} $

若不然,则存在序列$ \{T_n\}_{n = 1}^{+\infty}:T_n\in[t_1, +\infty) $,它满足$ \lim\limits_{n\rightarrow+\infty}T_n = +\infty, $并使得

$ \begin{equation} \lim\limits_{n\rightarrow+\infty}\frac{1}{H(T_n, t_0)}\int_{t_1}^{T_n}\frac{\gamma k_2^{\frac{\gamma-\beta}{\beta\gamma}}\delta'(s)H(T_n, s)}{\varphi^{\frac{1}{\gamma}}(s)a^{\frac{1}{\beta}}(\delta(s))}w^{\frac{\gamma+1}{\gamma}}(s){\rm d}s = +\infty. \end{equation} $

于是,结合(2.21)和(2.23)式就可推得

$ \begin{equation} \lim\limits_{n\rightarrow+\infty}\frac{1}{H(T_n, t_0)}\int_{t_1}^{T_n}H(T_n, s)\frac{\varphi'_+(s)}{\varphi(s)}w(s){\rm d}s = +\infty, \end{equation} $

因此,当正整数$ n $充分大时,就有

这样一来,对充分大的正整数$ n $及任意的$ \varepsilon\in(0, 1) $,由上式就能导出

$ \begin{equation} \frac{\int_{t_1}^{T_n}H(T_n, s)\frac{\varphi'_+(s)}{\varphi(s)}w(s){\rm d}s}{\int_{t_1}^{T_n}\frac{\gamma k_2^{\frac{\gamma-\beta}{\beta\gamma}}\delta'(s)H(T_n, s)}{\varphi^{\frac{1}{\gamma}}(s)a^{\frac{1}{\beta}}(\delta(s))}w^{\frac{\gamma+1}{\gamma}}(s){\rm d}s}>1-\varepsilon>0. \end{equation} $

此外,利用Hölder不等式$ \int_a^bf(x)g(x){\rm d}x\leqslant\Big[\int_a^b(f(x))^p{\rm d}x\Big]^{\frac{1}{p}}\Big[\int_a^b(g(x))^q{\rm d}x\Big]^{\frac{1}{q}} $ (其中$ p > 1 $$ \frac{1}{p}+\frac{1}{q} = 1 $),我们可推得

$ \begin{eqnarray} &&\int_{t_1}^{T_n}H(T_n, s)\frac{\varphi'_+(s)}{\varphi(s)}w(s){\rm d}s\\ & = &\int_{t_1}^{T_n}\bigg[\frac{\gamma k_2^{\frac{\gamma-\beta}{\beta\gamma}}\delta'(s)H(T_n, s)}{\varphi^{\frac{1}{\gamma}}(s)a^{\frac{1}{\beta}}(\delta(s))}\bigg]^{\frac{\gamma}{\gamma+1}}w(s)\frac{\bigg[\varphi^{\frac{1}{\gamma}}(s)a^{\frac{1}{\beta}}(\delta(s))\bigg]^{\frac{\gamma}{\gamma+1}}H(T_n, s)\frac{\varphi'_+(s)}{\varphi(s)}}{\bigg[\gamma k_2^{\frac{\gamma-\beta}{\beta\gamma}}\delta'(s)H(T_n, s)\bigg]^{\frac{\gamma}{\gamma+1}}}{\rm d}s\\ &\leqslant&\bigg[\int_{t_1}^{T_n}\frac{\gamma k_2^{\frac{\gamma-\beta}{\beta\gamma}}\delta'(s)H(T_n, s)}{\varphi^{\frac{1}{\gamma}}(s)a^{\frac{1}{\beta}}(\delta(s))}w^{\frac{\gamma+1}{\gamma}}(s){\rm d}s\bigg]^{\frac{\gamma}{\gamma+1}}\\ &&\times\bigg[\int_{t_1}^{T_n}\frac{[\varphi^{\frac{1}{\gamma}}(s)a^{\frac{1}{\beta}}(\delta(s))]^\gamma\Big(H(T_n, s)\frac{\varphi'_+(s)}{\varphi(s)}\Big)^{\gamma+1}}{[\gamma k_2^{\frac{\gamma-\beta}{\beta\gamma}}\delta'(s)H(T_n, s)]^\gamma}{\rm d}s\bigg]^{\frac{1}{\gamma+1}}\\ & = &\frac{k_2^{\frac{\beta-\gamma}{\beta(\gamma+1)}}}{\gamma^{\frac{\gamma}{\gamma+1}}}\bigg[\int_{t_1}^{T_n}\frac{\gamma k_2^{\frac{\gamma-\beta}{\beta\gamma}}\delta'(s)H(T_n, s)}{\varphi^{\frac{1}{\gamma}}(s)a^{\frac{1}{\beta}}(\delta(s))}w^{\frac{\gamma+1}{\gamma}}(s){\rm d}s\bigg]^{\frac{\gamma}{\gamma+1}}\\ &&\times \bigg[\int_{t_1}^{T_n}\frac{H(T_n, s)\varphi(s)a^{\frac{1}{\beta}}(\delta(s))\Big(\frac{\varphi'_+(s)}{\varphi(s)}\Big)^{\gamma+1}}{( \delta'(s))^\gamma}{\rm d}s\bigg]^{\frac{1}{\gamma+1}}. \end{eqnarray} $

由(2.26)式,并分别利用(2.25)和(2.17)式,进一步可推得

这与(2.24)式矛盾,这就证明了(2.22)式成立.注意到(2.20)式和(2.22)式,于是可得

这与(2.19)式矛盾.定理证毕.

$ \beta < \gamma $时,利用定理2.1证明所得到的(2.13)式和(2.14)式,并使用与定理2.3相同的方法,可得如下定理.

定理2.4  如果条件(C$ _1) $–(C$ _4) $$ (1.5) $式成立,且$ \beta < \gamma $,若有函数$ \varphi\in C^1([t_0, +\infty), (0, +\infty)), $$ \xi\in L^2([t_0, +\infty), \mathbb{R}) $$ H\in\Omega $,使得当$ s\geqslant t_1 $

并且函数$ \xi $满足

其中函数$ Q(s) $如定理2.1中定义,常数$ t_1\geqslant t_0 $,则方程(1.1)振动.

结合定理2.2证明过程中所得到的有关不等式,类似地可得如下定理.

定理2.5  如果条件(C$ _1) $–(C$ _4) $$ (1.5) $式成立,且$ \beta\geqslant\gamma $,若有函数$ \varphi\in C^1([t_0, +\infty), (0, +\infty)), $$ \xi\in L^2([t_0, +\infty), \mathbb{R}) $$ H\in\Omega $,使得当$ s\geqslant t_1 $

并且函数$ \xi $满足

其中函数$ Q(s) $如定理2.1中定义, $ h(t, s) $如定理2.2,常数$ t_1\geqslant t_0 $,则方程(1.1)振动.

定理2.6  如果条件(C$ _1) $–(C$ _4) $$ (1.5) $式成立,且$ \beta < \gamma $,若有函数$ \varphi\in C^1([t_0, +\infty), (0, +\infty)), $$ \xi\in L^2([t_0, +\infty), \mathbb{R}) $$ H\in\Omega $,使得当$ s\geqslant t_1 $

并且函数$ \xi $满足

其中函数$ Q(s) $如定理2.1中定义, $ h(t, s) $如定理2.2,常数$ t_1\geqslant t_0 $,则方程(1.1)振动.

注1  在定理2.1 –定理2.6中,选取适当的不同的函数$ \varphi(t) $$ H(t, s) $,就可得到含非线性中立项的方程(1.1)的种种不同的振动准则.此外,从定理2.1 –定理2.6可以看出,在$ \beta < \gamma $$ \beta > \gamma $两种不同的情形下,方程(1.1)的振动准则是不一样的,但当$ \beta = \gamma $时定理2.1中的(2.1)式和(2.2)式,定理2.2中的(2.15)式和(2.16)式、定理2.3和定理2.4以及定理2.5和定理2.6中相应的条件却完全相同.

定理2.7  如果条件(C$ _1) $–(C$ _4) $$ (1.7) $式成立,且$ \theta(t)-\alpha2^{1-\alpha}p(t)\theta(\tau(t)) > 0 $,并且当$ \beta\geqslant\gamma $时条件(2.1)成立,当$ \beta < \gamma $时条件(2.2)成立.如果存在函数$ K\in\Omega $使得

$ \begin{equation} \limsup\limits_{t\rightarrow+\infty}\int_{t_1}^t\bigg[L\overline{Q}(s)K(t, s)-\frac{a(s)}{(\beta+1)^{\beta+1}K^\beta(t, s)}\Big|\frac{\partial K(t, s)}{\partial s}\Big|^{\beta+1}\bigg]{\rm d}s>0, \end{equation} $

其中常数$ t_1\geqslant t_0 $,函数

则方程(1.1)振动.

  若不然,则方程$ (1.1) $存在一个非振动解$ x(t) $,不妨设$ x(t) $为最终正解,则有$ x(t) > 0 $, $ x(\tau(t)) > 0, x(\delta(t)) > 0, t\geqslant t_1\geqslant t_0 $,且$ z(t)\geqslant x(t) > 0\ (t\geqslant t_1), $于是容易由定理2.1证明知: $ a(t)|z'(t)|^{\beta-1}z'(t) $严格单调减少且最终定号,从而$ z'(t) $也最终定号,故只须考虑两种情形

(ⅰ) $ z'(t) > 0\ (t\geqslant t_1) $; (ⅱ) $ z'(t) < 0\ (t\geqslant t_1) $.

情形(ⅰ)   $ z'(t) > 0\ (t\geqslant t_1) $.同定理$ 2.1 $的证明,当$ \beta\geqslant\gamma $时可得到一个与条件$ (2.1) $矛盾的结果,当$ \beta < \gamma $时可得到一个与条件(2.2)矛盾的结果.

情形(ⅱ)   $ z'(t) < 0\ (t\geqslant t_1) $.定义函数$ u(t) $如下

$ \begin{equation} u(t) = \frac{a(t)|z'(t)|^{\beta-1}z'(t)}{z^\beta(t)} = \frac{a(t)(-z'(t))^{\beta-1}z'(t)}{z^\beta(t)}, t\geqslant t_1, \end{equation} $

$ u(t) < 0\ (t\geqslant t_1) $.$ a(t)|z'(t)|^{\beta-1}z'(t) = a(t)(-z'(t))^{\beta-1}z'(t) $$ [t_1, +\infty) $上严格单减,得

$ z'(s)\leqslant a^{\frac{1}{\beta}}(t)z'(t)a^{-\frac{1}{\beta}}(s) $,由此得

所以

$ l\rightarrow+\infty $,并利用函数$ \theta(t) $的定义,得

$ \begin{equation} z(t)+a^{\frac{1}{\beta}}(t)z'(t)\theta(t)\geqslant0, \end{equation} $

所以

$ \begin{equation} -1\leqslant\frac{a^{\frac{1}{\beta}}(t)z'(t)}{z(t)}\theta(t)<0. \end{equation} $

注意到(2.29)式,有

这就是说$ \frac{z(t)}{\theta(t)} $是单调增加的,从而有$ \frac{z(\tau(t))}{\theta(\tau(t))}\leqslant\frac{z(t)}{\theta(t)} $,即

$ \begin{equation} z(\tau(t))\leqslant\frac{\theta(\tau(t))}{\theta(t)}z(t). \end{equation} $

另一方面,利用引理2.1、引理2.2及(2.31)式,可推得

$ \begin{eqnarray} x(t)& = &z(t)-p(t)x^\alpha(\tau(t)) = z(t)-p(t)[1+x^\alpha(\tau(t))]+p(t) \\ &\geqslant & z(t)-2^{1-\alpha}p(t)[1+x(\tau(t))]^\alpha+p(t)\geqslant z(t)-2^{1-\alpha}p(t)[1+\alpha x(\tau(t))]+p(t) \\ & = &z(t)-\alpha2^{1-\alpha}p(t)x(\tau(t))+(1-2^{1-\alpha})p(t)\\ &\geqslant & z(t)-\alpha2^{1-\alpha}p(t)z(\tau(t))+(1-2^{1-\alpha})p(t) \\ &\geqslant&\Big(1-\alpha2^{1-\alpha}p(t)\frac{\theta(\tau(t))}{\theta(t)}\Big)z(t)+(1-2^{1-\alpha})p(t). \end{eqnarray} $

此外,由(2.28)式得

$ \begin{eqnarray} u'(t)& = &\frac{[a(t)|z'(t)|^{\beta-1}z'(t)]'}{z^\beta(t)}-\frac{a(t)(-z'(t))^{\beta-1}z'(t)\cdot\beta z^{\beta-1}(t)z'(t)}{z^{2\beta}(t)} \\ &\leqslant&-Lq(t)\frac{x^\gamma(\delta(t))}{z^\beta(t)}-\frac{\beta}{a^{\frac{1}{\beta}}(t)}(-u(t))^{\frac{\beta+1}{\beta}}. \end{eqnarray} $

根据(2.3)式,有

(这里$ k > 0 $是常数),所以$ z'(s)\leqslant-k^{\frac{1}{\beta}}a^{-\frac{1}{\beta}}(s) $,两边积分得$ z(l)-z(t)\leqslant-k^{\frac{1}{\beta}}\int_t^la^{-\frac{1}{\beta}}(s){\rm d}s, $

$ l\rightarrow+\infty $,得$ z(t)\geqslant k^{\frac{1}{\beta}}\theta(t), $

$ \begin{equation} \frac{1}{z^\beta(t)}\leqslant\frac{1}{k\theta^\beta(t)}. \end{equation} $

$ \beta = \gamma $时, $ z^{\gamma-\beta}(t) = 1. $$ \beta > \gamma $时,由$ z(t) > 0, z'(t) < 0(t\geqslant t_1) $知, $ z(t)\leqslant z(t_1) = b $,因此$ z^{\gamma-\beta}(t)\geqslant b^{\gamma-\beta}. $$ \beta < \gamma $时,由(2.34)式知$ z^{\gamma-\beta }(t)\geqslant k^{\frac{\gamma-\beta}{\beta}}\theta^{\gamma-\beta}(t). $利用函数$ \rho(t) $的定义有

$ \begin{equation} z^{\gamma-\beta}(t)\geqslant\rho(t), \end{equation} $

再由(2.32), (2.34)和(2.35)式及函数$ \overline{Q}(t) $的定义,得

$ \begin{eqnarray} q(t)\frac{x^\gamma(\delta(t))}{z^\beta(t)}&\geqslant & q(t)\frac{\Big(1-\alpha2^{1-\alpha}p(\delta(t))\frac{\theta(\tau(\delta(t)))}{\theta(\delta(t))}\Big)^\gamma z^\gamma(\delta(t))+(1-2^{1-\alpha})^\gamma p^\gamma(\delta(t))}{z^\beta(t)} \\ &\geqslant & q(t)\bigg[\Big(1-\alpha2^{1-\alpha}p(\delta(t))\frac{\theta(\tau(\delta(t)))}{\theta(\delta(t))}\Big)^\gamma z^{\gamma-\beta}(t)-\frac{(2^{1-\alpha}-1)^\gamma}{z^\beta(t)}p^\gamma(\delta(t))\bigg] \\ &\geqslant & \overline{Q}(t). \end{eqnarray} $

将(2.36)式代入(2.33)式,得

两边同乘以$ K(t, s) $后积分,得

应用引理2.3,由上式进一步可得

整理,得

这与条件(2.27)矛盾,证毕.

定理2.8  如果条件(C$ _1) $–(C$ _4) $$ (1.7) $式成立,且$ \theta(t)-\alpha2^{1-\alpha}p(t)\theta(\tau(t)) > 0 $,并且当$ \beta\geqslant\gamma $时条件(2.1)成立,当$ \beta < \gamma $时条件(2.2)成立.进一步,设$ \beta\geqslant1 $是两个正奇数的商,并且存在函数$ K\in\Omega $$ \xi, \eta\in C^1([t_0, +\infty), (0, +\infty)) $$ \eta(t)\geqslant\frac{1}{a(t)\theta^\beta(t)} $,使得

$ \begin{equation} \limsup\limits_{t\rightarrow+\infty}\frac{1}{K(t, t_0)}\int_{t_1}^t\bigg[K(t, s)\xi(s)\Phi(s)-\frac{K(t, s)a(s)\xi(s)}{(\beta+1)^{\beta+1}}\Big(\frac{ \xi'(s)}{\xi(s)}+\frac{\beta+1}{\eta^{-\frac{1}{\beta}}(s)} \Big)^{\beta+1}\bigg]{\rm d}s = +\infty, \end{equation} $

其中函数$ \Phi(t) = L\overline{Q}(t)-[\eta(t)a(t)]'+a(t)\eta^{\frac{\beta+1}{\beta}}(t), $而函数$ \theta(t) $$ \overline{Q}(t) $如定理2.7.则方程(1.1)是振动的.

  同定理2.7,只要考虑下列两种情形

(ⅰ) $ z'(t) > 0\ (t\geqslant t_1) $; (ⅱ) $ z'(t) < 0\ (t\geqslant t_1) $.

情形(ⅰ)   $ z'(t) > 0\ (t\geqslant t_1) $.同定理$ 2.1 $的证明,当$ \beta\geqslant\gamma $时可得到一个与条件(2.1)矛盾的结果,当$ \beta < \gamma $时可得到一个与条件(2.2)矛盾的结果.

情形(ⅱ)  $ z'(t) < 0\ (t\geqslant t_1) $.由定理2.1的证明知(2.30)式成立,注意到$ \beta\geqslant1 $为两个正奇数之商,于是有

$ \begin{equation} \frac{a(t)(z'(t))^\beta}{z^\beta(t)}+\frac{1}{\theta^\beta(t)}\geqslant0. \end{equation} $

定义函数$ u(t) $如下

$ \begin{equation} u(t) = \xi(t)\bigg[\frac{a(t)|z'(t)|^{\beta-1}z'(t)}{z^\beta(t)}+\eta(t)a(t)\bigg] = \xi(t)\bigg[\frac{a(t)(z'(t))^\beta}{z^\beta(t)}+\eta(t)a(t)\bigg], t\geqslant t_1, \end{equation} $

则由条件(2.38)及函数$ \eta(t) $的定义知$ u(t)\geqslant0\ (t\geqslant t_1) $.由(2.39)式及(2.36)式可导出

$ \begin{eqnarray} u'(t)& = &\xi'(t)\bigg[\frac{a(t)|z'(t)|^{\beta-1}z'(t)}{z^\beta(t)}+\eta(t)a(t)\bigg] \\ &&+\xi(t)\bigg\{\frac{[a(t)(z'(t))^\beta]'}{z^\beta(t)}-\frac{a(t)(z'(t))^\beta\beta z^{\beta-1}(t)z'(t)}{z^{2\beta}(t)}+[\eta(t)a(t)]'\bigg\} \\ &\leqslant&\frac{\xi'(t)}{\xi(t)}u(t)+\xi(t)\bigg\{-Lq(t)\frac{x^\gamma(\delta(t))}{z^\beta(t)}-\frac{a(t)(z'(t))^\beta\beta z^{\beta-1}(t)z'(t)}{z^{2\beta}}+[\eta(t)a(t)]'\bigg\} \\ &\leqslant&\frac{\xi'(t)}{\xi(t)}u(t)-\xi(t)L\overline{Q}(t)-\beta\bigg[\xi(t)\frac{a(t)(z'(t))^{\beta+1}}{z^{\beta+1}(t)}\bigg]+\xi(t)[\eta(t)a(t)]' \\ & = &\frac{\xi'(t)}{\xi(t)}u(t)-L\xi(t)\overline{Q}(t)-\frac{\beta\xi(t)}{a^{\frac{1}{\beta}}(t)}\bigg[\frac{u(t)} {\xi(t)}-\eta(t)a(t)\bigg]^{\frac{\beta+1}{\beta}}+\xi(t)[\eta(t)a(t)]'. \end{eqnarray} $

$ \lambda = \beta, X = \frac{u(t)}{\xi(t)}, Y = \eta(t)a(t) $,代入引理2.4中的不等式

将上式代入(2.40)式,则有

$ \begin{eqnarray} u'(t)&\leqslant&-L\xi(t)\overline{Q}(t)+\xi(t)[\eta(t)a(t)]'+\frac{\xi'(t)}{\xi(t)}u(t)\\ &&-\frac{\beta\xi(t)}{a^{\frac{1}{\beta}}(t)}\bigg[\Big(\frac{u(t)}{\xi(t)}\Big)^{\frac{\beta+1}{\beta}}-\frac{\beta+1}{\beta}[\eta(t)a(t)]^{\frac{1}{\beta}}\frac{u(t)}{\xi(t)}+\frac{1}{\beta}[\eta(t)a(t)]^{\frac{\beta+1}{\beta}}\bigg] \\ & = &-\xi(t)\bigg[L\overline{Q}(t)-(\eta(t)a(t))'+a(t)\eta^{\frac{\beta+1}{\beta}}(t)\bigg]+\bigg[\frac{\xi'(t)}{\xi(t)}+\frac{\beta+1}{\eta^{-\frac{1}{\beta}}(t)}\bigg]u(t)-\frac{\beta[u(t)]^{\frac{\beta+1}{\beta}}}{[a(t)\xi(t)]^{\frac{1}{\beta}}} \\ & = &-\xi(t)\Phi(t)+\bigg[\frac{\xi'(t)}{\xi(t)}+\frac{\beta+1}{\eta^{-\frac{1}{\beta}}(t)}u(t)\bigg]-\frac{\beta[u(t)]^{\frac{\beta+1}{\beta}}}{[a(t)\xi(t)]^{\frac{1}{\beta}}}. \end{eqnarray} $

(2.41)式两边同乘以$ K(t, s) $后积分,注意到$ \frac{\partial K(t, s)}{\partial s}\leqslant0 $,并应用引理2.3,可得

所以

这与条件(2.37)矛盾,证毕.

注2  显然,本文的定理2.7和定理2.8没有文献[5]中定理2.4中的条件"$ a'(t)\geqslant0, $$ \beta\geqslant\gamma, $$ p'(t)\geqslant0 $$ \tau'(t) > 0 $",而且本文得到的结果是确定性的结论,应用非常方便.

3 例题分析

例3.1  对常数$ m > 0, $考虑如下微分方程

$ \begin{equation} \bigg[x(t)+\frac{1}{10}x(\frac{t}{4})\bigg]''+\frac{m}{t^2}x(t) = 0, t\geqslant1, \end{equation} $

$ a(t)\equiv1, p(t) = \frac{1}{10}, q(t) = mt^{-2}, \tau(t) = \frac{t}{4}, \delta(t) = t, f(u) = u, \alpha = \beta = \gamma = 1, t_0 = 1 $则容易验证条件(C$ _1) $–(C$ _4) $$ (1.5) $式都是满足的.在定理$ 2.1 $中取$ \varphi(t) = t, H(t, s) = (t-s)^2, t_1 = 2, $注意到$ L = 1 $,则当$ m > \frac{5}{18} = 0.2\dot{7} $时,有

$ (2.1) $式成立,于是根据定理$ 2.1, $$ m > 0.2\dot{7} $时方程$ (3.1) $是振动的.

注3  对方程$ (3.1) $,我们也可以用文献[8]中的定理$ 3.4 $来判定其振动性:由于

因此当$ m > 1.4 $时方程$ (3.1) $是振动的.这就说明它是本文所获得的振动准则的特殊情形,其"精细"程度与文献[8]的结果相比要好得多.

例3.2  考虑方程$ (1.6) $,即下列二阶变时滞微分方程

相当于方程$ (1.1) $$ \alpha = 1, \beta = \frac{4}{3}, \gamma = 2, t_0 = 1, a(t) = \frac{1}{t^2}, $$ p(t) = \frac{1}{2}, q(t) = \frac{2}{t^2}, f(u) = u, $$ \tau(t) = \sqrt{t}, $$ \delta(t) = \frac{t}{2}. $由于$ \int_{t_0}^{+\infty}a^{-\frac{1}{\beta}}(t){\rm d}t = \int_1^{+\infty}t^{\frac{3}{2}}{\rm d}t = +\infty, $因此条件(C$ _1) $–(C$ _4) $$ (1.5) $式都满足.现在取$ \varphi(t) = t, H(t, s) = (t-s)^2, $注意到$ Q(t) = q(t)\{1-[\alpha2^{1-\alpha}+k_1^{-1}(2^{1-\alpha}-1)]p(\delta(t))\}^\gamma = \frac{1}{2t}, $则有

因此定理$ 2.1 $的条件全部满足,由此知方程$ (1.6) $是振动的.

注4  显然,由于不满足条件"$ a'(t)\geqslant0, \beta\geqslant\gamma $",因此定理A和定理B都不能用于方程(1.6);又由于不满足条件"$ \delta\circ\tau = \tau\circ\delta, \delta(t)\leqslant\tau(t) $",因此定理C也不能用于方程(1.6).

例3.3  对常数$ m > 0 $,考虑二阶微分方程

$ \begin{equation} \bigg\{t\bigg[\Big(x(t)+\frac{1}{4}x^{\frac{1}{3}}(\frac{t}{2})\Big)'\bigg]^{\frac{5}{3}}\bigg\}' +\frac{m}{t}|x(\frac{t}{3})|x^{\frac{1}{9}}(\frac{t}{3}) = 0, t\geqslant1, \end{equation} $

这是具非线性中立项的二阶时滞微分方程,令$ \alpha = \frac{1}{3}, \beta = \frac{5}{3}, \gamma = \frac{10}{9}, t_0 = 1, a(t) = t, $$ p(t) = \frac{1}{4}, $$ q(t) = \frac{m}{t}, f(u) = u, \tau(t) = \frac{t}{2}, \delta(t) = \frac{t}{3}, $则条件(C$ _1) $–(C$ _4) $$ (1.5) $式显然满足.为了计算简单,在定理$ 2.1 $中取$ \varphi(t) = 1, H(t, s) = t-s, t_1 = 2 $,注意$ L = 1, \beta > \gamma $,则

因此定理2.1的条件全部满足,由此知方程(3.2)振动.

注5  由于方程(3.2)的中立项是非线性的,并且$ \beta\neq\gamma, $因此文献[1-18]中的定理对方程(3.2)都不适用.

例3.4  考虑方程$ (1.8) $,即下面的Euler微分方程

其中常数$ m > 0 $.这相当于方程(1.1)中$ a(t) = t^2, $$ p(t)\equiv0, $$ q(t) = m, $$ \tau(t) = \delta(t) = t, $$ \beta = \gamma = 1, $$ t_0 = 1 $.容易验证条件(C$ _1 $)–(C$ _4) $及(1.7)式成立.取$ \varphi(t) = 1, H(t, s) = (t-s)^2, $$ K(t, s) = t-s, t_1 = 2, $则有

且当$ m > \frac{1}{4} $时,有

因此,根据定理2.7,当$ m > \frac{1}{4} $时方程(1.8)是振动的.这就是我们熟悉的结果.

显然,当方程(1.1)中的$ \alpha = \beta = \gamma = 1 $,或者$ \alpha = 1 $$ \beta = \gamma $,或者$ \gamma = 1 $时的特殊情形,本文所得到的这些振动准则改进且推广了一系列已有的结果.

参考文献

Agarwal R P, Bohner M, Li W T. Nonoscillation and Oscillation: Theory for Functional Differential Equations. New York: Marcel Dekker, 2004

[本文引用: 2]

Li T, Rogovchenko Y V. Oscillation theorems for second-order nonlinear neutral delay differential equations. Abstract and Applied Analysis, 2014, Article ID: 594190

[本文引用: 1]

Dzurina J , Stavrouakis I P .

Oscillation criteria for second order delay differential equations

Appl Math Comput, 2003, 14 (3): 445- 453

URL     [本文引用: 3]

Sun Y G , Meng F W .

Note on the paper of Dzurina and Stavroulakis

Appl Math Comput, 2006, 27 (4): 1634- 1641

URL     [本文引用: 3]

黄记洲, 符策红.

广义Emden-Fowler方程的振动性

应用数学学报, 2015, 38 (6): 1126- 1135

URL     [本文引用: 6]

Huang Jizhou , Fu Cehong .

Oscillation criteria of generalized Emden-Fowler equations

Acta Mathematicae Applicatae Sinica, 2015, 38 (6): 1126- 1135

URL     [本文引用: 6]

Yang J S , Wang J J , Qin X W , et al.

Oscillation of nonlinear second-order neutral delay differential equations

Journal of Nonlinear Sciences and Applications, 2017, 10 (5): 2727- 2734

DOI:10.22436/jnsa.010.05.39      [本文引用: 2]

杨甲山.

具非线性中立项的二阶变时滞微分方程的振荡性

华东师范大学学报(自然科学版), 2016, (4): 30- 37

DOI:10.3969/j.issn.1000-5641.2016.04.004      [本文引用: 4]

Yang Jiashan .

Oscillation of second-order variable delay differential equations with nonlinear neutral term

Journal of East China Normal University (Natural Science), 2016, (4): 30- 37

DOI:10.3969/j.issn.1000-5641.2016.04.004      [本文引用: 4]

Sun S , Li T , Han Z , et al.

Oscillation theorems for second-order quasilinear neutral functional differential equations

Abstract and Applied Analysis, 2012, 2012, 1- 17

URL     [本文引用: 2]

Li T , Rogovchenko Yu V , et al.

Oscillation of second-order neutral differential equations

Funkc Ekvac, 2013, 56, 111- 120

DOI:10.1619/fesi.56.111     

Lin X , Tang X .

Oscillation of solutions of neutral differential equations with a superlinear neutral term

Appl Math Lett, 2007, 20, 1016- 1022

DOI:10.1016/j.aml.2006.11.006     

Zhang C , Agarwal R P , Bohner M , et al.

New oscillation results for second-order neutral delay dynamic equations

Advances in Difference Equations, 2012, 2012, 227

DOI:10.1186/1687-1847-2012-227     

Agarwal R P , Bohner M , Li T X , et al.

Oscillation of second-order Emden-Fowler neutral delay differential equations

Annali di Matematica Pura ed Applicata, 2014, 193 (6): 1861- 1875

DOI:10.1007/s10231-013-0361-7     

Agarwal R P , Bohner M , Li T , et al.

Oscillation of second-order differential equations with a sublinear neutral term

Carpathian Journal of Mathematics, 2014, 30 (1): 1- 6

Han Z, Li T, Sun S, et al. Remarks on the paper[Appl Math Comput 207(2009)388-396]. Appl Math Comput, 2010, 215: 3998-4007

罗李平, 俞元洪, 罗振国.

三阶非线性中立型微分方程的振动分析

系统科学与数学, 2016, 36 (4): 551- 559

URL    

Luo L P , Yu Y H , Luo Z G .

Oscillation analysis of third order nonlinear neutral differential equations

Journal of Systems Science and Complexity, 2016, 36 (4): 551- 559

URL    

曾云辉, 罗李平, 俞元洪.

中立型Emden-Fowler时滞微分方程的振动性

数学物理学报, 2015, 35A (4): 803- 814

DOI:10.3969/j.issn.1003-3998.2015.04.016      [本文引用: 1]

Zeng Y H , Luo L P , Yu Y H .

Oscillation for Emden-Fowler delay differential equations of neutral type

Acta Mathematica Scientia, 2015, 35A (4): 803- 814

DOI:10.3969/j.issn.1003-3998.2015.04.016      [本文引用: 1]

Bohner M , Li T X .

Kamenev-type criteria for nonlinear damped dynamic equations

Sci China Math, 2015, 58, 1445- 1452

DOI:10.1007/s11425-015-4974-8     

杨甲山.

时间模上一类二阶非线性延迟动力系统的振动性分析

应用数学学报, 2018, 41 (3): 388- 402

URL     [本文引用: 1]

Yang J S .

Oscillation analysis of second-order nonlinear delay dynamic equations on time scales

Acta Mathematicae Applicatae Sinica, 2018, 41 (3): 388- 402

URL     [本文引用: 1]

/