数学物理学报, 2020, 40(1): 132-145 doi:

论文

具有半正非线性项的分数阶差分方程组边值问题的正解

徐家发,

Positive Solutions for a System of Boundary Value Problems of Fractional Difference Equations Involving Semipositone Nonlinearities

Xu Jiafa,

收稿日期: 2018-04-2  

基金资助: 国家自然科学基金.  11601048
重庆市教委项目.  KJQN201900539
重庆师范大学青年拔尖人才资助项目.  02030307/0040

Received: 2018-04-2  

Fund supported: 国家自然科学基金.  11601048
重庆市教委项目.  KJQN201900539
重庆师范大学青年拔尖人才资助项目.  02030307/0040

作者简介 About authors

徐家发,E-mail:xujiafa292@sina.com , E-mail:xujiafa292@sina.com

摘要

该文运用不动点指数研究一类具有半正非线性项的分数阶差分方程组边值问题的正解.

关键词: 分数阶差分方程组 ; 边值问题 ; 不动点指数 ; 正解

Abstract

In this paper, we use the fixed point index to investigate the existence of positive solutions for a system of boundary value problems of fractional difference equations involving semipositone nonlinearities.

Keywords: Fractional difference equations ; Boundary value problems ; Fixed point index ; Positive solutions

PDF (356KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

徐家发. 具有半正非线性项的分数阶差分方程组边值问题的正解. 数学物理学报[J], 2020, 40(1): 132-145 doi:

Xu Jiafa. Positive Solutions for a System of Boundary Value Problems of Fractional Difference Equations Involving Semipositone Nonlinearities. Acta Mathematica Scientia[J], 2020, 40(1): 132-145 doi:

1 引言及预备知识

对任意的$ e, d\in \bf{{\Bbb R}} $$ e<d $,令$ {\Bbb N}_{e} = \{e, e+1, e+2, \cdots \}, [e, d]_{ {\Bbb N}_{e}} = [e, d] \cap {\Bbb N}_{e} $.本文研究以下具有半正非线性项的分数阶差分方程组边值问题正解的存在性

$ \begin{equation} \left\{\begin{array}{l}{\Delta^{\nu} x(t) = f_{1}(t+\nu-1, x(t+\nu-1), y(t+\nu-1)), t \in[0, b]_{{\Bbb N}_{0}}}, \\ {\Delta^{\nu} y(t) = f_{2}(t+\nu-1, x(t+\nu-1), y(t+\nu-1)), t \in[0, b]_{{\Bbb N}_{0}}}, \\ {x(\nu-2) = 0, \Delta x(\nu-2) = \Delta x(\nu+b-1)}, \\ {y(\nu-2) = 0, \Delta y(\nu-2) = \Delta y(\nu+b-1)}, \end{array}\right. \end{equation} $

其中$ 1<\nu\le 2 $, $ b\in {\Bbb N}_1 $, $ \Delta^\nu $为Riemann-Liouville分数阶差分算子,非线性项$ f_{i} \in C([\nu-1, $$ \nu+b-1]_{{\Bbb N}_{\nu-1}} \times {{\Bbb R}} ^{+} \times {{\Bbb R}}^+, {{\Bbb R}} )\ (i = 1, 2) $满足以下半正型条件

(C1)存在正常数$ M>0 $使得

分数阶方程是近年来研究的热点问题.数学家们研究发现运用分数阶模型能更精确地模拟现实问题,其应用领域涵盖流体力学、流变学、粘弹性力学、电分析化学、生物系统的电传导等方面,虽然存在许多争论,但其应用的广泛性与有效性则是不争的事实[1].然而我们注意到,绝大多数学者研究的问题都是微分方程,对于分数差分方程却鲜有问津.郑祖庥教授[1, 2]指出:"对于分数微分方程来说,离散化或者问题提出时便是离散的分数差分方程是不可避免的.迄今只作为近似解计算的出发点,没有对分数差分方程的专门研究,因此,无论从理论还是应用的角度看,这都是极大的缺憾".然而令人喜悦的是,近期已有很多工作致力于研究分数差分方程,参见文献[2-15]及其所附参考文献,其中专著[2-3]研究总结了近期这方面一些杰出的工作.

在文献[4]中,作者运用范数型拉伸与压缩不动点定理[16]研究了具有半正非线性项的分数差分方程边值问题

$ \begin{equation} \left\{\begin{array}{l}{\Delta^{\nu} y(t) = \lambda f(t+\nu-1, y(t+\nu-1)), t \in[0, T]_{{\Bbb Z}}}, \\ { } {y(\nu-1) = y(\nu+T)+\sum\limits_{i = 1}^{N} F\left(t_{i}, y\left(t_{i}\right)\right), }\end{array}\right. \end{equation} $

其中$ \nu\in (0, 1) $, $ \lambda $为一正参数.

在文献[5]中,作者运用拓扑度理论16],研究了问题(1.2)非平凡解的存在性($ \lambda = 1, F\equiv 0 $),并在非线性项非负条件下,运用单调有界原理获得了唯一正解的存在性,给出了迭代序列.

对于分数差分方程组的研究,可参见文献[6-8]及其所附参考文献.在文献[6]中,作者运用范数型拉伸与压缩不动点定理研究了分数阶差分方程组边值问题正解的存在性

其中$ \nu_1, \nu_2\in (1, 2] $, $ \lambda_1, \lambda_2 $是两个正参数.他们使用的半正非线性项$ f_i(i = 1, 2) $的超线性增长条件是

$ \begin{equation} \lim _{y_{1}+y_{2} \rightarrow+\infty} \frac{f_{i}(t, x, y)}{y_{1}+y_{2}} = +\infty, {\qquad} \lim _{y_{1}+y_{2} \rightarrow 0^{+}} \frac{f_{i}(t, x, y)}{y_{1}+y_{2}} = 0, \end{equation} $

$ t \in\left[\nu_{i}, \nu_{i}+b\right]_{{\Bbb N}_{\nu_{i}-2}} $一致成立.

受上述文献的启发,本文运用不动点指数理论研究分数差分方程组边值问题(1.1)正解的存在性.创新点在于:(l)非线性项可以做到下方有界; (2)运用凹凸函数刻画非线性项之间的耦合行为; (3)所使用的条件优于条件(1.3),详见第2节将给出的(C2).

以下我们给出本文所使用到的分数阶差分计算相关的定义及引理.

定义1.1[7, 9, 14]  对任意有意义的$ t, \nu\in {{\Bbb R}} $,定义$ t^{\underline{\nu}} = \frac{\Gamma(t+1)}{\Gamma(t+1-\nu)} $.如果$ t+1-\nu $是伽马函数的一个奇点且$ t + 1 $不是奇点,则$ t^{\underline{\nu}} = 0 $.

定义1.2[9]  当$ \nu>0 $时,函数$ f $$ \nu $阶和分定义为

由此定义$ f $$ \nu $阶分数差分为

其中$ t \in {\Bbb N}_{a+\nu}, N \in {\Bbb N} $满足: $ 0 \leq N-1<\nu \leq N $.

引理1.3[9]  若对于实数$ t, \nu $使得$ t^{\underline{\nu}}, t^{\underline{\nu-1}} $均是良定义的,则$ \Delta t^{\underline{\nu}} = \nu t^{\underline{\nu-1}} $.

引理1.4[9]  若$ N $满足:$ 0 \leq N-1<\nu \leq N $,则对于$ c_i\in {{\Bbb R}} , i = 1, 2, \cdots, N, $我们有

为了获得方程组(1.1)正解的存在性,我们首先考虑如下的辅助问题

$ \begin{equation} \left\{\begin{array}{l}{\Delta^{\nu} x(t) = f(t+\nu-1, x(t+\nu-1)), t \in[0, b]_{{\Bbb N}_{0}}}, \\ {x(\nu-2) = 0, \Delta x(\nu-2) = \Delta x(\nu+b-1), }\end{array}\right. \end{equation} $

其中$ 1<\nu\le 2 $, $ b\in {\Bbb N}_1 $, $ f \in C([\nu-1, \nu+b-1]_{{\Bbb N}_{\nu-1}} \times {{\Bbb R}} ^+, {{\Bbb R}} ) $满足以下半正型条件

(C1) $ ' $存在正常数$ M>0 $使得

引理1.5[15,引理3.1]  分数阶差分方程边值问题(1.4)的解可表示为

$ \begin{equation} x(t) = \frac{1}{\Gamma(\nu)} \sum\limits_{s = 0}^{b} G(t, s) f(s+\nu-1, x(s+\nu-1)), (t, s) \in[\nu-1, \nu+b-1]_{{\Bbb N}_{\nu-1}} \times[0, b]_{{\Bbb N}_{0}}, \end{equation} $

其中格林函数$ G $定义为

$ \begin{equation} G(t, s) = \left\{ \begin{array}{ll} { } \frac{(b+\nu-s-2)^{\underline{\nu-2}} t^{\underline{\nu-1}} } {\Gamma(\nu-1)-(b+\nu-1)^{\underline{\nu-2}}}+(t-s-1)^{\underline{\nu-1}}, & 0 \leq s \leq t-\nu \leq b, \\ { } \frac{(b+\nu-s-2)^{\underline{\nu-2}} t^{\underline{\nu-1}}} {\Gamma(\nu-1)-(b+\nu-1)^{\underline{\nu-2}}}, & 0 \leq t-\nu<s \leq b. \end{array} \right. \end{equation} $

引理1.6[15,引理3.2]  格林函数$ G $满足以下不等式

(1) $ 0\le G(t, s)\le \left[1+\frac{\Gamma(\nu-1)-(b+\nu-1)^{\underline{\nu-2}}}{(\nu+b-2)^{\underline{\nu-2}}}\right] \frac{(\nu+b)^{\underline{\nu-1}} (\nu+b-s-2)^{\underline{\nu-2}}}{\Gamma(\nu-1)-(b+\nu-1)^{\underline{\nu-2}}} $, $ (t, s) \in[\nu-1, \nu+b-1]_{{\Bbb N}_{\nu-1}} \times[0, b]_{{\Bbb N}_{0}} $,

(2) $ \min \limits_{t \in[\nu-1, \nu+b-1]_{{\Bbb N}_{\nu}-1}} G(t, s)\ge \frac{\Gamma(\nu)(\nu+b-s-2)^{\underline{\nu-2}}}{\Gamma(\nu-1)-(b+\nu-1)^{\underline{\nu-2}}}>0, s\in [0, b]_{{\Bbb N}_0} $.

引理1.7  令$ \phi(t+\nu-1) = (\nu+b-t-2)^{\underline{\nu-2}}, $$ t \in[0, b]_{{\Bbb N}_{0}} $, $ \phi^{*}(t) = (2 \nu+b-t-3)^{\underline{\nu-2}}, $$ t \in[\nu-1, \nu+b-1]_{{\Bbb N}_{\nu-1}} $,从而对任意的$ s\in [0, b]_{{\Bbb N}_0} $,我们有

$ \begin{equation} \kappa_{1} \phi^{*}(s) \leq \sum\limits_{t = \nu-1}^{b+\nu-1} G(t, s) \phi^{*}(t) \leq \kappa_{2} \phi^{*}(s), \end{equation} $

其中

  根据$ \phi, \phi^* $的定义,我们有

从而根据引理1.6,对任意的$ s\in [0, b]_{{\Bbb N}_0} $,我们可以得到如下的不等式

$ \begin{eqnarray} \sum\limits_{t = 0}^{b} G(t+\nu-1, s) \phi(t+\nu-1) &\geq &\sum\limits_{t = 0}^{b} \frac{\Gamma(\nu) \phi(t+\nu-1)} {\Gamma(\nu-1)-(b+\nu-1)^{\underline{\nu-2}}} \cdot \phi(s+\nu-1){}\\ & = &\kappa_{1} \phi^{*}(s) \end{eqnarray} $

$ \begin{eqnarray} & &\sum\limits_{t = 0}^{b} G(t+\nu-1, s) \phi(t+\nu-1){}\\ & \le& \sum\limits_{t = 0}^{b}\left[1+\frac{\Gamma(\nu-1)-(b+\nu-1)^{\underline{\nu-2}}}{(\nu+b-2)^{\underline{\nu-2}}}\right] \frac{(\nu+b)^{\underline{\nu-1}} \phi(t+\nu-1)}{\Gamma(\nu-1)-(b+\nu-1)^{\underline{\nu-2}}} \cdot \phi(s+\nu-1){}\\ & = & \kappa_{2} \phi^{*}(s). \end{eqnarray} $

证毕.

$ E $是从$ [\nu-1, \nu+b-1]_{{\Bbb N}_{\nu-1}} $到实数集$ {{\Bbb R}} $上的全体映射构成的集合,并在其上赋予最大模范数$ \|x\| = \max \left\{|x(t)| : t \in[\nu-1, \nu+b-1]_{{\Bbb N}_{\nu-1}}\right\} $.$ (E, \|\cdot\|) $是一Banach空间.定义集合

$ P, P_0 $均是$ E $上的锥.

$ x\in P $,定义如下算子

则可得以下的引理.

引理1.8  对任意的$ t \in[\nu-1, \nu+b-1]_{{\Bbb N}_{\nu-1}} $, $ L(P)\subset P_0 $.

  根据引理1.6,对任意的$ t \in[\nu-1, \nu+b-1]_{{\Bbb N}_{\nu-1}} $,我们有

另一方面,对任意的$ t \in[\nu-1, \nu+b-1]_{{\Bbb N}_{\nu-1}} $,我们可得到

证毕.

定义$ w $是以下分数阶差分方程边值问题的解

$ \begin{equation} \left\{\begin{array}{l}{\Delta^{\nu} w(t) = M, t \in[0, b]_{{\Bbb N}_{0}}}, \\ {w(\nu-2) = 0, \Delta w(\nu-2) = \Delta w(\nu+b-1), }\end{array}\right. \end{equation} $

其中$ 1<\nu\le 2 $, $ b\in {\Bbb N}_1 $, $ M $由条件(C1)确定.由引理1.5知

$ \begin{equation} w(t) = \frac{M}{\Gamma(\nu)} \sum\limits_{s = 0}^{b} G(t, s), (t, s) \in[\nu-1, \nu+b-1]_{{\Bbb N}_{\nu-1}} \times[0, b]_{{\Bbb N}_{0}}. \end{equation} $

根据引理1.6(1),我们可得到

因此,若$ x\in P_0 $,则对任意的$ t \in[\nu-1, \nu+b-1]_{{\Bbb N}_{\nu-1}} $,当$ \|x\|\ge \frac{M \kappa^2_{2}}{\kappa_1\Gamma(\nu)} $时,我们有

$ \begin{equation} x(t)-w(t) \geq \frac{\kappa_{1}}{\kappa_{2}}\|x\|-\frac{M \kappa_{2}}{\Gamma(\nu)} \geq 0. \end{equation} $

我们将问题(1.4)做如下变形

$ \begin{equation} \left\{\begin{array}{l}{\Delta^{\nu} x(t) = f(t+\nu-1, \max \{x(t+\nu-1)-w(t+\nu-1), 0\})+M, t \in[0, b]_{{\Bbb N}_{0}}}, \\ {x(\nu-2) = 0, \Delta x(\nu-2) = \Delta x(\nu+b-1), }\end{array}\right. \end{equation} $

其中$ w $由(1.11)式定义.关于问题(1.4)和(1.13),我们有如下引理.

引理1.9  (1)若$ w $$ x $分别是问题(1.10)和(1.13)的解,并且对任意的$ t\in [0, b]_{{\Bbb N}_{0}} $,有$ x(t+\nu-1)-w(t+\nu-1)\ge 0 $,则$ x-w $是问题(1.4)的正解.

(2)若$ x $是问题(1.4)的正解,则$ x+w $是问题(1.13)的正解.

由此可知我们仅需要找寻问题(1.13)超过$ w $的解,并且注意到(1.12)式的计算,又可知该解的范数超过$ \frac{M \kappa^2_{2}}{\kappa_1\Gamma(\nu)} $即可.

定义算子$ A: E\to E $如下

由引理1.5知,问题(1.13)解的存在性等价于算子$ A $不动点的存在性.并且根据引理1.8的证明,引理1.6和条件(C1)$ ' $知, $ A(P)\subset P, A(P)\subset P_0 $.

引理1.10[16]  设$ E $为实Banach空间, $ P $$ E $中的锥, $ \Omega $$ E $中的有界开集, $ A:\overline{\Omega}\cap P \to P $是一全连续算子.若存在$ x_0\in P\backslash \{0\} $使得

$ i(A, \Omega\cap P, P) = 0 $,其中$ i $为锥$ P $上的不动点指数.

引理1.11[16]  设$ E $为实Banach空间, $ P $$ E $中的锥, $ \Omega $$ E $中的有界开集, $ 0\in \Omega $, $ A:\overline{\Omega}\cap P \to P $是一全连续算子.若

$ i(A, \Omega\cap P, P) = 1 $.

2 主要结论

根据第1节的讨论知,我们需要将问题(1.1)做如下变形

$ \begin{equation} \left\{ \begin{array}{ll} \Delta^{\nu} x(t)& = f_{1}(t+\nu-1, \max \{x(t+\nu-1)-w(t+\nu-1), 0\}, \\ & \max \{y(t+\nu-1)-w(t+\nu-1), 0\} )+M, t \in[0, b]_{{\Bbb N}_{0}}, \\ \Delta^{\nu} y(t)& = f_{2}(t+\nu-1, \max \{x(t+\nu-1)-w(t+\nu-1), 0\}, \\ &\max\{y(t+\nu-1)-w(t+\nu-1), 0\} )+M, t \in[0, b]_{{\Bbb N}_{0}}, \\ & x(\nu-2) = 0, \Delta x(\nu-2) = \Delta x(\nu+b-1), \\ & y(\nu-2) = 0, \Delta y(\nu-2) = \Delta y(\nu+b-1). \end{array} \right. \end{equation} $

为方便计,以下简记

从而

根据引理1.5,我们可以将(2.1)式转化为如下的和式

$ \begin{equation} \left\{\begin{array}{l} { }{x(t) = \sum\limits_{s = 0}^{b} \frac{G(t, s)}{\Gamma(\nu)} f_{1}^{*}(s+\nu-1, x(s+\nu-1), y(s+\nu-1)), t \in[\nu-1, \nu+b-1]_{{\Bbb N}_{\nu-1}}}, \\ { } {y(t) = \sum\limits_{s = 0}^{b} \frac{G(t, s)}{\Gamma(\nu)} f_{2}^{*}(s+\nu-1, x(s+\nu-1), y(s+\nu-1)), t \in[\nu-1, \nu+b-1]_{{\Bbb N}_{\nu-1}}.}\end{array}\right. \end{equation} $

定义算子$ T_i: P\times P\to P $, $ T:P\times P\to P\times P $如下

根据第1节的讨论知,算子$ T $不动点的存在性等价于方程组(2.1)解的存在性.再根据引理1.9,若$ (x, y) $$ T $的不动点且$ x(t)\ge w(t), y(t)\ge w(t), t\in [\nu-1, \nu+b-1]_{{\Bbb N}_{\nu-1}} $,则$ (x-w, y-w) $是方程组(1.1)的正解.从而接下来的任务是在合适的条件下找寻算子$ T $范数超过$ \frac{M \kappa^2_{2}}{\kappa_1\Gamma(\nu)} $的不动点.

为简便记,我们使用$ d_1, d_2, \cdots $表示不同的正实数(在后面的证明过程中不具体计算出来),接下来给出非线性项满足的增长性条件

(C2)存在函数$ p, q\in C({{\Bbb R}} ^+, {{\Bbb R}} ^+) $和常数$ \gamma_{1}>\frac{\Gamma^{2}(\nu)}{\kappa_{1}^{2}}, d_{1}>0 $使得

(ⅰ) $ p $$ {{\Bbb R}} ^+ $上的严格增的凹函数,且$ { }\lim_{y\to +\infty}p(y) = +\infty $,

(ⅱ) $ f_{1}^{*}(t, x, y) \geq p(y)-d_{1}, f_{2}^{*}(t, x, y) \geq q(x)-d_{1}, \forall(t, x, y) \in[\nu-1, \nu+b-1]_{{\Bbb N}_{\nu-1}} \times {{\Bbb R}} ^+ \times {{\Bbb R}} ^+, $

(C3) $ f_{i}^{*}(t, x, y)<\frac{M \kappa_{2}}{\kappa_{1}}, \forall(t, x, y) \in[\nu-1, \nu+b-1]_{{\Bbb N}_{\nu-1}} \times\left[0, \frac{M \kappa_{2}^{2}}{\kappa_{1} \Gamma(\nu)}\right] \times\left[0, \frac{M \kappa_{2}^{2}}{\kappa_{1} \Gamma(\nu)}\right], i = 1, 2. $

(C4)存在函数$ \xi, \eta\in C({{\Bbb R}} ^+, {{\Bbb R}} ^+) $和常数$ \gamma_{2} \in\left(0, \frac{\Gamma^{2}(\nu)}{\kappa_{2}}\right), d_{2}>0 $使得

(ⅰ) $ \xi $$ {{\Bbb R}} ^+ $上的严格增的凸函数,且$ { }\lim_{y\to +\infty}\xi(y) = +\infty $;

(ⅱ) $ f_{1}^{*}(t, x, y) \leq \xi(y), f_{2}^{*}(t, x, y) \leq \eta(x), \forall(t, x, y) \in[\nu-1, \nu+b-1]_{{\Bbb N}_{\nu-1}} \times {{\Bbb R}} ^+ \times {{\Bbb R}} ^+ $,

(C5) $ f_{i}^{*}(t, x, y)>\frac{M \kappa_{2}^{2}}{\kappa_{1}^{2}}, \forall(t, x, y) \in[\nu-1, \nu+b-1]_{{\Bbb N}_{\nu-1}} \times\left[0, \frac{M \kappa_{2}^{2}}{\kappa_{1} \Gamma(\nu)}\right] \times\left[0, \frac{M \kappa_{2}^{2}}{\kappa_{1} \Gamma(\nu)}\right], i = 1, 2. $

例2.1  令$ p(y) = y^{\frac{4}{5}}, q(x) = x^{2}, x, y \in {{\Bbb R}} ^+ $.

从而$ p, q $满足条件(C2).另一方面,选取$ f_1^*, f_2^* $如下

其中$ \beta_1>0, \beta_2>0, \beta_3>2, (t, x, y) \in[\nu-1, \nu+b-1]_{{\Bbb N}_{\nu-1}} \times {{\Bbb R}} ^+ \times {{\Bbb R}} ^+ $.下证$ f_1^*, f_2^* $满足条件(C2)(ⅱ)和(C3).若$ (t, x, y) \in[\nu-1, \nu+b-1]_{{\Bbb N}_{\nu-1}} \times\left[0, \frac{M \kappa_{2}^{2}}{\kappa_{1} \Gamma(\nu)}\right] \times\left[0, \frac{M \kappa_{2}^{2}}{\kappa_{1} \Gamma(\nu)}\right] $,则

则条件(C3)成立.另一方面

从而条件(C2)(ⅱ)成立.

例2.2  令$ \xi(y) = y^{2}, \eta(x) = \ln (x+1), x, y \in {{\Bbb R}} ^+ $.

从而$ \xi, \eta $满足条件(C4).另一方面,选取$ f_1^*, f_2^* $如下

其中$ \beta_4, \beta_5>0, (t, x, y) \in[\nu-1, \nu+b-1]_{{\Bbb N}_{\nu-1}} \times {{\Bbb R}} ^+ \times {{\Bbb R}} ^+ $.下证$ f_1^*, f_2^* $满足条件(C4)(ii)和(C5)若$ (t, x, y) \in[\nu-1, \nu+b-1]_{{\Bbb N}_{\nu-1}} \times\left[0, \frac{M \kappa_{2}^{2}}{\kappa_{1} \Gamma(\nu)}\right] \times\left[0, \frac{M \kappa_{2}^{2}}{\kappa_{1} \Gamma(\nu)}\right] $,则

则条件(C5)成立.另一方面

从而条件(C4)(ⅱ)成立.

定义$ E $中的开球$ B_\rho = \{x\in E: \|x\|<\rho\}, \rho>0 $.

定理2.3  若条件(C1)–(C3)成立,则差分方程组(1.1)至少有一个正解.

  第一步    证明存在$ R>\frac{M \kappa^2_{2}}{\kappa_1\Gamma(\nu)} $使得

$ \begin{equation} (x, y) \neq T(x, y)+\lambda\left(x_{0}, x_{0}\right), \forall(x, y) \in \partial B_{R} \cap(P \times P), \lambda \geq 0, \end{equation} $

其中$ x_0\in P_0 $是一给定的函数.反证法,若上式不成立,则存在$ (x, y) \in \partial B_{R} \cap(P \times P), \lambda \geq 0 $使得$ (x, y) = T(x, y)+\lambda\left(x_{0}, x_{0}\right) $,从而$ x(t) \geq T_{1}(x, y)(t), y(t) \geq T_{2}(x, y)(t), t \in[\nu-1, \nu+b-1]_{{\Bbb N}_{\nu}-1} $.根据条件(C2)(ⅱ),我们有

$ \begin{eqnarray} x(t) \geq T_{1}(x, y)(t) & \geq & \sum\limits_{s = 0}^{b} \frac{G(t, s)}{\Gamma(\nu)}\left[p(y(s+\nu-1)-w(s+\nu-1))-d_{1}\right] {} \\ &\geq & \sum\limits_{s = 0}^{b} \frac{G(t, s)}{\Gamma(\nu)} p(y(s+\nu-1)-w(s+\nu-1))-d_{3}{} \\ & \geq & \sum\limits_{s = 0}^{b} \frac{G(t, s)}{\Gamma(\nu)}[p(y(s+\nu-1))-p(w(s+\nu-1))]-d_{3} {}\\ & \geq & \sum\limits_{s = 0}^{b} \frac{G(t, s)}{\Gamma(\nu)} p(y(s+\nu-1))-d_{4}, t \in[\nu-1, \nu+b-1]_{{\Bbb N}_{\nu-1}} \end{eqnarray} $

$ \begin{eqnarray} y(t) &\geq &T_{2}(x, y)(t) \geq \sum\limits_{s = 0}^{b} \frac{G(t, s)}{\Gamma(\nu)}\left[q(x(s+\nu-1)-w(s+\nu-1))-d_{1}\right] {} \\ & \geq & \sum\limits_{s = 0}^{b} \frac{G(t, s)}{\Gamma(\nu)} q(x(s+\nu-1)-w(s+\nu-1))-d_{3}, t \in[\nu-1, \nu+b-1]_{{\Bbb N}_{\nu-1}.} \end{eqnarray} $

注意到$ \sum\limits_{s = 0}^{b} \frac{G(t, s)}{\Gamma(\nu)}\le \frac{\kappa_2}{\Gamma(\nu)}, \forall t\in[\nu-1, \nu+b-1]_{{\Bbb N}_{\nu-1}}. $从而根据(2.5)式和条件(C2)(ⅱ),对任意的$ t\in [0, b]_{{\Bbb N}_{0}} $,我们可以推出

从而可得

因此,将上式带入(2.4)式可得

$ \begin{eqnarray} x(t) & \geq & \sum\limits_{s = 0}^{b} \frac{G(t, s)}{\Gamma(\nu)} p(y(s+\nu-1))-d_{4} {}\\ & \geq & \sum\limits_{s = 0}^{b} \frac{G(t, s)}{\Gamma(\nu)}\left[\gamma_{1} \sum\limits_{\tau = 0}^{b} \frac{G(s+\nu-1, \tau)}{\Gamma(\nu)} x(\tau+\nu-1)-d_{7}\right]-d_{4}{} \\ & \geq & \gamma_{1} \sum\limits_{s = 0}^{b} \frac{G(t, s)}{\Gamma(\nu)} \sum\limits_{\tau = 0}^{b} \frac{G(s+\nu-1, \tau)}{\Gamma(\nu)} x(\tau+\nu-1)-d_{8}, t \in[\nu-1, \nu+b-1]_{{\Bbb N}_{\nu-1}.} {\quad} \end{eqnarray} $

将(2.6)式两边分别乘以$ \phi^*(t) $并从$ \nu-1 $$ \nu+b-1 $求和,借助不等式(1.7)和(1.8),可得

由于$ T_1(P, P)\subset P_0, x_0\in P_0 $,则$ x\in P_0 $.从而

由此解得

另一方面,注意到$ T_2(P, P)\subset P_0, x_0\in P_0 $,则$ y\in P_0 $.并且不妨设$ y(t)\not \equiv 0, t\in [\nu-1, \nu+b-1]_{{\Bbb N}_{\nu-1}} $(否则$ \|y\| = 0 $,已然有界).从而$ \|y\|>0 $$ p(\|y\|)>0 $.再根据函数$ p $的凹性,我们有

在(2.6)式两边乘以$ \phi^*(t) $并从$ \nu-1 $$ \nu+b-1 $求和,借助不等式(1.7)可得

结合上述两个不等式,我们可得

根据条件(C2)(ⅰ), $ { }\lim_{z\to +\infty}p(z) = +\infty $,因此存在$ M_2>0 $使得$ \|y\|\le M_2 $.

综上所述$ \|x\|\le M_1, $$ \|y\|\le M_2 $.$ R>\max\{\frac{M \kappa^2_{2}}{\kappa_1\Gamma(\nu)}, M_1, M_2\} $使得(2.3)式成立.从而根据引理1.10可知

$ \begin{equation} i\left(T, B_{R} \cap(P \times P), P \times P\right) = 0. \end{equation} $

第二步{\quad}证明

$ \begin{equation} (x, y) \neq \lambda T(x, y), \forall(x, y) \in \partial B_{\Theta} \cap(P \times P), \lambda \in[0, 1], \end{equation} $

其中$ \Theta = \frac{M \kappa^2_{2}}{\kappa_1 \Gamma(\nu)} $.反证法,若上式不成立,则存在$ (x, y) \in \partial B_{\Theta} \cap(P \times P), \lambda_0 \in[0, 1] $使得$ (x, y) = \lambda_0 T(x, y) $.这表明

从而

$ \begin{equation} \|x\| \leq\left\|T_{1}(x, y)\right\|, \|y\| \leq\left\|T_{2}(x, y)\right\|. \end{equation} $

然而根据条件(C3),我们有

这表明$ \|T_1(x, y)\|<\|x\| $.同理可证$ \|T_2(x, y)\|<\|y\| $.这与(2.9)式矛盾,故(2.8)式成立.由引理1.11知

$ \begin{equation} i\left(T, B_{\Theta} \cap(P \times P), P \times P\right) = 1. \end{equation} $

通过(2.7)和(2.10)式计算可得

因此算子$ T $$ \left(B_{R} \backslash \overline{B}_{\Theta}\right) \cap(P \times P) $中至少有一个不动点$ (x, y) $,又由于$ \|x\|, \|y\|\ge \frac{M \kappa^2_{2}}{\kappa_1\Gamma(\nu)} $,则$ (x-w, y-w) $是问题(1.1)的一个正解.证毕. \hfill\rule{0.8mm}{3.5mm}

定理2.4  若条件(C1), (C4)–(C5)成立,则差分方程组(1.1)至少有一个正解.

  第一步    证明存在$ R>\frac{M \kappa^2_{2}}{\kappa_1\Gamma(\nu)} $使得

$ \begin{equation} (x, y) \neq \lambda T(x, y), \forall(x, y) \in \partial B_{R} \cap(P \times P), \lambda \in[0, 1]. \end{equation} $

反证法.若上式不成立,则存在$ (x, y) \in \partial B_{R} \cap(P \times P), \lambda_0 \in[0, 1] $使得$ (x, y) = \lambda_0 T(x, y) $.从而,我们有

根据条件(C4)(ⅱ)我们可得

$ \begin{eqnarray} x(t) & \leq & \sum\limits_{s = 0}^{b} \frac{G(t, s)}{\Gamma(\nu)} \xi(y(s+\nu-1)-w(s+\nu-1)){} \\ & \leq & \sum\limits_{s = 0}^{b} \frac{G(t, s)}{\Gamma(\nu)}[\xi(y(s+\nu-1))-\xi(w(s+\nu-1))] {}\\ & \leq & \sum\limits_{s = 0}^{b} \frac{G(t, s)}{\Gamma(\nu)} \xi(y(s+\nu-1)), t \in[\nu-1, \nu+b-1]_{{\Bbb N}_{\nu-1}} \end{eqnarray} $

$ \begin{equation} y(t) \leq \sum\limits_{s = 0}^{b} \frac{G(t, s)}{\Gamma(\nu)} \eta(x(s+\nu-1)-w(s+\nu-1)), t \in[\nu-1, \nu+b-1]_{{\Bbb N}_{\nu-1}}. \end{equation} $

从而,对任意的$ t\in [0, b]_{{\Bbb N}_0} $,我们有

$ \begin{eqnarray} \xi(y(t+\nu-1)) & \leq & \xi\left[\sum\limits_{s = 0}^{b} \frac{G(t+\nu-1, s)}{\Gamma(\nu)} \eta(x(s+\nu-1)-w(s+\nu-1))\right] {}\\ & = & \xi\left[\sum\limits_{s = 0}^{b} \frac{G(t+\nu-1, s)}{\Gamma(\nu)} \frac{\Gamma(\nu)}{\kappa_{2}} \frac{\kappa_{2}}{\Gamma(\nu)} \eta(x(s+\nu-1)-w(s+\nu-1))\right] {}\\ & \leq & \sum\limits_{s = 0}^{b} \frac{G(t+\nu-1, s)}{\Gamma(\nu)} \frac{\Gamma(\nu)}{\kappa_{2}} \xi\left(\frac{\kappa_{2}}{\Gamma(\nu)} \eta(x(s+\nu-1)-w(s+\nu-1))\right){} \\ & \leq & \sum\limits_{s = 0}^{b} \frac{G(t+\nu-1, s)}{\Gamma(\nu)} \frac{\Gamma(\nu)}{\kappa_{2}}\left[\frac{\kappa_{2}}{\Gamma(\nu)} \gamma_{2}(x(s+\nu-1)-w(s+\nu-1))+d_{2}\right] {}\\ & \leq & \gamma_{2} \sum\limits_{s = 0}^{b} \frac{G(t+\nu-1, s)}{\Gamma(\nu)} x(s+\nu-1)+d_{10}. \end{eqnarray} $

结合(2.12)式,我们可推出

在上式两边乘以$ \phi^*(t) $并从$ \nu-1 $$ \nu+b-1 $求和,借助不等式(1.7)和(1.9)可得

注意到$ T_1(P, P)\subset P_0 $,则$ x\in P_0 $.从而由上式可解得

解该不等式得

在(2.14)式两边乘以$ \phi^*(t) $并从$ \nu-1 $$ \nu+b-1 $求和,借助不等式(1.7)和(1.9)可得

注意到$ T_2(P, P)\subset P_0 $,则$ y\in P_0 $.从而根据函数$ \xi $的严格增长性,我们有

从而可得

再根据条件(C4)(ⅰ),存在$ M_4>0 $使得$ \|y\|\le M_4 $.

综上所述$ \|x\|\le M_3, $$ \|y\|\le M_4 $.$ R>\max\{\frac{M \kappa^2_{2}}{\kappa_1\Gamma(\nu)}, M_3, M_4\} $使得(2.11)式成立.由此,结合引理1.11可得

$ \begin{equation} i\left(T, B_{R} \cap(P \times P), P \times P\right) = 1. \end{equation} $

第二步    证明

$ \begin{equation} (x, y) \neq T(x, y)+\lambda\left(x_{0}, x_{0}\right), \forall(x, y) \in \partial B_{\Theta} \cap(P \times P), \lambda \geq 0, \end{equation} $

其中$ x_0\in P $是一给定的函数, $ \Theta = \frac{M \kappa^2_{2}}{\kappa_1 \Gamma(\nu)} $.

反证法.若上式不成立,则存在$ (x, y) \in \partial B_{\Theta} \cap(P \times P), \lambda_0\ge 0 $使得$ (x, y) = T(x, y)+\lambda_0 (x_0, y_0) $.这表明

因此

$ \begin{equation} \|x\| \geq\left\|T_{1}(x, y)\right\|, \|y\| \geq\left\|T_{2}(x, y)\right\|. \end{equation} $

然而根据条件(C5),对任意的$ t \in[\nu-1, \nu+b-1]_{{\Bbb N}_{\nu-1}} $,我们有

这表明$ \|T_1(x, y)\|>\|x\| $.同理可证$ \|T_2(x, y)\|>\|y\| $.这与(2.17)式矛盾.矛盾表明(2.16)式成立.由引理1.10可得

$ \begin{equation} i\left(T, B_{\Theta} \cap(P \times P), P \times P\right) = 0. \end{equation} $

根据(2.15)和(2.18)式可知

因此算子$ T $$ \left(B_{R} \backslash \overline{B}_{\Theta}\right) \cap(P \times P) $中至少有一个不动点$ (x, y) $,又由于$ \|x\|, \|y\|\ge \frac{M \kappa^2_{2}}{\kappa_1\Gamma(\nu)} $,则$ (x-w, y-w) $是问题(1.1)的一个正解.证毕.

参考文献

郑祖庥.

分数微分方程的发展和应用

徐州师范大学学报, 2008, 26 (2): 1- 10

URL     [本文引用: 2]

程金发. 分数阶差分方程理论. 厦门: 厦门大学出版社, 2011

[本文引用: 3]

Goodrich C S , Peterson A C . Discrete Fractional Calculus. New York: Springer, 2015

[本文引用: 1]

Goodrich C S .

On a first-order semipositone discrete fractional boundary value problem

Arch Math, 2012, 99, 509- 518

DOI:10.1007/s00013-012-0463-2      [本文引用: 1]

Xu J F , O'Regan D .

Existence and uniqueness of solutions for a first-order discrete fractional boundary value problem

Rev R Acad Cienc Exactas Fís Nat Ser A Math, 2018, 112 (4): 1005- 1016

DOI:10.1007/s13398-017-0406-7      [本文引用: 1]

Dahal R , Duncan D , Goodrich C S .

Systems of semipositone discrete fractional boundary value problems

J Differ Equ Appl, 2014, 20 (3): 473- 491

DOI:10.1080/10236198.2013.856073      [本文引用: 2]

Goodrich C S .

Existence of a positive solution to a system of discrete fractional boundary value problems

Appl Math Comput, 2011, 217 (9): 4740- 4753

URL     [本文引用: 1]

Goodrich C S .

Systems of discrete fractional boundary value problems with nonlinearities satisfying no growth conditions

J Differ Equ Appl, 2015, 21 (5): 437- 453

DOI:10.1080/10236198.2015.1013537      [本文引用: 1]

Goodrich C S .

On discrete sequential fractional boundary value problems

J Math Anal Appl, 2012, 385 (1): 111- 124

DOI:10.1016/j.jmaa.2011.06.022      [本文引用: 4]

Laoprasittichok S , Sitthiwirattham T .

Existence and uniqueness results of nonlocal fractional sum-difference boundary value problems for fractional difference equations involving sequential fractional difference operators

J Comput Anal Appl, 2017, 23 (6): 1097- 1111

URL    

Sitthiwirattham T .

Existence and uniqueness of solutions of sequential nonlinear fractional difference equations with three-point fractional sum boundary conditions

Math Meth Appl Sci, 2015, 38, 2809- 2815

DOI:10.1002/mma.3263     

Rehman M U , Iqbal F , Seemab A .

On existence of positive solutions for a class of discrete fractional boundary value problems

Positivity, 2017, 21, 1173- 1187

DOI:10.1007/s11117-016-0459-4     

Lv Z M , Cong Y P , Chen Y .

Multiplicity and uniqueness for a class of discrete fractional boundary value problems

Appl Math, 2014, 59, 673- 695

DOI:10.1007/s10492-014-0079-x     

Atici F M , Eloe P W .

A transform method in discrete fractional calculus

Int J Differ Equ, 2007, 2 (2): 165- 176

URL     [本文引用: 1]

Wang J H , Xiang H J , Chen F L .

Existence of positive solutions for a discrete fractional boundary value problem

Adv Difference Equ, 2014, 253, 1- 9

URL     [本文引用: 3]

Cuo D J , Lakshmikantham V . Nonlinear Problems in Abstract Cones. Orlando: Academic Press, 1988

[本文引用: 3]

/