数学物理学报, 2019, 39(6): 1555-1562 doi:

论文

费米气体光晶格模型的渐近轨线

欧阳成,1, 汪维刚2, 莫嘉琪3

The Asymptotic Path Curve for Fermi Gases Optical Lattices Model

Ouyang Cheng,1, Wang Weigang2, Mo Jiaqi3

通讯作者: 欧阳成, E-mail: oyc@zjhu.edu.cn

收稿日期: 2018-11-9  

基金资助: 国家自然科学基金.  11771005
浙江省自然科学基金.  LY13A010005
安徽省教育厅自然科学重点基金.  KJ2018A0964
安徽省教育厅自然科学重点基金.  KJ2019A1261

Received: 2018-11-9  

Fund supported: the NSFC.  11771005
the Natural Science Foundation of Zhejiang Province.  LY13A010005
the Natural Science Foundation of the Education Department of Anhui Province.  KJ2018A0964
the Natural Science Foundation of the Education Department of Anhui Province.  KJ2019A1261

摘要

研究了一类费米(Fermi)气体光晶格轨线模型.首先求得了费米气体光晶格在典型模型轨线的精确解.然后由一组广义泛函分析变分理论,构造一组迭代系统,得到了费米气体光晶格非线性扰动模型轨线的任意次渐近解.该文在方法上较方便地得到轨线的渐近表示式.所用的方法和基本理论,具有广泛的实际应用价值.

关键词: 扰动 ; 轨线 ; 渐近解

Abstract

A class of model for the Fermi gases optical lattices is investigated. Firstly, the exact solution of the path curve to typical Fermi gases optical lattices model is constructed. Then, from the generalized functional analysis variation theory it constructed a set of iterative system. The arbitrary order asymptotic solution of nonlinear disturbed model of the path curve to Fermi gases optical lattices is obtained. In this paper, there got asymptotic repressions of the path curve expediently in the method and the proposed method and with the basic theory has wide application values.

Keywords: Disturbed ; Path curves ; Asymptotic solution

PDF (454KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

欧阳成, 汪维刚, 莫嘉琪. 费米气体光晶格模型的渐近轨线. 数学物理学报[J], 2019, 39(6): 1555-1562 doi:

Ouyang Cheng, Wang Weigang, Mo Jiaqi. The Asymptotic Path Curve for Fermi Gases Optical Lattices Model. Acta Mathematica Scientia[J], 2019, 39(6): 1555-1562 doi:

1 引言

当前学术界对Bose-Einstein凝聚(BEC)理论十分关注[1-4].在光晶格费米(Fermi)气体凝聚体特性有较多的研究.例如波的演化,量子相变,超流与绝缘,用共振技巧来控制光晶格,费米气体光晶格超导性的微观现象和BEC间过渡的隧穿性态,相平面分析和周期性调制研究,超导电性现象等等[2-18]. Landau-Zener隧穿费米凝聚体量子现象是系统相邻能级间量子的作用[14].近来,一些学者用动力学解析理论来讨论了费米气体的光晶格模型.作者等也用解析方法研究了一些非线性物理模型[22-34].本文是用广义变分理论和方法来得到费米气体光晶格模型渐近解的表示式.

2 费米气体典型光晶格系统

费米气体光晶格当凝聚的钠原子光晶格尺度充分小,温度足够低时,从BCS到unitarity渡越过程的动力学现象可用如下薛定谔方程描述[15-16]

$ \begin{align} {\rm i}\hbar\frac{\partial \phi}{\partial t} = -\frac{1}{2M}((\hbar\frac{\partial}{\partial x} -{\rm i}Ma_{l})^{2}\phi+V_{0}\cos(2k_{L}x)\phi+\mu\phi, \end{align} $

其中$ x $是空间变量, $ t $是时间变量, $ \phi $是凝聚体的波函数, $ V_{0} $为光晶格强度, $ \mu $为光晶格体系的化学势, $ M = 2m\ (m $为单个原子的质量), $ k_{L} = \frac{2}{\lambda}\ (\lambda = 1064nm) $为激光的波数, $ Ma_{l} $表示在光晶格中的惯性力.设

上式中$ n_{0} = 3\times10^{21}m^{-3} $为Na原子的平均粒子数密度, $ \mu $为超流费米气体从分子BCS渡越到unitarity的过程中化学势[17]

其中$ a_{f} $为散射长度, $ \widetilde{g}(\widetilde{x}) = 1+\delta\widetilde{x}/(1-\kappa\widetilde{x}) $, $ \kappa = \delta/0.56 $, $ \delta = 4\pi/(3\pi^{2})^{2/3} $.而当$ \widetilde{x} > 1 $时系统处于BCS区,当$ \widetilde{x} < 1 $时系统处于unitarity区.

再设$ \overline{\phi} = \xi_{1}\exp({\rm i}(\theta_{1}+\widetilde{x}/2)) +\xi_{2}\exp({\rm i}(\theta_{2}+\widetilde{x}/2)) $,将其以及BCS区和unitarity区的化学势分别代入(2.1)式,便得到布局数差$ s = \xi^{2}_{2}-\xi^{1}_{2} $和相位差$ \theta = \theta_{2}-\theta_{1} $满足典型的光晶格系统[14, 18]

$ \begin{align} \frac{{\rm d}s}{{\rm d}\widetilde{t}} = -\widetilde{v}\sqrt{1-s^{2}}\sin\theta, \end{align} $

$ \begin{align} \frac{{\rm d}\theta}{{\rm d}\widetilde{t}} = \frac{\widetilde{v}s}{\sqrt{1-s^{2}}}\cos\theta +\frac{d_{1}}{4k^{2}_{L}}s+\frac{d_{2}}{16k^{2}_{L}}s(1-s^{2}), \end{align} $

这里$ d_{i}\ (i = 1, 2) $为常数.由(2.2)式, $ {\rm d}\widetilde{t} = -{\rm d}s/(\widetilde{v}\sqrt{1-s^{2}}\sin\theta) $,将它代入(2.3)式,光晶格系统满足如下微分方程

$ \begin{align} \frac{{\rm d}\cos\theta}{{\rm d}s} = \frac{s}{1-s^{2}}\cos\theta+\frac{1}{\widetilde{v}} (\frac{d_{1}}{4k^{2}_{L}})\frac{s}{\sqrt{1-s^{2}}}+ \frac{d_{2}}{16k^{2}_{L}}s\sqrt{1-s^{2}}). \end{align} $

由(2.4)式,便得到费米气体典型光晶格系统的轨线方程

$ \begin{align} \cos\theta = C(1-s^{2})^{-1/2} -\frac{1}{64\widetilde{v}k^{2}_{L}}(8d_{1}(1-s^{2})+d_{2}(1-s^{2})^{2}), \end{align} $

(2.5)式中$ C $为任意常数.取不同的常数$ C $时在相平面上有不同的闭轨线曲线.

取无量纲参数$ d_{1} = d_{2} = \widetilde{v} = k_{L} = 1 $,当常数分别取$ C = 1.00, \ 0.75, \ 0.50 $$ 0.25 $时,在相平面$ o = s\theta\ (-1\leq s\leq 1) $上分别用实线, $ "+" $线, $ "\circ " $线和虚线表示的闭轨线曲线如图 1所示.

图 1

图 1   在光晶格典型机制时费米气体的轨线曲线

$(C = 0.1)$(实线), 0.75($"+"$线), 0.5($"\circ "$线), 0.25(虚线)


3 费米气体扰动机制光晶格系统

在(2.4)式中,作变量变换

$ \begin{align} s = \pm(1-\exp(-2r))^{1/2}, \ \ Z = \cos\theta, \ \ r\in[0, \infty). \end{align} $

费米气体典型光晶格系统可用如下参数方程表示

$ \begin{align} \frac{{\rm d}s}{{\rm d}r} = \pm\frac{\exp(-2r)}{(1-\exp(-2r))^{1/2}}, \end{align} $

$ \begin{align} \frac{{\rm d}Z}{{\rm d}r} = Z+\frac{1}{\widetilde{v}}\bigg(\frac{d_{1}}{4k^{2}_{L}}+ \frac{d_{2}}{16k^{2}_{L}}\bigg)\exp(-r). \end{align} $

这时费米气体典型光晶格系统的轨线参数方程是

$ \begin{align} \overline{s}(r) = \pm(1-\exp(-2r))^{1/2}, \end{align} $

$ \begin{align} \overline{Z}(r) = \cos\theta = \bigg[C\pm\frac{1}{64\widetilde{v}k^{2}_{L}}(8d_{1}+d_{2}\exp(-2r))\bigg]\exp(-2r), \end{align} $

其中$ C $为任意函数.

由典型光晶格轨线方程参数形式(3.4)和(3.5),我们进一步研究如下费米气体扰动机制光晶格参数形式的系统

$ \begin{align} \frac{{\rm d}s}{{\rm d}r} = \pm\frac{\exp(-2r)}{(1-\exp(-2r))^{1/2}}+f(r, s(r), Z(r)), \end{align} $

$ \begin{align} \frac{{\rm d}Z}{{\rm d}r} = Z+\frac{1}{\widetilde{v}}\bigg(\frac{d_{1}}{4k^{2}_{L}} +\frac{d_{2}}{16K^{2}_{L}}\bigg)\exp(-r) +g(r, s(r), Z(r)), \end{align} $

其中$ f(r, s(r), Z(r)), g(r, s(r), Z(r)) $为系统的扰动项,设它们是关于其变量为充分光滑的有界函数.

由于费米气体是在光晶格具有扰动机制下的情形.此时一般不能得到轨线的初等函数形式精确解的解析表达式.为此,我们需用渐近表达式去逼近它,下面是用改进的广义变分迭代方法求得轨线的渐近表示式.

引入一组泛函$ F_{i}(s, \theta)\ (i = 1, 2) $

$ \begin{align} F_{1}(s, Z) = s-\int^{r}_{0}\lambda_{1}(\tau) \bigg[\frac{{\rm d}s}{{\rm d}\tau}\mp\frac{\exp(-2r)}{(1-\exp(-2\tau))^{1/2}} -\overline{f}(\tau, s, Z) \bigg]{\rm d}\tau, \end{align} $

$ \begin{align} F_{2}(s, Z) = Z-\int^{r}_{0}\lambda_{2}(\tau) \bigg[\frac{{\rm d}Z}{{\rm d}\tau}-Z-\frac{1}{\widetilde{v}} \bigg(\frac{d_{1}}{4k^{2}_{L}} +\frac{d_{2}}{16K^{2}_{L}}\bigg)\exp(-r) -\overline{g}(r, s, Z)\bigg]{\rm d}\tau, \end{align} $

其中$ \overline{f}, \overline{g} $分别为$ f, g $的限制变量[19-21], $ \lambda_{i}\ (i = 1, 2) $为Lagrange乘子.

计算泛函(3.8)和(3.9)的变分$ \delta F_{i}\ (i = 1, 2) $如下

由变分的极值原理,令泛函$ F_{i}\ (i = 1, 2) $的变分$ \delta F_{i}\ (i = 1, 2) $等于零,即$ \delta F_{i} = 0 $.这时Lagrange乘子满足

$ \begin{align} \frac{{\rm d}\lambda_{1}}{{\rm d}\tau} = 0, \ \ \lambda_{1}(0) = 1, \end{align} $

$ \begin{align} \frac{{\rm d}\lambda_{2}}{{\rm d}\tau}-1 = 0, \ \ \lambda_{2}(0) = 1. \end{align} $

显然,问题(3.10)和(3.11)的解分别为

$ \begin{align} \lambda_{1}(\tau) = 1, \ \ \lambda_{2}(\tau) = \tau+1. \end{align} $

考虑到由(3.8)式和(3.9)式决定的泛函$ F_{i}(s, \psi)\ (i = 1, 2) $和关系式(3.12),现构造如下广义变分迭代式

$ \begin{align} s_{n+1}(r) = s_{n}(r)- \int^{r}_{0}\bigg[\frac{{\rm d}s_{n}}{{\rm d}\tau}\mp\frac{\exp(-2r)} {(1-\exp(-2\tau))^{1/2}} -f(\tau, s_{n}(x), Z_{n}(\tau))\bigg]{\rm d}\tau, \ \ n = 0, 1, \cdots, \end{align} $

$ \begin{align} \begin{array}[b]{rl} Z_{n+1}(r) = & Z_{n}(r)-\int^{r}_{0}(\tau+1) \bigg[\frac{{\rm d}Z_{n}}{{\rm d}\tau}-Z_{n}(\tau)-\frac{1}{\widetilde{v}} \bigg(\frac{d_{1}}{4k^{2}_{L}} +\frac{d_{2}}{16K^{2}_{L}}\bigg)\exp(-r) \\ &-g(\tau, s_{n}(r), Z_{n}(r))\bigg]{\rm d}\tau, \ \ n = 0, 1, \cdots, \end{array} \end{align} $

其中$ s_{0}(\tau), Z_{0}(\tau) $为初始迭代.

选取初始迭代$ s_{0}(\tau), Z_{0}(\tau) $分别为费米气体典型光晶格系统轨线的参数方程的解(2.2)–(2.3),即

$ \begin{align} s_{0}(r) = \pm(1-\exp(-2r))^{1/2}, \end{align} $

$ \begin{align} Z_{0}(r) = \cos\theta = \bigg[C\pm\frac{1}{64\widetilde{v}k^{2}_{1}}(8d_{1}+d_{2}\exp(-2r))\bigg]\exp(-2r). \end{align} $

于是由(3.15)式, (3.16)式及迭代关系式(3.13)和(3.14),当$ n = 1 $时,有一次迭代渐近解

$ \begin{align} s_{1}(r) = s_{0}(r)+\int^{r}_{0}f(\tau, s_{0}(\tau), Z_{0}(\tau)){\rm d}\tau, \end{align} $

$ \begin{align} Z_{1}(r) = Z_{0}(\tau)+\int^{r}_{0}(\tau+1)g(\tau, s_{0}(\tau), Z_{0}(\tau)){\rm d}\tau, \end{align} $

其中$ s_{0}, Z_{0} $分别由(3.15)式, (3.16)式表示.

$ n = 2 $时,有二次迭代渐近解

其中$ s_{1}, Z_{1} $分别由(3.17)式, (3.18)式表示.

利用同样的方法可求出序列$ \{s_{n}(\tau), Z_{n}(\tau)\} $,依次地可得到$ n\ (n = 2, 3, \cdots) $次迭代渐近解.

根据变分理论[19-21],由上述迭代方法得到的序列$ (\{s_{n}\}, \{Z_{n}\}) $是一致收敛的.设

$ \begin{align} s(r) = \lim\limits_{n\rightarrow\infty}s_{n}(r), \ \ Z(r) = \lim\limits_{n\rightarrow\infty}Z_{n}(r). \end{align} $

再由广义变分迭代式(3.13)–(3.14),不难看出由(3.17)式决定的极限函数$ (s(r), Z(r)) $是费米气体广义扰动机制光晶格系统的参数方程(3.6)–(3.7)的精确解.

由变量变换式(3.1): $ Z = \cos\theta, \ (s_{n}(r), \theta_{n}(r)) $就是费米气体广义扰动由机制光晶格轨线系统(3.6)–(3.7)的在坐标系$ o $-$ s\theta $相平面上的一组$ n $次近似的轨线参数形式的渐近解.

4 举例

为了简单起见,选取无量纲参数: $ d_{1} = d_{2} = k_{L} = \widetilde{v} = 1 $,扰动函数$ f = 0 $, $ g = \alpha S^{2} $$ (\alpha $为常数).这时费米气体光晶格扰动轨线参数方程模型(3.6), (3.7)为

$ \begin{align} \frac{{\rm d}s}{{\rm d}r} = \pm\frac{\exp(-2r)}{(1-\exp(-2r))^{1/2}}, \end{align} $

$ \begin{align} \frac{{\rm d}Z}{{\rm d}r} = Z+\frac{5}{16}\exp(-r)+\alpha s^{2}(r). \end{align} $

由(3.13)式和(3, 14)式,构造如下广义变分迭代式

$ \begin{align} s_{n+1}(r) = s_{n}(r)- \int^{r}_{0} \bigg[\frac{{\rm d}s_{n}}{{\rm d}\tau}\mp\frac{\exp(-2r)}{(1-\exp(-2\tau))^{1/2}}\bigg]{\rm d}\tau, \ \ n = 0, 1, \cdots, \end{align} $

$ \begin{align} Z_{n+1}(r) = Z_{n}(r)-\int^{r}_{0}(\tau+1) \bigg[\frac{{\rm d}Z_{n}}{{\rm d}\tau}-Z_{n}-\frac{5}{16}\exp(-r) -\alpha s^{2}_{n}(\tau)\bigg]{\rm d}\tau, \ \ n = 0, 1, \cdots, \end{align} $

其中$ s_{0}, Z_{0} $为初始迭代,它们满足方程

$ \begin{align} \frac{{\rm d}s_{0}}{{\rm d}r} = \pm\frac{\exp(-2r)}{(1-\exp(-2r))^{1/2}}, \end{align} $

$ \begin{align} \frac{{\rm d}Z_{0}}{{\rm d}r} = Z_{0}+\frac{5}{16}\exp(-r). \end{align} $

由(3.15)式和(3.16)式,参数分方程(4.5)–(4.6)的解为

$ \begin{align} s_{0}(r) = \pm(1-\exp(-2r))^{1/2}, \end{align} $

$ \begin{align} Z_{0}(r) = \bigg[C\pm\frac{1}{64}(8+\exp(-2r))\bigg]\exp(-2r), \end{align} $

其中$ C $为任意常数.

利用迭代式(4.3)–(4.4)和初始迭代(4.7)–(4.8),一次迭代渐近解$ s_{1}(r), Z_{1}(r) $

$ \begin{align} s_{1}(r) = \pm(1-\exp(-2r))^{1/2}, \end{align} $

$ \begin{align} Z_{1}(r) = \bigg[C\pm\frac{1}{64}(8+\exp(-2r))\bigg]\exp(-2r) +\frac{\alpha}{2}\bigg[(r^{2}+2r-\frac{2}{3})+(r+\frac{2}{3})\exp(-2r)\bigg]. \end{align} $

再利用迭代式(4.3), (4.4), (4.9)和(4.10).二次迭代渐近解$ s_{2}(r), Z_{2}(r) $

其中$ s_{1}(r), Z_{1}(r) $由(4.9)式, (4.10)式给出.

继续利用迭代式(4.3)–(4.4),可以依次得到任意$ n $次渐近解$ s_{n}(r), Z_{n}(r), \ n = 3.4, \cdots $.

选取$ \alpha = 10, \ C = 1 $,分别取$ s_{0}(r) = +(1-\exp(-2r))^{1/2} $$ s_{0}(r) = -(1-\exp(-2r))^{1/2} $时,费米气体光晶格扰动轨线参数方程模型(4.1)–(4.2),在相平面o-sZ上的部分轨线分别如图 2, 图 3所示,其中精确解$ Z(s) $用实线表示,对应初始,一次,二次变分迭代轨线的渐近解$ Z_{0}(s) $, $ Z_{1}(s) $, $ Z_{2}(s) $分别用$ " \circ " $线, $ "+" $线和虚线表示.

图 2

图 2   $ s(r) = +(1-\exp(-2r))^{1/2} $时,模型(4.1)–(4.2),在平面" o-sZ"上的轨线曲线


图 3

图 3   $ s(r) = -(1-\exp(-2r))^{1/2} $时,模型(4.1)–(4.2),在平面" o-sZ "上的轨线曲线


由变分法的极值原理[19-21]图 2, 图 3可以看出,用本文的变分迭代方法得到的各次渐近解逐渐地逼近模型的精确解.

5 结束语

费米气体光晶格系统是较复杂的机制.我们需要把它归化为基本模式且用渐近方法来求解它.利用泛函分析变分迭代方法是一个有效而简单的途径.

因为得到的费米气体光晶格扰动模型的轨线函数是一个解析表示式,故还可对其进行解析的运算,进一步得到相关物理量的性态.

参考文献

Anderson M H , Ensher J R , Matthews , et al.

Observation of Bose-Einstein condensation in a dilute atomic vapor

Science, 1995, 269 (5221): 198- 201

DOI:10.1126/science.269.5221.198      [本文引用: 1]

Stoyanov L , Mateshkov G , Zhekova M , et al.

Far-field bearn reshaping by manipulating the topological charges of hexagonal optical vortex lattices

J of Optics, 2018, 20 (9): 095601

DOI:10.1088/2040-8986/aad30e      [本文引用: 1]

Guo W , Wang K , Wu H , et al.

Optical chirality of heical quanturm dots

Nanoscience and Nanochnology Letters, 2018, 10 (7): 988- 992

DOI:10.1166/nnl.2018.2732     

李艳.

从光晶格中释放的超冷玻色气体密度-密度关联函数研究

物理学报, 2014, 63 (6): 066701

URL     [本文引用: 1]

Li Y .

Theory of density-density correlations between ultracold Bosons released from optical lattices

Acta Phys Sinica, 2014, 63 (6): 066701

URL     [本文引用: 1]

Men F D , Liu H , Fan Z L , et al.

Relativistic thermodynamic properties of a weakly interacting Fermi gas

Chin Phys B, 2009, 18 (7): 2649- 2653

DOI:10.1088/1674-1056/18/7/005     

Wen W , Shen S Q , Huang G X .

Propagation of sound and supersonic bright solitons in superfluid Fermi gases in BCS-BEC crossover

Phys Rev B, 2010, 81 (1): 014528

DOI:10.1103/PhysRevB.81.014528     

Wang G F , Fu L B , Liu J .

Periodic modulation effect on self-trapping of two weakly coupled Bose-Einstein condensates

Phys Rev A, 2006, 73 (1): 013619

DOI:10.1103/PhysRevA.73.013619     

Qi P T , Duan W S .

Tunneling dynamics and phase transition of a Bose-Fermi mixture in a double well

Phys Rev A, 2011, 84 (3): 033627

DOI:10.1103/PhysRevA.84.033627     

Adhikari S K , Malomed B A , Salasnich L , et al.

Spontaneous symmetry breaking of Bose-Fermi mixtures in double-well potentials

Phys Rev A, 2010, 81 (5): 053630

DOI:10.1103/PhysRevA.81.053630     

Chen Y S , Adhikari S K .

Localization of a Bose-Fermi mixture in a bichromatic optical lattice

Phys Rev A, 2011, 84 (2): 023632

DOI:10.1103/PhysRevA.84.023632     

Qi R , Yu X L , Li Z B , et al.

Non-abelian josephson effect between two F=2 spinor Bose-Einstein condensates in double optical traps

Phys Rev Lett, 2009, 102 (18): 185301

DOI:10.1103/PhysRevLett.102.185301     

臧小飞, 李菊萍, 谭磊.

偶极-偶极相互作用下双势阱中旋量玻色-爱因斯坦凝聚磁化率的非线性动力学性质

物理学报, 2007, 56 (8): 4348- 4352

DOI:10.3321/j.issn:1000-3290.2007.08.007     

Zang X F , Li J P , Tan L .

Nonlinear dynamical properties of susceptibility of a spinor Bose-Einstein condensate with dipole-dipole interaction in a double-well potential

Acta Phys Sin, 2007, 56 (8): 4348- 4352

DOI:10.3321/j.issn:1000-3290.2007.08.007     

马云, 傅立斌, 杨志安, .

玻色-爱因斯坦凝聚体自囚禁现象的动力学相变及其量子纠缠特性

物理学报, 2006, 55 (11): 5623- 5628

URL    

Ma Y , Fu L B , Yang Z A , et al.

Dynamical phase changes of the self-trapping of Bose-Einstein condensates and its characteristic of entanglement

Acta Phys Sin, 2006, 55 (11): 5623- 5628

URL    

王文元, 蒙红娟, 杨阳, .

费米超流气体的非线性Landau-Zener隧穿

物理学报, 2012, 61 (8): 087302

URL     [本文引用: 2]

Wang W Y , Meng H J , Yang Y , et al.

Variable space scale factor spherical coordinates and time-space metric

Acta Phys Sin, 2012, 61 (8): 087302

URL     [本文引用: 2]

黄芳, 李海彬.

双势阱中玻色-爱因斯坦凝聚的绝热隧穿

物理学报, 2011, 60 (2): 020303

URL     [本文引用: 1]

Huang F , Li H B .

Adiabatic tunneling of Bose-Einstein condensatein double-well potential

Acta Phys Sin, 2011, 60 (2): 020303

URL     [本文引用: 1]

Modugno G , Roati G , Riboli F , et al.

Collapse of a degenerate Fermi gases

Science, 2002, 297 (5590): 2240- 2243

DOI:10.1126/science.1077386      [本文引用: 1]

Volz T , Durr S , Ernst S , et al.

Characterization of elastic scattering near a Feshbach resonance in Rb-87

Phys Rev A, 2003, 68 (1): 010702

[本文引用: 1]

苟学强, 闫明, 令伟栋, .

费米气体在光晶格中的自俘获现象及其周期调制

物理学报, 2013, 62 (13): 130308

DOI:10.7498/aps.62.130308      [本文引用: 2]

Gou X Q , Yan M , Ling W D , et al.

Self-trapping and periodic modulation of Fermi gases in optical lattices

Acta Phys Sin, 2013, 62 (13): 130308

DOI:10.7498/aps.62.130308      [本文引用: 2]

He J H , Wu G C , Austin F .

The variational iteration method which should be followed

Nonlinear Sci Lett A, 2010, 1 (1): 1- 30

[本文引用: 3]

He J H .

Frontier of modern textile engineering and short remarks on some topics in physics

Inter J Nonlinear Scoences and Nimweical Simulation, 2010, 11 (7): 555- 563

He J H , Wu X H .

Construction of solitary solution and compacton-like solution by variational iteration method

Chaos Solitions & Fractals, 2006, 29 (1): 108- 113

URL     [本文引用: 3]

Mo J Q .

Homotopiv mapping solving method for gain fluency of a laser pulse amplifier

Science in China Ser G, 2009, 39 (7): 1007- 1010

[本文引用: 1]

Mo J Q .

Variational iteration solving method for a class of generalized Boussinesq equation

Chin Phys Lett, 2009, 26 (6): 060202

DOI:10.1088/0256-307X/26/6/060202     

Mo J Q , Lin W T , Lin Y H .

Asymptotic solution for the El Nino time delay sea-air oscillator model

Chin Phys B, 2011, 20 (7): 070205

DOI:10.1088/1674-1056/20/7/070205     

Mo J Q , Lin Y H , Lin W T , Chen L H .

Perturbed solving method for interdecadal sea-air oscillator model

Chin Geographical Sci, 2012, 22 (1): 42- 47

DOI:10.1007/s11769-011-0464-2     

Mo J Q , Lin W T .

Generalized variation iteration solution of an atmosphere-ocean oscillator model for global climateplexity

J Sys Sci Complexity, 2011, 24 (2): 271- 276

DOI:10.1007/s11424-011-7153-1     

欧阳成, 姚静荪, 石兰芳, .

一类尘埃等离子体孤子解

物理学报, 2014, 63 (11): 110203

DOI:10.7498/aps.63.110203     

Ouyang C , Yao J S , Shi L F , et al.

Solitary wave solution for a class of dusty plasma

Acta Phys Sin, 2014, 63 (11): 110203

DOI:10.7498/aps.63.110203     

欧阳成, 陈贤峰, 莫嘉琪.

广义扰动Nizhnik-Novikov-Veselov系统的孤波解的孤波解

系统科学与数学, 2017, 37 (3): 908- 917

URL    

Ouyang C , Chen X F , Mo J Q .

The solutions to solitary wave for generalized disturbed Nizhnik-Novikov-Vedelov system

J Sys Sci Math, 2017, 37 (3): 908- 917

URL    

欧阳成, 姚静荪, 石兰芳, .

一类广义鸭轨迹系统轨线的构造

物理学报, 2012, 61 (3): 030202

URL    

Ouyang C , Yao J S , Shi L F , et al.

Constructing path curve for a class of generalized phase tracks of canard system

Acta Phys Sin, 2012, 61 (3): 030202

URL    

欧阳成, 林万涛, 程荣军, .

一类厄尔尼诺海-气时滞振子的渐近解

物理学报, 2013, 62 (6): 060201

URL    

Ouyang C , Lin W T , Cheng R J , et al.

A class of asymptotic solution of sea-air time delay oscillator for the Elnino-southern oscillation mechanism

Acta Phys Sin, 2013, 62 (6): 060201

URL    

Ouyang C , Cheng L H , Mo J Q .

Solving a class of burning disturbed problem with shock layer

Chin Phy B, 2012, 21 (5): 050203

DOI:10.1088/1674-1056/21/5/050203     

Wang W G , Shi L F , Han X L , et al.

Singular perturbation problem for reaction diffusion tiime delay equation

Chin J Engineering Math, 2015, 32 (2): 291- 297

汪维刚, 林万涛, 石兰芳, .

非线性扰动时滞长波系统孤波解

物理学报, 2014, 63 (11): 110204

DOI:10.7498/aps.63.110204     

Wang W G , Lin W T , Shi L F , et al.

Approximate solution of solitary wave for nonlinear-disturbed time delay long-wave system

Acta Phys Sin, 2014, 63 (11): 110204

DOI:10.7498/aps.63.110204     

Wang W G , Shi L F , Xu Y H , et al.

Generalized solution of the singularly perturbed boundary value problems for semilinear elliptic equation of higher order with two parameters

J Nankai Univ, 2014, 47 (2): 47- 81

URL     [本文引用: 1]

/