Processing math: 8%

数学物理学报, 2019, 39(6): 1532-1544 doi:

论文

Lévy噪声驱动的三维随机LANS-α模型的中偏差原理

黄建华,1, 张再云,2, 陈涌3

The Moderate Deviation Principle for Stochastic 3D LANS-α Model Driven by Multiplicative Lévy Noise

Huang Jianhua,1, Zhang Zaiyun,2, Chen Yong3

通讯作者: 陈涌

收稿日期: 2018-02-19  

基金资助: 国家自然科学基金.  11771449
国家自然科学基金.  11401532
浙江省自然科学基金.  LY18A010027
湖南省自然科学基金.  2016JJ2061
浙江理工大学基本科研业务费专项资金.  2019Q068

Received: 2018-02-19  

Fund supported: the NSFC.  11771449
the NSFC.  11401532
the Zhejiang Provincial NSF.  LY18A010027
the Hunan Provincial NSF.  2016JJ2061
the Fundamental Research Funds of Zhejiang Sci-Tech University.  2019Q068

作者简介 About authors

黄建华,E-mail:jhhuang32@nudt.edu.cn , E-mail:jhhuang32@nudt.edu.cn

张再云,E-mail:zhangzaiyun1226@126.com , E-mail:zhangzaiyun1226@126.com

摘要

该文利用弱收敛方法建立了Lévy噪声驱动的三维随机LANS-α模型的中偏差原理.

关键词: 随机LANS-α模型 ; Lévy噪声 ; 弱收敛方法

Abstract

In this paper, we construct the moderate deviation principle for stochastic 3D LANS-α model driven by multiplicative Lévy noise by the weak convergence method.

Keywords: Moderate deviation principle ; Stochastic Lagrangian averaged Navier-Stokes equations ; Weak convergence method

PDF (346KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

黄建华, 张再云, 陈涌. Lévy噪声驱动的三维随机LANS-α模型的中偏差原理. 数学物理学报[J], 2019, 39(6): 1532-1544 doi:

Huang Jianhua, Zhang Zaiyun, Chen Yong. The Moderate Deviation Principle for Stochastic 3D LANS-α Model Driven by Multiplicative Lévy Noise. Acta Mathematica Scientia[J], 2019, 39(6): 1532-1544 doi:

1 引言

该文考虑如下Lévy噪声驱动的随机LANS-α模型

{d(uϵαuϵ)ν(uϵαuϵ)dt+[(uϵ)(uϵαuϵ)α(uϵ)uϵ+p]dt=F(t,uϵ)dt+ϵZG(uϵ,z)˜Nϵ1(dtdz),(t,x)(0,T)×D,uϵ=0,(t,x)(0,T)×D,uϵ=0,(t,x)(0,T)×D,uϵ(0,x)=u0(x),xD,
(1.1)

其中D是带有边界正则性C2R3中有界连通开集, T>0是解的最大存在时间, u=(u1,u2,u3)为流体速度, p为压力, ν>0α>0为给定的常数, (uϵ)uϵ的转置, Z为局部紧的光滑空间, G为可测映射, Nϵ1[0,T]×Z上的泊松随机测度,其带有σ -有限测度ϵ1λTϑ,λT[0,T]是勒贝格测度, ϑZσ -有限测度, ˜Nϵ1为补偿泊松随机测度,即对于OB(Z)ϑ(O)<,有

˜Nϵ1([0,t]×O)=Nϵ1([0,t]×O)ϵ1tϑ(O).

LANS-α模型在物理和非线性偏微分方程中具有重要运用[1-3]. LANS-α模型在有界区域中整体弱解在文献[1-2]中建立,整体吸引子在文献[1]中得到.在周期区域得到了类似的结果[2].维纳噪声驱动的三维LANS-α模型解的存在唯一性和强解的渐近行为分别在文献[4-8]中讨论. Lévy噪声驱动的三维LANS-α模型的适定性在文献[9]中建立.

该文考虑当ϵ0时, uϵ收敛到如下方程的解u

d(uαu)ν(uαu)dt+[(u)(uαu)α(u)u+p]dt=F(t,u)dt,
(1.2)

且建立相应的中偏差原理,即考虑如下随机变量

˜Yϵ=(uϵu)/a(ϵ)

的大偏差原理,其中a(ϵ)满足

a(ϵ)0,ϵ/a2(ϵ)0asϵ0.
(1.3)

主要借助文献[10]中的弱收敛方法和文献[11]中解的紧性分析方法.

该文结构如下:第2节给出非线性项的性质和主要定理.第3节给出主要定理的证明.

2 中偏差原理

本节分为两部分.第一部分给出非线性项的性质,第二部分给出本文的主要结果.

2.1 非线性项性质

(,)||分别为(L2(D))3中内积和范数. (H10(D))3中内积定义为

((u,v))=(u,v)+α(u,v),foru,v(H10(D))3,

相应的范数等价于通常的梯度范数.令 H {\cal V} = \{v \in ({\cal D}(D))^3: \nabla v = 0 \; \hbox{in}\; D\} (L^2(D))^3 中闭集, V {\cal V} (H^1_0(D))^3 闭集. H 为带有 (L^2(D))^3 内积的希尔伯特空间, V (H^1_0(D))^3 中希尔伯特子空间.令 A 为Stokes算子,定义域 D(A) = (H^2(D))^3 \cap V 且定义为 Aw = -{\cal P}(\bigtriangleup w), w\in D(A) ,其中 {\cal P} 为从 (L^2(D))^3 H 的投影算子.因为 \partial D C^2 , D(A) 相应于内积 (v, w)_{D(A)} = (Av, Aw) 为希尔伯特空间.对于 u, v\in D(A) ,定义算子 \tilde{A}

\langle\tilde{A}u, v\rangle = \nu(Au, v)+\nu\alpha(Au, Av).

显然对于 v\in D(A) ,有

\begin{equation} \langle\tilde{A}v, v\rangle\geq \tilde{\alpha} |Av|^2, \end{equation}
(2.1)

其中 \tilde{\alpha} = \nu\alpha .对于 u\in D(A) v \in (L^2(D))^3 ,定义 (u\cdot \nabla)v (H^{-1}(D))^3 中元素如下

\begin{equation} \langle(u\cdot \nabla)v, w\rangle = \sum\limits_{i, j = 1}^3\langle\partial_iv_j, u_iw_j\rangle, \forall w \in (H^1_0 (D))^3. \end{equation}
(2.2)

如果 u \in D(A) ,那么 (\nabla u)^*\in (H^1(D))^{3\times3} \subset (L^6(D))^{3\times3} ,相应的对于 v\in (L^2(D))^3 ,有 (\nabla u)^*\cdot v \in(L^{3/2}(D))^3 \subset (H^{-1}(D))^3 ,且

\langle(\nabla u)^*\cdot v, w\rangle = \sum\limits_{i, j = 1}^3\int_D\partial_ju_iv_iw_j{\rm d}x, \forall w \in (H^1_0 (D))^3.

对于 (u, v, w) \in D(A)\times (L^2(D))^3 \times (H^1_0 (D))^3 ,考虑如下三线性形式

b^\sharp(u, v, w) = \langle(u\cdot \nabla)v, w\rangle+\langle(\nabla u)^*\cdot v, w\rangle.

对于 (u, v, w)\in(D(A))^3 ,令 \langle\tilde{B}(u, v), w\rangle = b^\sharp(u, v-\alpha\triangle v, w) . \tilde{B}: D(A)\times D(A)\to D(A)' 是双线性映射且对于 u, v, w\in D(A) ,满足

\begin{equation} \langle \tilde{B}(u, v), u\rangle = 0, \end{equation}
(2.3)

\begin{equation} \|\tilde{B}(u, v)\|_{D(A)'}\leq c_1\|u\|\|v\|_{D(A)}, \end{equation}
(2.4)

\begin{equation} \langle \tilde{B}(u, v), w\rangle\leq c_1\|u\|_{D(A)}\|v\|_{D(A)}\|w\|. \end{equation}
(2.5)

因此(1.1)式中第一个方程等价于如下方程

\begin{equation} {\rm d}\hat{u}^\epsilon(t)+\tilde{A}u^\epsilon(t){\rm d}t+\tilde{B}(u^\epsilon(t), u^\epsilon(t)){\rm d}t = F(t, u^\epsilon(t)){\rm d}t+\epsilon\int_{{\Bbb Z}} G (t, u^\epsilon(t-), z)\tilde{N}^{\epsilon^{-1}}({\rm d}t, {\rm d}z), \end{equation}
(2.6)

其中 \hat{u}^\epsilon = u^\epsilon+\alpha Au^\epsilon 且初值为 u^\epsilon(x, 0) = u_{0}(x) .方程(1.2)等价于

\begin{eqnarray} {\rm d}\hat{u}(t)+\tilde{A}u(t){\rm d}t+\tilde{B}(u(t), u(t)){\rm d}t = F(t, u(t)){\rm d}t, \end{eqnarray}
(2.7)

其中 \hat{u} = u+\alpha Au 且初值 u(x, 0) = u_0 .

{\cal H}: = \bigg\{h: {\Bbb Z}\to \mathbb{R} : \exists\delta>0, \;\hbox{s.t.}\; \forall \Gamma\;\; \vartheta(\Gamma)<\infty, \int_\Gamma\exp(\delta |h(z)|)\vartheta({\rm d}z)<\infty\bigg\}.

假设 F: [0, T]\times \Omega\times V\to V {\cal B}{\cal F}\otimes {\cal B}(V) -可测函数, F 对第二个变量可微. G: [0, T]\times \Omega\times V\times {\Bbb Z}\to V P\otimes {\cal B}(V)\otimes {\Bbb Z} -可测函数.进一步假设 F G 满足如下假设, P-a.s.

\begin{equation} \|F(t, v_1)-F(t, v_2)\|\leq C\|v_1-v_2\|, \end{equation}
(2.8)

\begin{equation} \|F(t, v_1)\|\leq C(1+\|v_1\|), \end{equation}
(2.9)

\begin{equation} \|F'(t, v_1)-F'(t, v_2)\|_{L(V)}\leq C\|v_1-v_2\|, \end{equation}
(2.10)

\begin{equation} \| G (t, v_1, z)- G (t, v_2, z)\|_{V} \leq L_{ G }(z)\|v_1-v_2\|, \end{equation}
(2.11)

\begin{equation} \| G (t, v_1, z)\|_{V} \leq K_0(z)(1+\|v_1\|), \end{equation}
(2.12)

\begin{equation} \| G (t, v_1, z)\|^4_{L^4({\Bbb Z}, \vartheta; V)} \leq C(1+\|v_1\|^4), \end{equation}
(2.13)

其中 v_1, v_2 \in V , L_{ G }(z), K_0(z)\in L^2(\vartheta)\cap{\cal H} L(V) 为从 V V 的有界线性算子.

2.2 中偏差原理

对于局部紧的光滑空间 S ,令 {\cal M}(S) (S, {\cal B}(S)) 上所有测度 \vartheta 构成的空间,且对 S 的任意紧子集 K \vartheta(K) < \infty .赋予 {\cal M}(S) 最弱的拓扑使得对于 f \in C_c({\Bbb Z}) , \vartheta\to \langle f, \vartheta\rangle = \int_Sf(x)\vartheta({\rm d}x), \vartheta\in {\cal M}(S) 为连续函数.该拓扑可测使得 {\cal M}({\Bbb Z}) 为光滑空间.固定 T > 0 ,令 S_T = [0, T]\times S , \vartheta_T = \lambda_T\otimes\vartheta ,其中 \lambda_T [0, T] 上的勒贝格测度, \vartheta\in {\cal M}(S) .

{\Bbb Z} 为光滑空间 {\Bbb M} = {\cal M}({\Bbb Z}_T) ,则 {\cal B}({\Bbb M}) 代表空间 {\cal M}({\Bbb Z}) 上的波雷尔 \sigma -场, N: {\Bbb M}\to {\Bbb M}, N(m)\doteq m 为带有测度 \vartheta_T 泊松随机测度.对于 \theta > 0 ,定义 P_\theta ({\Bbb M}, {\cal B}({\Bbb M})) 上唯一概率测度使得 N 是一个带有测度 \theta\vartheta_T 的泊松随机测度.令 {\Bbb X} = {\Bbb Z}\times [0, \infty) , {\Bbb X}_T = [0, T]\times {\Bbb X} , \bar{{\Bbb M}} = {\cal M}({\Bbb X}_T) , \bar{N}: \bar{{\Bbb M}}\to \bar{{\Bbb M}}, \bar{N}(\bar{m})\doteq \bar{m} , {\cal F}_t = \sigma(\bar{N}(s, Z): 0\leq s\leq t, Z\in {\cal B}({\Bbb X})) \bar{{\cal F}}_t {\cal F}_t 的完备化.令 \bar{{\cal P}} [0, T]\times \bar{{\Bbb M}} 上可料 \sigma -场.

\bar{{\cal A}}_+ ( \bar{{\cal A}} )为所有 (\bar{{\cal P}}\otimes{\cal B}({\Bbb Z}))/{\cal B}[0, \infty) ( (\bar{{\cal P}}\otimes{\cal B}({\Bbb Z}))/{\cal B}(\mathbb{R}) )可测映射 \phi: {\Bbb Z}_T\times \bar{{\Bbb M}}\to [0, \infty) ( \phi: {\Bbb Z}_T\times \bar{{\Bbb M}}\to \mathbb{R} ).对于 \phi\in \bar{{\cal A}}_+ ,定义 {\Bbb Z}_T 上可数过程 N^\phi

N^\phi(t, Z) = \int_{(0, t]\times Z}\int_0^\infty 1_{[0, \phi(s, z)]}(r)\bar{N}({\rm d}s, {\rm d}z, {\rm d}r), t\in[0, T], Z\in{\cal B}({\Bbb Z}),

这里 N^\phi 被认为是控制随机测度,其中 \phi 选择在位置 z 和时间 s 处的点的强度.当 \phi(s, x, \bar{m})\equiv\theta\in(0, \infty) 时,令 N^\phi = N^\theta. 注意到 N^\theta 相应于 \bar{P} N 相应于 P_\theta 有相同的分布.

定义 \ell: [0, \infty) \to [0, \infty) by \ell(r) = r \hbox{log} r - r + 1, r \in [0, \infty) .对任意 \phi\in \bar{{\cal A}}_+ ,定义 L_T(\phi)

L_T(\phi) = \int_{{\Bbb Z}_T}\ell(\phi(t, z, \omega))\vartheta({\rm d}z){\rm d}t.

\{K_n\subset{\Bbb Z}, n = 1, 2, \cdots\} 为一列递增的紧集使得 \bigcup\limits_{n = 1}^\infty K_n = {\Bbb Z} .对任意 n ,令

\begin{eqnarray*} \bar{{\cal A}}_{b, n} = &\Big\{&\phi\in \bar{{\cal A}}_+:\; (t, \omega)\in [0, T]\times \bar{{\Bbb M}}, n\geq \phi(t, x, \omega)\geq \frac1n\;\\ &&\hbox{若}\; x\in K_n; \phi(t, x, \omega) = 1\;\hbox{若}\; x\in K_n^c\Big\} \end{eqnarray*}

\bar{{\cal A}}_b = \bigcup\limits_{n = 1}^\infty\bar{{\cal A}}_{b, n}.

\{{\cal G}^\epsilon\}_{\epsilon > 0} 为从 {\Bbb M} 到光滑空间 E 的可测映射, a(\epsilon) 满足(1.3)式.对于 \epsilon > 0 , M < \infty,

{\cal S}^M_{+, \epsilon} = \{\phi: {\Bbb Z}\times [0, T]\to \mathbb{R} _+| L_T(\phi)\leq Ma^2(\epsilon)\}, \nonumber

{\cal S}^M_{\epsilon} = \{\psi: {\Bbb Z}\times [0, T]\to \mathbb{R} | \psi = (\phi-1)/a(\epsilon), \phi\in {\cal S}^M_{+, \epsilon}\}.

{\cal U}^M_{+, \epsilon} = \{\phi\in \bar{{\cal A}}_b: \phi(\cdot, \cdot, \omega)\in{\cal S}^M_{+, \epsilon}, \bar{P}\hbox{-a.s.}\},

{\cal U}^M_{\epsilon} = \{\psi\in\bar{{\cal A}}: \psi(\cdot, \cdot, \omega)\in{\cal S}^M_{\epsilon}, \bar{P}\hbox{-a.s.}\}.

空间 L^2(\vartheta_T) 中的范数表示为 \|\cdot\|_2 , B_2(R) 代表 L^2(\vartheta_T) 中半径为 R 的球且带有弱拓扑 L^2(\vartheta_T) .假设 \phi\in {\cal S}^M_{+, \epsilon}. 由文献[10,引理3.2]知,存在独立于 \epsilon \kappa_2(1)\in(0, \infty) 使得 \psi1_{\{|\psi|\leq1/a(\epsilon)\}}\in B_2(\sqrt{M\kappa_2(1)}) ,其中 \psi = (\phi-1)/a(\epsilon) .

\tilde{Y}^\epsilon = \frac1{a(\epsilon)}(u^\epsilon-u) . \tilde{Y}^\epsilon 满足如下方程

\begin{equation} \left\{\begin{array}{ll} {\rm d}\tilde{Y}^\epsilon(t) = -\tilde{A}\tilde{Y}^\epsilon(t){\rm d}t-\tilde{B}(\tilde{Y}^\epsilon(t), u(t)){\rm d}t -\tilde{B}(u^\epsilon(t), \tilde{Y}^\epsilon(t)){\rm d}t\\ +\frac{1}{a(\epsilon)}(F(t, u^\epsilon(t))-F(t, u(t))){\rm d}t+\frac{\epsilon}{a(\epsilon)}\int_{{\Bbb Z}} G (t, u^\epsilon(t-), z) \tilde{N}^{\epsilon^{-1}\phi^\epsilon}({\rm d}t, {\rm d}z) \\ +\frac{1}{a(\epsilon)}\int_{{\Bbb Z}} G (t, u^\epsilon(t), z)(\phi^\epsilon(z, t)-1)\vartheta({\rm d}z){\rm d}t, \\ Y^\epsilon(0) = 0. \end{array}\right. \end{equation}
(2.14)

方程(2.14)的解给定一个从 {\Bbb M} {\cal D}([0, T];V) 映射 {\cal G}^\epsilon 使得 {\cal G}^\epsilon(\epsilon N^{\epsilon^{-1}}) = \tilde{Y}^\epsilon. {\cal G}_0: L^2(\vartheta_T)\to C([0, T];V)\cap L^2(0, T;D(A)) ,对于 \psi\in L^2(\vartheta_T) , {\cal G}_0(\psi) = \eta, 其中 \eta 满足

\begin{eqnarray} \frac{\rm d}{{\rm d}t}\eta(t)& = &-\tilde{A}\eta(t)-\tilde{B}(\eta(t), u(t))-\tilde{B}(u(t), \eta(t)) +F'(t, u(t))\eta(t){\rm d}t\\ & & +\int_{{\Bbb Z}}\psi(z, t) G (t, u(t), z)\vartheta({\rm d}z). \end{eqnarray}
(2.15)

现在给出本文的主要结果.

定理2.1   \{\tilde{Y}^\epsilon = {\cal G}^\epsilon(\epsilon N^{\epsilon^{-1}}), \epsilon > 0\} {\cal D}([0, T];V) 上满足大偏差原理,其速度为 \epsilon/a^2(\epsilon) 且速度函数 I

I(\eta) = \inf\limits_{\psi\in S^0_\eta: = \{\psi\in L^2(\vartheta_T): \eta = {\cal G}_0(\psi)\}}\bigg[\frac12\|\psi\|_2^2\bigg],

其中如果 S^0_\eta = \emptyset ,则 I(\eta) = +\infty .

3 定理2.1的证明

本节将给出定理2.1的证明.首先,给出如下引理.

引理3.1[10]  令 h\in L^2(\vartheta)\cap {\cal H} [0, T] 上的可测子集 I , M > 0 .那么存在 \varsigma_h > 0 , \Gamma_h, \rho_h:(0, \infty) \to(0, \infty) 满足 u\to\infty \Gamma_h(u)\to 0 ,对任意 \epsilon, \beta\in(0, \infty),

\sup\limits_{\phi\in {\cal S}^M_{+, \epsilon}}\int_{{\Bbb Z}\times I}h^2(z)\phi(z, s)\vartheta({\rm d}z){\rm d}s \leq\varsigma_h(a^2(\epsilon)+|I|),

\sup\limits_{\phi\in {\cal S}^M_{\epsilon}}\int_{{\Bbb Z}\times I}|h(z)\phi(z, s)|1_{\{|\psi|\geq\beta/a(\epsilon)\}}\vartheta({\rm d}z){\rm d}s \leq\Gamma_h(\beta)(1+\sqrt{|I|}),

\sup\limits_{\phi\in {\cal S}^M_{\epsilon}}\int_{{\Bbb Z}\times I}|h(z)\phi(z, s)|\vartheta({\rm d}z){\rm d}s \leq\rho_h(\beta)\sqrt{|I|}+\Gamma_h(\beta)a(\epsilon),

\lim\limits_{\epsilon\to0}\sup\limits_{\phi\in {\cal S}^M_{\epsilon}}\int_{{\Bbb Z}\times [0, T]}|h(z)\phi(z, s)|1_{\{|\psi|\geq\beta/a(\epsilon)\}}\vartheta({\rm d}z){\rm d}s = 0.

因为 {\cal G}^\epsilon(\epsilon N^{\epsilon^{-1}}) = \tilde{Y}^\epsilon = \frac1{a(\epsilon)}(u^\epsilon-u) ,则 Y^\epsilon = {\cal G}^\epsilon(\epsilon N^{\epsilon^{-1}\phi^\epsilon}) = \frac1{a(\epsilon)}(X^\epsilon-u) 满足如下方程

\begin{equation} \left\{\begin{array}{ll} {\rm d}Y^\epsilon(t) = -\tilde{A}Y^\epsilon(t){\rm d}t-\tilde{B}(Y^\epsilon(t), u(t)){\rm d}t -\tilde{B}(X^\epsilon(t), Y^\epsilon(t)){\rm d}t\\ +\frac{1}{a(\epsilon)}(F(t, X^\epsilon(t))-F(t, u(t))){\rm d}t+\frac{\epsilon}{a(\epsilon)}\int_{{\Bbb Z}} G (t, X^\epsilon(t-), z) \tilde{N}^{\epsilon^{-1}\phi^\epsilon}({\rm d}t, {\rm d}z) \\ +\frac{1}{a(\epsilon)}\int_{{\Bbb Z}} G (t, X^\epsilon(t), z)(\phi^\epsilon(z, t)-1)\vartheta({\rm d}z){\rm d}t, \\ Y^\epsilon(0) = 0, \end{array}\right. \end{equation}
(3.1)

其中 X^\epsilon\in {\cal D}([0, T], V)\cap L^2(0, T; D(A)) 为如下方程的解

\begin{eqnarray} \left\{\begin{array}{ll} {\rm d}x^\epsilon(t) = -\tilde{A}X^\epsilon(t){\rm d}t-\tilde{B}(X^\epsilon(t), X^\epsilon(t)){\rm d}t +F(t, X^\epsilon(t)){\rm d}t\\ +\epsilon\int_{{\Bbb Z}} G (t, X^\epsilon(t-), z) \tilde{N}^{\epsilon^{-1}\phi^\epsilon}({\rm d}t, {\rm d}z) \\ +\int_{{\Bbb Z}} G (t, X^\epsilon(t-), z) (\phi^\epsilon(z, t)-1)\vartheta({\rm d}z){\rm d}t, \\ X^\epsilon(0) = u_0. \end{array}\right. \end{eqnarray}
(3.2)

下面给出 u , X^\epsilon 的估计及它们之间的收敛关系.

引理3.2  存在 \epsilon_0 > 0 使得

\begin{equation} \sup\limits_{0\leq t\leq T}\|u(t)\|^2+\int_0^T\|u(t)\|^2_{D(A)}{\rm d}t\leq C, \end{equation}
(3.3)

\begin{equation} \sup\limits_{\epsilon\in(0, \epsilon_0]}E\bigg[\sup\limits_{0\leq t\leq T}\|X^\epsilon(t)\|^2+\int_0^T\|X^\epsilon(t)\|^2_{D(A)}{\rm d}t\bigg] \leq C, \end{equation}
(3.4)

\begin{equation} \lim\limits_{\epsilon\to0}\bigg(E\sup\limits_{0\leq t\leq T}\|X^\epsilon(t)-u(t)\|^2 +E\int_0^T\|X^\epsilon(t)-u(t)\|_{D(A)}^2{\rm d}t\bigg) = 0. \end{equation}
(3.5)

   (3.3)式的证明见文献[3]. (3.4)式的证明类似(3.5)式.以下证明(3.5)式.令 Z^\epsilon = X^\epsilon-u.

\left\{\begin{array}{ll} {\rm d}z^\epsilon(t) = -\tilde{A}Z^\epsilon(t){\rm d}t -\tilde{B}(X^\epsilon(t), Z^\epsilon(t)){\rm d}t-\tilde{B}(Z^\epsilon(t), u(t)){\rm d}t \\ +F(t, X^\epsilon(t)){\rm d}t-F(t, u(t)){\rm d}t+\epsilon\int_{{\Bbb Z}} G (t, X^\epsilon(t-), z) \tilde{N}^{\epsilon^{-1}\phi^\epsilon}({\rm d}t, {\rm d}z) \\ +\int_{{\Bbb Z}} G (t, X^\epsilon(t), z)(\phi^\epsilon(z, t)-1)\vartheta({\rm d}z){\rm d}t, \\ Z^\epsilon(0) = 0. \end{array}\right.

由Itô公式得

\begin{eqnarray*} &&\|Z^\epsilon(t)\|^2+2\int_0^t\langle\tilde{A}Z^\epsilon(s), Z^\epsilon(s)\rangle {\rm d}s +2\int_0^t\langle\tilde{B}(X^\epsilon(s), Z^\epsilon(s)), Z^\epsilon(s)\rangle {\rm d}s\nonumber\\ & = &2\int_0^t((F(s, X^\epsilon(s))-F(s, u(s)), Z^\epsilon)) {\rm d}s +2\int_0^t((\int_{{\Bbb Z}} G (s, X^\epsilon(s), z) (\phi^\epsilon(z, s)-1)\vartheta({\rm d}z){\rm d}s, Z^\epsilon))\nonumber\\ &&+2\int_0^t((\int_{{\Bbb Z}}\epsilon G (s, X^\epsilon(s-), z) \tilde{N}^{\epsilon^{-1}\phi^\epsilon}({\rm d}s, {\rm d}z), Z^\epsilon))\nonumber\\ &&+\int_0^t\int_{{\Bbb Z}}\epsilon^2\| G (s, X^\epsilon(s-), z)\|^2N^{\epsilon^{-1}\phi^\epsilon}({\rm d}s, {\rm d}z) \\ & = &:J_0+J_1+J_2+J_3. \end{eqnarray*}

由(2.1)式得

2\int_0^t\langle\tilde{A}Z^\epsilon(s), Z^\epsilon(s)\rangle {\rm d}s\geq \tilde{\alpha}\int_0^t\|Z^\epsilon(s)\|_{D(A)}^2{\rm d}s.

由(2.3)-(2.5)式和Young不等式得

\begin{eqnarray*} -2\int_0^t\langle\tilde{B}(X^\epsilon(s), Z^\epsilon(s)), Z^\epsilon(s)\rangle {\rm d}s &\leq&2c_1\int_0^t\|Z^\epsilon(s)\|\|Z^\epsilon(s)\|_{D(A)}\|u(s)\|_{D(A)}{\rm d}s\nonumber\\ &\leq&\frac{\tilde{\alpha}}2\int_0^t\|Z^\epsilon(s)\|_{D(A)}^2{\rm d}s+ \frac{2c_1}{\tilde{\alpha}}\int_0^t\|u(s)\|_{D(A)}^2\|Z^\epsilon(s)\|^2{\rm d}s. \end{eqnarray*}

由(2.8)式得

\begin{eqnarray*} J_0 &\leq&2\int_0^t\|F(s, X^\epsilon(s))-F(s, u(s))\|^2+\|Z^\epsilon(s)\|^2{\rm d}s \leq 2(C+1)\int_0^t\|Z^\epsilon(s)\|^2{\rm d}s. \end{eqnarray*}

\psi^\epsilon = (\phi^\epsilon(z, s)-1)/a(\epsilon) .由(2.11)-(2.12)得

\begin{eqnarray*} J_1 &\leq&2\int_0^t\|Z^\epsilon(s)\|\int_{{\Bbb Z}}\| G (s, X^\epsilon(s), z)- G (s, u(s), z)\| |\phi^\epsilon(z, s)-1|\vartheta({\rm d}z){\rm d}s\nonumber\\ &&+2\int_0^t\|Z^\epsilon(s)\|\int_{{\Bbb Z}}\| G (s, u(s), z)\| |\phi^\epsilon(z, s)-1|\vartheta({\rm d}z){\rm d}s\nonumber\\ &\leq&a(\epsilon)\int_0^t\|Z^\epsilon(s)\|^2\int_{{\Bbb Z}}(2L_{ G }(z) +(1+\sup\limits_{\tau\in[0, T]}\|u(\tau)\|)K_0(z)) |\psi^\epsilon(z, s)|\vartheta({\rm d}z){\rm d}s\nonumber\\ &&+a(\epsilon)(1+\sup\limits_{\tau\in[0, T]}\|u(\tau)\|)\int_0^t\int_{{\Bbb Z}}K_0(z) |\psi^\epsilon(z, s)|\vartheta({\rm d}z){\rm d}s\\ &\leq & \int_0^t\|Z^\epsilon(s)\|^2{\rm d}s+J_4. \end{eqnarray*}

结合以上估计得

\begin{eqnarray*} \|Z^\epsilon(t)\|^2+\frac{\tilde{\alpha}}2\int_0^t\|Z^\epsilon(s)\|_{D(A)}^2{\rm d}s \leq J_2+J_3+J_4+C\int_0^t\|Z^\epsilon(s)\|^2{\rm d}s. \end{eqnarray*}

由Gronwall引理得

\begin{eqnarray*} \|Z^\epsilon(t)\|^2+\frac{\tilde{\alpha}}2\int_0^t\|Z^\epsilon(s)\|_{D(A)}^2{\rm d}s \leq C(J_2+J_3+J_4). \end{eqnarray*}

由Burkholder-Davis-Gundy (BDG)不等式得

\begin{eqnarray*} EJ_2&\leq&E\bigg(\int_0^T\int_{{\Bbb Z}}4\epsilon^2\| G (s, X^\epsilon(s-), z)\|^2\|Z^\epsilon\|^2 N^{\epsilon^{-1}\phi^\epsilon}({\rm d}s, {\rm d}z)\bigg)^{1/2}\nonumber\\ &\leq&\frac12E\sup\limits_{t\in[0, T]}\|Z^\epsilon\|^2+8\epsilon E\int_0^T\int_{{\Bbb Z}}K_0^2(z)(1+\|X^\epsilon(s)\|)^2 \phi^\epsilon(z, s)\vartheta({\rm d}z){\rm d}s\nonumber\\ &\leq&\frac12E\sup\limits_{t\in[0, T]}\|Z^\epsilon(t)\|^2+16C\epsilon \varsigma_h(a^2(\epsilon)+T), \\ EJ_3& = &\epsilon E(\int_0^T\int_{{\Bbb Z}}\| G (s, X^\epsilon(s-), z)\|^2 \phi^\epsilon(z, s)\vartheta({\rm d}z){\rm d}s \leq C\epsilon \varsigma_h(a^2(\epsilon)+T). \end{eqnarray*}

由引理3.1和(3.3)式得

EJ_3\leq Ca(\epsilon) (\rho_{K_0}(\beta)\sqrt{T}+\Gamma_{K_0}(\beta)a(\epsilon)).

联合以上估计

\lim\limits_{\epsilon\to0} \bigg (E\sup\limits_{t\in[0, T]}\|Z^\epsilon(t)\|^2+\frac{\tilde{\alpha}}2E\int_0^t\|Z^\epsilon(s)\|_{D(A)}^2{\rm d}s\bigg) = 0,

由此证毕.

引理3.3   \{Y^\epsilon\} {\cal D}([0, T], V) 中是紧的.

  类似(3.4)式的证明有

\begin{eqnarray} \sup\limits_{\epsilon\in(0, \epsilon_0]}E\bigg[\sup\limits_{0\leq t\leq T}\|Y^\epsilon(t)\|^2+\int_0^T\|Y^\epsilon(t)\|^2_{D(A)}{\rm d}t\bigg]\leq C. \end{eqnarray}
(3.6)

\{e_i\}_{i\in {\Bbb N}} V 中一组完备正交基.由(3.6)式得

\lim\limits_{L\to\infty} \lim\limits_{\epsilon\to0}\sup E\sup\limits_{s\in[0, T]}r_L^2(Y^\epsilon) = \lim\limits_{L\to\infty} \lim\limits_{\epsilon\to0}\sup E\sup\limits_{s\in[0, T]}\sum\limits_{i = L+1}^\infty((Y^\epsilon, e_i)) = 0,

由此对 \forall\eta > 0,

\begin{eqnarray} \lim\limits_{L\to\infty} \lim\limits_{\epsilon\to0}\sup P(r_L^2(Y^\epsilon)>\eta \; s\in[0, T]) = 0. \end{eqnarray}
(3.7)

{\cal D} = D(A) .下证 \{Y^\epsilon\} {\cal D} -弱紧.令 h\in D(A) ,且 \{\tau_\epsilon, \delta_\epsilon\} 满足(a)对任意 \epsilon, \tau_\epsilon 相对于 \sigma -场为停时且取有限多的值; (b)常数 \delta_\epsilon\in [0, T] \epsilon\to0 时满足 \delta_\epsilon\to0 .由(3.6)式可知对 t\in [0, T] , \{((Y^\epsilon(t), h))\} 是紧的.由(3.1)式得

\begin{eqnarray*} Y^\epsilon(\tau_\epsilon+\delta_\epsilon)-Y^\epsilon(\tau_\epsilon) & = &-\int_{\tau_\epsilon}^{\tau_\epsilon+\delta_\epsilon}\tilde{A}Y^\epsilon(t){\rm d}t -\int_{\tau_\epsilon}^{\tau_\epsilon+\delta_\epsilon}\tilde{B}(Y^\epsilon(t), u(t)){\rm d}t\nonumber\\ & &-\int_{\tau_\epsilon}^{\tau_\epsilon+\delta_\epsilon}\tilde{B}(X^\epsilon(t), Y^\epsilon(t)){\rm d}t +\frac{1}{a(\epsilon)}\int_{\tau_\epsilon}^{\tau_\epsilon+\delta_\epsilon}(F(t, X^\epsilon(t))-F(t, u(t))){\rm d}t\nonumber\\ &&+\frac{\epsilon}{a(\epsilon)}\int_{\tau_\epsilon}^{\tau_\epsilon+\delta_\epsilon}\int_{{\Bbb Z}} G (t, X^\epsilon(t-), z) \tilde{N}^{\epsilon^{-1}\phi^\epsilon}({\rm d}t, {\rm d}z) \nonumber\\ & &+\frac{1}{a(\epsilon)}\int_{\tau_\epsilon}^{\tau_\epsilon+\delta_\epsilon}\int_{{\Bbb Z}} G (t, X^\epsilon(t), z)(\phi^\epsilon(z, t)-1)\vartheta({\rm d}z){\rm d}t\nonumber\\ & = &I_1+I_2+I_3+I_4+I_5+I_6. \end{eqnarray*}

由(3.3), (3.4)和(3.6)式得 \lim\limits_{\epsilon\to0} E|((I_1+I_2+I_3, h))|^2 = 0. 由(2.8)及(3.6)式得

\begin{eqnarray*} \lim\limits_{\epsilon\to0} E|((I_4, h))|^2\leq \lim\limits_{\epsilon\to0}E\int_{\tau_\epsilon}^{\tau_\epsilon+\delta_\epsilon}\|Y^\epsilon\|\|h\|{\rm d}t = 0. \end{eqnarray*}

注意到 \psi^\epsilon = (\phi^\epsilon(z, t)-1)/a(\epsilon) ,因此 \lim\limits_{\epsilon\to0} E|((I_5+I_6, h))|^2 = 0. 联合以上不等式得当 \epsilon\to0 ,有

\begin{eqnarray} Y^\epsilon(\tau_\epsilon+\delta_\epsilon)-Y^\epsilon(\tau_\epsilon)\to 0, \;\;{\Bbb P}\mbox{-a.s.} . \end{eqnarray}
(3.8)

由(3.7)式, (3.8)式及文献[12]中的紧性判别准则得, \{Y^\epsilon\} {\cal D}([0, T], V) 中是紧的.证毕.

将(3.1)式的解分解为 Z^\epsilon , L^\epsilon U^\epsilon ,且分别满足如下方程

\begin{eqnarray*} {\rm d}z^\epsilon& = &-\tilde{A}Z^\epsilon {\rm d}t+\frac{\epsilon}{a(\epsilon)}\int_{{\Bbb Z}} G (t, X^\epsilon(t-), z) \tilde{N}^{\epsilon^{-1}\phi^\epsilon}({\rm d}t, {\rm d}z), \\ {\rm d}L^\epsilon& = &-\tilde{A}L^\epsilon {\rm d}t+\int_{{\Bbb Z}} G (t, X^\epsilon(t), z)\psi^\epsilon(z, t)1_{\{|\psi^\epsilon|>\beta/a(\epsilon)\}}\vartheta({\rm d}z){\rm d}t, \\ {\rm d}U^\epsilon& = &-\tilde{A}U^\epsilon {\rm d}t+\int_{{\Bbb Z}}( G (t, X^\epsilon(t), z) - G (t, u(t), z))\psi^\epsilon(z, t)1_{\{|\psi^\epsilon|\leq\beta/a(\epsilon)\}}\vartheta({\rm d}z){\rm d}t, \end{eqnarray*}

初值为 Z^\epsilon(0) = 0, L^\epsilon(0) = 0 U^\epsilon(0) = 0.

引理3.4   Z^\epsilon , L^\epsilon U^\epsilon 满足如下估计

\begin{equation} \lim\limits_{\epsilon\to0}E\bigg(\sup\limits_{t\in[0, T]}\|Z^\epsilon(t)\|^2+2\tilde{\alpha}\int_0^t\|Z^\epsilon(s)\|_{D(A)}^2{\rm d}s\bigg) = 0. \end{equation}
(3.9)

\begin{equation} \lim\limits_{\epsilon\to0}E\bigg(\sup\limits_{t\in[0, T]}\|L^\epsilon(t)\|^2+2\tilde{\alpha}\int_0^t\|L^\epsilon(s)\|_{D(A)}^2{\rm d}s\bigg) = 0. \end{equation}
(3.10)

\begin{equation} \lim\limits_{\epsilon\to0}E\bigg(\sup\limits_{t\in[0, T]}\|U^\epsilon(t)\|^2+2\tilde{\alpha}\int_0^t\|U^\epsilon(s)\|_{D(A)}^2{\rm d}s\bigg) = 0. \end{equation}
(3.11)

  由Itô公式得

\begin{eqnarray*} \|Z^\epsilon(t)\|^2+\tilde{\alpha}\int_0^t\|Z^\epsilon(s)\|_{D(A)}^2{\rm d}s &\leq &\frac{2\epsilon}{a(\epsilon)}\int_0^t\int_{{\Bbb Z}}(( G (s, X^\epsilon(s-), z) \tilde{N}^{\epsilon^{-1}\phi^\epsilon}({\rm d}s, {\rm d}z), Z^\epsilon(s)))\nonumber\\ & &+\frac{\epsilon^2}{a^2(\epsilon)}\int_0^t\int_{{\Bbb Z}}\| G (s, X^\epsilon(s-), z)\|^2 N^{\epsilon^{-1}\phi^\epsilon}({\rm d}s, {\rm d}z). \end{eqnarray*}

由BDG不等式, (2.12)及(3.4)式得

\begin{eqnarray*} &&E\sup\limits_{t\in[0, T]}\frac{2\epsilon}{a(\epsilon)}\int_0^t\int_{{\Bbb Z}}(( G (s, X^\epsilon(s-), z) \tilde{N}^{\epsilon^{-1}\phi^\epsilon}({\rm d}s, {\rm d}z), Z^\epsilon(s)))\nonumber\\ & \leq&CE\bigg(\int_0^T\int_{{\Bbb Z}}\frac{\epsilon^2}{a^2(\epsilon)}\| G (s, X^\epsilon(s-), z)\|^2\|Z^\epsilon(s)\|^2 N^{\epsilon^{-1}\phi^\epsilon}({\rm d}s, {\rm d}z)\bigg)^{1/2}\nonumber\\ & \leq&\frac12E\sup\limits_{t\in[0, T]}\|Z^\epsilon(t)\|^2+CE\int_0^T\int_{{\Bbb Z}}\frac{\epsilon^2}{a^2(\epsilon)}\| G (s, X^\epsilon(s-), z)\|^2 N^{\epsilon^{-1}\phi^\epsilon}({\rm d}s, {\rm d}z)\nonumber\\ &\leq&\frac12E\sup\limits_{t\in[0, T]}\|Z^\epsilon(t)\|^2+\frac{C\epsilon}{a^2(\epsilon)}\varsigma_{K_0}(a^2(\epsilon)+T), \\ & &E\frac{\epsilon^2}{a^2(\epsilon)}\int_0^t\int_{{\Bbb Z}}\| G (s, X^\epsilon(s-), z)\|^2 N^{\epsilon^{-1}\phi^\epsilon}({\rm d}s, {\rm d}z)\nonumber\\ & = &\frac{\epsilon}{a^2(\epsilon)}E\int_0^T\int_{{\Bbb Z}}\| G (s, X^\epsilon(s), z)\|^2 \phi^\epsilon(z, s)\vartheta({\rm d}z){\rm d}s\nonumber\\ &\leq&\frac{\epsilon}{a^2(\epsilon)}\varsigma_{K_0}(a^2(\epsilon)+T). \end{eqnarray*}

结合以上估计可得(3.9)式.类似可得(3.10)式和(3.11)式.证毕.

命题3.1  给定 M > 0, \{\phi^\epsilon\}_{\epsilon > 0} 使得对 \epsilon > 0, \phi^\epsilon\in {\cal U}^M_{+, \epsilon} . \psi^\epsilon = (\phi^\epsilon-1)/a(\epsilon) \beta\in(0, 1]. 如果当 \epsilon\rightarrow 0 时, \psi^\epsilon1_{\{|\psi^\epsilon|\leq\beta/a(\epsilon)\}} B_2(\sqrt{M\kappa_2(1)}) 中依分布收敛到 \psi ,那么当 \epsilon\rightarrow 0 时, {\cal G}^\epsilon(\epsilon N^{\epsilon^{-1}\varphi^\epsilon}) {\cal D}([0, T];V) 中依分布收敛到 {\cal G}_0(\psi) .

  令 K^\epsilon = Z^\epsilon+L^\epsilon+U^\epsilon \Upsilon^\epsilon = Y^\epsilon-K^\epsilon. 由(3.1)式得

\begin{equation} \left\{\begin{array}{ll} {\rm d}\Upsilon^\epsilon(t) = -\tilde{A}\Upsilon^\epsilon(t){\rm d}t-a(\epsilon)\tilde{B}(\Upsilon^\epsilon(t)+K^\epsilon(t), \Upsilon^\epsilon(t)+K^\epsilon(t)){\rm d}t\\ -\tilde{B}(\Upsilon^\epsilon(t)+K^\epsilon(t), u(t)){\rm d}t -\tilde{B}(u(t), \Upsilon^\epsilon(t)+K^\epsilon(t)){\rm d}t\\ +\frac1{a(\epsilon)}(F(t, a(\epsilon)(\Upsilon^\epsilon(t)+K^\epsilon(t))+u(t))-F(t, u(t))){\rm d}t\\ +\int_{{\Bbb Z}} G (t, u(t), z)\psi^\epsilon(z, t)1_{\{|\psi^\epsilon|\leq\beta/a(\epsilon)\}}\vartheta({\rm d}z){\rm d}t, \\ \Upsilon^\epsilon(0) = 0. \end{array}\right. \end{equation}
(3.12)

\Pi = ({\cal D}([0, T], V); {\cal D}([0, T], V)\cap L^2([0, T], D(A)); B_2(\sqrt{M\kappa_2(1)})). 由引理3.3知 Y^\epsilon {\cal D}([0, T], V) 紧.由(3.9)-(3.11)式及紧性定义,存在 {\cal D}([0, T], V)\cap L^2([0, T], D(A)) 中的紧集 K^\epsilon .由文献[10,引理3.2],存在 (\psi^\epsilon(z, t)1_{\{|\psi^\epsilon|\leq\beta/a(\epsilon)\}})_{\epsilon > 0} 且在 B_2(\sqrt{M\kappa_2(1)}) 中紧.令 (Y, 0, \psi) (Y^\epsilon, K^\epsilon, \psi^\epsilon(z, t)1_{\{|\psi^\epsilon|\leq\beta/a(\epsilon)\}})_{\epsilon > 0} \Pi 中的任意极限点.下面说明 Y {\cal G}_0(\psi) 具有同样的分布,且当 \epsilon\to0 时, Y^\epsilon {\cal D}([0, T];V) 依分布收敛到 Y .

由Skorokhod表达定理,存在随机基 (\Omega^1, {\cal F}^1, \{{\cal F}_t^1\}_{t\in[0, T]}, P^1) 及其上的 \Pi -值随机变量 (\tilde{Y}^\epsilon, \widetilde{K}^\epsilon, \tilde{\psi}^\epsilon), (\tilde{Y}, 0, \tilde{\psi}), \epsilon\in(0, \epsilon_0) 使得 (\tilde{Y}^\epsilon, \widetilde{K}^\epsilon, \tilde{\psi}^\epsilon) (Y^\epsilon, K^\epsilon, \psi^\epsilon(z, t)1_{\{|\psi^\epsilon|\leq\beta/a(\epsilon)\}})_{\epsilon > 0} , (\tilde{Y}, 0, \tilde{\psi}) (Y, 0, \psi) 具有相同的分布且在 \Pi 中, P^1 -a.s. (\tilde{Y}^\epsilon, \widetilde{K}^\epsilon, \tilde{\psi}^\epsilon)\to (\tilde{Y}, 0, \tilde{\psi}) .因此,只需证明如下收敛性

\begin{equation} \sup\limits_{t\in[0, T]}\|\tilde{Y}^\epsilon-\tilde{Y}\|^2\to0, P^1\hbox{-a.s., }\; \epsilon\to0. \end{equation}
(3.13)

\begin{equation} \left\{\begin{array}{ll} {\rm d}\tilde{\Gamma}^\epsilon(t) = -\tilde{A}\tilde{\Gamma}^\epsilon(t){\rm d}t +\int_{{\Bbb Z}} G (t, u(t), z)\tilde{\psi}^\epsilon(z, t)\vartheta({\rm d}z){\rm d}t, \\ \tilde{\Gamma}^\epsilon(0) = 0, \end{array}\right. \end{equation}
(3.14)

\tilde{\Gamma} 为(3.14)式中将 \tilde{\psi}^\epsilon 替换成 \tilde{\psi} 的解.由类似(3.19)式的估计可得

\begin{eqnarray} \lim\limits_{\epsilon\to0}\bigg(\sup\limits_{t\in[0, T]}\|\tilde{\Gamma}^\epsilon(t)-\tilde{\Gamma}(t)\|^2 +2\tilde{\alpha}\int_0^t\|\tilde{\Gamma}^\epsilon(s)-\tilde{\Gamma}(s)\|_{D(A)}^2{\rm d}s\bigg) = 0, \end{eqnarray}
(3.15)

\tilde{M} = \tilde{Y}-\tilde{\Gamma} \tilde{M}^\epsilon = \tilde{Y}^\epsilon-\tilde{K}^\epsilon-\tilde{\Gamma}^\epsilon .由(3.12)式和(2.15)式得

\left\{\begin{array}{ll} {\rm d}\tilde{M}(t) = -\tilde{A}\tilde{M}(t){\rm d}t-\tilde{B}(\tilde{M}(t)+\tilde{\Gamma}(t), u(t)){\rm d}t\\ -\tilde{B}(u(t), \tilde{M}(t)+\tilde{\Gamma}(t)){\rm d}t +F'(t, u(t))(\tilde{M}(t)+\tilde{\Gamma}(t)), \\ \tilde{M}(0) = 0, \end{array}\right.

\left\{\begin{array}{ll} {\rm d}\tilde{M}^\epsilon(t) = -\tilde{A}\tilde{M}^\epsilon(t){\rm d}t-\tilde{B}(\tilde{M}^\epsilon(t)+\tilde{\Gamma}^\epsilon(t) +\tilde{K}^\epsilon(t), u(t)){\rm d}t\\ -\tilde{B}(u(t), \tilde{M}^\epsilon(t)+\tilde{\Gamma}^\epsilon(t) +\tilde{K}^\epsilon(t)){\rm d}t\\ -a(\epsilon)\tilde{B}(\tilde{M}^\epsilon(t)+\tilde{\Gamma}^\epsilon(t) +\tilde{K}^\epsilon(t), \tilde{M}^\epsilon(t)+\tilde{\Gamma}^\epsilon(t) +\tilde{K}^\epsilon(t)){\rm d}t\\ +\frac1{a(\epsilon)}(F(t, a(\epsilon)(\tilde{M}^\epsilon(t)+\tilde{\Gamma}^\epsilon(t) +\tilde{K}^\epsilon(t))+u(t)){\rm d}t-F(t, u(t))){\rm d}t, \\ \tilde{M}^\epsilon(0) = 0. \end{array}\right.

类似引理3.2的证明可得如下解的估计

\begin{eqnarray} \sup\limits_{\epsilon\in[0, \epsilon_0]}\bigg[\sup\limits_{t\in[0, T]}\|\tilde{M}^\epsilon(t)\|^2+\int_0^T\|\tilde{M}^\epsilon(t)\|^2_{D(A)}{\rm d}t\bigg] \leq C, \;\; P^1\hbox{-a.s.} \end{eqnarray}
(3.16)

m^\epsilon = \tilde{M}^\epsilon-\tilde{M} n^\epsilon = \tilde{\Gamma}^\epsilon-\tilde{\Gamma} .则(3.13)式的证明变为

\begin{equation} \sup\limits_{t\in[0, T]}\|m^\epsilon(t)\|^2\to0, P^1\hbox{-a.s., as}\; \epsilon\to0. \end{equation}
(3.17)

固定 \omega^1\in \Omega^1. 由(2.4)-(2.5)式, (2.10)和(3.16)式得

\begin{eqnarray*} &&\|m^\epsilon(t)\|^2+\tilde{\alpha}\int_0^t\|m^\epsilon(s)\|^2_{D(A)}{\rm d}s\nonumber\\ & \leq &-2\int_0^t\langle\tilde{B}(n^\epsilon(s) +\tilde{K}^\epsilon(s), u(s)), m^\epsilon(s)\rangle {\rm d}s\nonumber\\ &&-2\int_0^t\langle\tilde{B}(u(s), m^\epsilon(s)+n^\epsilon(s) +\tilde{K}^\epsilon(s)), m^\epsilon(s)\rangle {\rm d}s\nonumber\\ &&-2a(\epsilon)\int_0^t\langle\tilde{B}(\tilde{M}^\epsilon(s)+\tilde{\Gamma}^\epsilon(s) +\tilde{K}^\epsilon(s), \tilde{M}^\epsilon(s)+\tilde{\Gamma}^\epsilon(s) +\tilde{K}^\epsilon(s)), m^\epsilon(s)\rangle {\rm d}s\nonumber\\ &&+\frac2{a(\epsilon)}\int_0^t((F(s, a(\epsilon)(\tilde{M}^\epsilon(s)+\tilde{\Gamma}^\epsilon(s) +\tilde{K}^\epsilon(s))+u(s))-F(s, u(s)), m^\epsilon(s))) {\rm d}s\nonumber\\ &&-2\int_0^t(F'(s, u(s))(\tilde{M}(s)+\tilde{\Gamma}(s)), m^\epsilon(s))) {\rm d}s\nonumber\\ &\leq& Ca(\epsilon)+C\sup\limits_{t\in[0, T]}(\|n^\epsilon(t)\|^2+ \|\tilde{K}^\epsilon(t)\|^2)+C\int_0^t\|m^\epsilon(s)\|^2 {\rm d}s. \end{eqnarray*}

因此,由(3.15)式, a(\epsilon) \to0 和当 \epsilon \to0 时, \sup\limits_{t\in[0, T]} (\|n^\epsilon(t)\|^2+ \|\tilde{K}^\epsilon(t)\|^2)\to0 ,可得(3.17)式.

命题3.2  固定 \Upsilon > 0 且当 g^\epsilon\to g g^\epsilon, g\in B_2(\Upsilon) .则在 C([0, T];V)\cap L^2(0, T;D(A)) {\cal G}_0(g^\epsilon)\to {\cal G}_0(g) .

  令 f^\epsilon(t) = \int_{{\Bbb Z}}g^\epsilon(z, t) G (t, u(t), z)\vartheta({\rm d}z) f(t) = \int_{{\Bbb Z}}g(z, t) G (t, u(t), z)\vartheta({\rm d}z) . Z^\epsilon Z 分别为以下方程的解

{\rm d}z^\epsilon(t) = -\tilde{A}Z^\epsilon(t){\rm d}t+f^\epsilon(t){\rm d}t, \;t\in[0, T],

\begin{equation} {\rm d}z = -\tilde{A}Z {\rm d}t+f(t){\rm d}t, \;t\in[0, T], \end{equation}
(3.18)

其初始条件分别为 Z^\epsilon(0) = 0 Z(0) = 0 .

第一步  证明如下强收敛性

\begin{eqnarray} \lim\limits_{\epsilon\to0}\bigg(\sup\limits_{t\in[0, T]}\|Z^\epsilon(t)-Z(t)\|^2+\tilde{\alpha}\int_0^t\|Z^\epsilon(s)-Z(s)\|_{D(A)}^2{\rm d}s\bigg) = 0. \end{eqnarray}
(3.19)

因为

\begin{eqnarray*} \int_0^T\int_{{\Bbb Z}}\| G (t, u(t), z)\|^2\vartheta({\rm d}z){\rm d}t &\leq&\int_{{\Bbb Z}} K_0^2(z)\vartheta({\rm d}z)\int_0^T(1+\|u(t)\|)^2{\rm d}t\\ &\leq&2T\sup\limits_{t\in[0, T]}(1+\|u(t)\|^2)\int_{{\Bbb Z}} K_0^2(z)\vartheta({\rm d}z)<\infty, \end{eqnarray*}

所以对于 v\in V, ((G (t, u(t), z), v))\in L^2(\vartheta_T)

\begin{eqnarray} \lim\limits_{\epsilon\to0}\bigg(\int_0^tf^\epsilon(s) {\rm d}s, v\bigg) = \bigg(\int_0^t\int_{{\Bbb Z}}g(z, t) G (t, u(t), z)\vartheta({\rm d}z), v\bigg). \end{eqnarray}
(3.20)

{\cal O} = \{f^\epsilon, \epsilon > 0\}. 对于 I\subset[0, T] ,有

\begin{eqnarray} \int_I\|f^\epsilon(t)\|{\rm d}t&\leq & \int_I\int_{{\Bbb Z}}|g^\epsilon(z, t)|\| G (t, u(t), z)\|\vartheta({\rm d}z){\rm d}t\\ & \leq&\bigg(\int_0^T\int_{{\Bbb Z}}|g^\epsilon(z, t)|^2\vartheta({\rm d}z){\rm d}t\bigg)^{1/2} \bigg(\int_I\int_{{\Bbb Z}}\| G (t, u(t), z)\|^2\vartheta({\rm d}z){\rm d}t\bigg)^{1/2}\\ &\leq&\Upsilon\sup\limits_{t\in[0, T]}(1+\|u(t)\|)\sqrt{\lambda_T(I)}. \end{eqnarray}
(3.21)

因此 {\cal O}\subset L^1([0, T];V) L^1([0, T];V) 中一致可积.由文献[13,命题5.4], Z^\epsilon C([0, T];V) 相对紧.由(3.20)式,得

\begin{eqnarray*} ((Z, v)) = -\int_0^t\langle Z(s), \tilde{A}v(s)\rangle {\rm d}s +\bigg(\int_0^t\int_{{\Bbb Z}}g(z, t) G (s, u(s), z)\vartheta({\rm d}z){\rm d}s, v(s)\bigg), \forall v\in D(A). \end{eqnarray*}

\bar{Z^\epsilon} = Z^\epsilon-Z .注意(3.21)式对 f(t) 也成立且 \epsilon\to0 \sup\limits_{t\in[0, T]}\|\bar{Z^\epsilon}\|\to0 ,因此

\begin{eqnarray*} \|\bar{Z^\epsilon}(t)\|^2+\tilde{\alpha}\int_0^t\|\bar{Z^\epsilon}(s)\|_{D(A)}^2{\rm d}s& \leq& 2\int_0^t\bigg(\bar{Z^\epsilon}(s), \int_{{\Bbb Z}}(g^\epsilon(z, s)-g(z, s)) G (s, u(s), z)\vartheta({\rm d}z){\rm d}s\bigg)\nonumber\\ &\leq&4 \Upsilon\sup\limits_{t\in[0, T]}(1+\|u(t)\|)\sqrt{T}\sup\limits_{t\in[0, T]}\|\bar{Z^\epsilon}(t)\| \to0, \; \epsilon\to0. \end{eqnarray*}

第二步  令 L^\epsilon = {\cal G}_0(g^\epsilon)-Z^\epsilon , L = {\cal G}_0(g)-Z \bar{L^\epsilon} = L^\epsilon-L .

\begin{eqnarray*} {\rm d}\bar{L^\epsilon}& = &-\tilde{A}\bar{L^\epsilon} {\rm d}t -\tilde{B}(\bar{L^\epsilon}(t)+\bar{Z^\epsilon}(t), u(t)){\rm d}t -\tilde{B}(u(t), \bar{L^\epsilon}(t)+\bar{Z^\epsilon}(t)){\rm d}t\\ &&+F'(t, u(t))(\bar{L^\epsilon}(t)+\bar{Z^\epsilon}(t)), \end{eqnarray*}

其初值 \bar{L^\epsilon}(0) = 0 .由(2.1), (2.3)-(2.5), (2.8), (2.10)式和Hölder不等式得

\begin{eqnarray*} &&\|\bar{L^\epsilon}(t)\|^2+\tilde{\alpha}\int_0^t\|\bar{L^\epsilon}(s)\|_{D(A)}^2{\rm d}s\nonumber\\ &\leq&-2\int_0^t\langle\tilde{B}(\bar{Z^\epsilon}(s), u(s)), \bar{L^\epsilon}(s)\rangle {\rm d}s -2\int_0^t\langle\tilde{B}(u(s), \bar{Z^\epsilon}(s)), \bar{L^\epsilon}(s)\rangle {\rm d}s\nonumber\\ &&+2\int_0^t\langle\tilde{B}(\bar{L^\epsilon}(s), \bar{L^\epsilon}(s)), u(s)\rangle {\rm d}s +2\int_0^t\langle F'(s, u(s))(\bar{L^\epsilon}(s)+\bar{Z^\epsilon}(s)), \bar{L^\epsilon}(s)\rangle {\rm d}s\nonumber\\ &\leq& \frac{6Cc_1^2}{\tilde{\alpha}}\bigg(\sup\limits_{t\in[0, T]}\|\bar{Z^\epsilon}(t)\|^2+\int_0^t\|\bar{Z^\epsilon}(s)\|_{D(A)}^2{\rm d}s\bigg) +\frac{6Cc_1^2}{\tilde{\alpha}}\int_0^t\|u(s)\|_{D(A)}^2\|\bar{L^\epsilon}(s)\|^2{\rm d}s. \end{eqnarray*}

由Gronwall引理和(3.19)式得

\begin{eqnarray*} \lim\limits_{\epsilon\to0}\bigg(\sup\limits_{t\in[0, T]}\|\bar{L^\epsilon}(t)\|^2 +\frac{\tilde{\alpha}}{2}\int_0^t\|\bar{L^\epsilon}(s)\|_{D(A)}^2{\rm d}s\bigg) \to0. \end{eqnarray*}

因此有

\begin{eqnarray*} \lim\limits_{\epsilon\to0}\bigg(\sup\limits_{t\in[0, T]}\|{\cal G}_0(g^\epsilon)-{\cal G}_0(g)\|^2+ \int_0^t\|{\cal G}_0(g^\epsilon)-{\cal G}_0(g)\|_{D(A)}^2{\rm d}s\bigg) \to0. \end{eqnarray*}

证毕.

定理2.1的证明  由命题3.1,命题3.2和文献[10,定理2.3],得证定理2.1.

参考文献

Coutand D , Pierce J , Shkoller S .

Global well-posedness of weak solutions for the Lagrangian averaged Navier-Stokes equations on bounded domains

Comm Pure Appl Anal, 2002, 1: 35- 50

[本文引用: 3]

Foias C , Holm D , Titi E .

The three dimensional viscous Camassa-Holm equations, and their relation to the Navier-Stokes equations and turbulence theory

J Dynam Differential Equations, 2002, 14: 1- 35

URL     [本文引用: 2]

Marsden J E , Shkoller S .

Global well-posedness for the LANS-α equations on bounded domains

Roy Soc Lond Philos Trans Ser A Math Phys Eng Sci, 2001, 359: 1449- 1468

DOI:10.1098/rsta.2001.0852      [本文引用: 2]

Caraballo T , Márquez-Durán A M , Real J .

On the stochastic 3D-Lagrangian averaged Navier-Stokes-α model with finite delay

Stoch Dyn, 2005, 5: 189- 200

DOI:10.1142/S021949370500147X      [本文引用: 1]

Caraballo T , Márquez-Durán A M , Real J .

The asymptotic behavior of a stochastic 3D LANS-α model

Appl Math Optim, 2006, 53: 141- 161

DOI:10.1007/s00245-005-0839-9     

Caraballo T , Real J , Taniguchi T .

The existence and uniqueness of solutions to stochastic 3-dimensional Lagrangian averaged Navier-Stokes equations

Proc Roy Soc A, 2006, 462: 459- 479

DOI:10.1098/rspa.2005.1574     

Deugoué G , Sango M .

On the stochastic 3D Navier-Stokes-α model of fluids turbulence

Abs Appl Anal, 2009, 2009: 723236

URL    

Deugoué G , Sango M .

Weak solutions to stochastic 3D Navier-Stokes-α model of turbulence:α-asymptotic

J Math Anal Appl, 2011, 384: 49- 62

DOI:10.1016/j.jmaa.2010.10.048      [本文引用: 1]

Deugoué G , Sango M .

Strong solutions for the stochastic 3D LANS-α model driven by non-Gaussian Lévy noise

Stoch Dyn, 2015, 15: 1550011

DOI:10.1142/S0219493715500112      [本文引用: 1]

Budhiraja A , Dupuis P , Ganguly A .

Moderate deviation principles for stochastic differential equations with jumps

Annals of Probability, 2016, 44 (3): 1723- 1775

DOI:10.1214/15-AOP1007      [本文引用: 5]

Dong Z , Xiong J , Zhai J L , Zhang T S .

A moderate deviation principle for 2-D stochastic Navier-Stokes equations driven by multiplicative Lévy noises

Journal of Functional Analysis, 2017, 272: 227- 254

DOI:10.1016/j.jfa.2016.10.012      [本文引用: 1]

Aldous D .

Stopping times and tightness

Ann Probab, 1978, 6: 335- 340

DOI:10.1214/aop/1176995579      [本文引用: 1]

Röckner M , Zhang T .

Stochastic evolution equations of jump type:existence, uniqueness and large deviation principles

Potential Anal, 2007, 26: 255- 279

DOI:10.1007/s11118-006-9035-z      [本文引用: 1]

/