Processing math: 5%

数学物理学报, 2019, 39(6): 1476-1482 doi:

论文

亚纯函数差分的不动点

吴昭君,

Fixed Points of Meromorphic Functions and Their Differences

Wu Zhaojun,

收稿日期: 2018-07-4  

基金资助: 湖北省教育厅科学技术研究项目重点项.  D20182801

Received: 2018-07-4  

Fund supported: the Natural Science Foundation of Hubei Provincial Department of Education.  D20182801

作者简介 About authors

吴昭君,E-mail:wuzj52@hotmail.com , E-mail:wuzj52@hotmail.com

摘要

f是定义在复平面上的超越亚纯函数,k为任意正整数.记Δf=fz+1)-fz),Δk+1fkfz+1)-Δkf,k=1,2,….文章讨论了亚纯函数f的差分Δkf的不动点.所得结果推广了一些已有的相关结果.

关键词: 差分 ; 不动点 ; 亏量 ; 亚纯函数

Abstract

Let f be a transcendental meromorphic function in the complex plane C, k is a positive integer, Δf=f(z+1)-f(z), Δk+1fkf(z+1)-Δkf, k=1, 2, …. The author prove some results concerning the fixed points of the differences Δkf. The results obtained in this paper generalize some relative results.

Keywords: Differences ; Fixed point ; Dificiency ; Meromorphic function

PDF (264KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

吴昭君. 亚纯函数差分的不动点. 数学物理学报[J], 2019, 39(6): 1476-1482 doi:

Wu Zhaojun. Fixed Points of Meromorphic Functions and Their Differences. Acta Mathematica Scientia[J], 2019, 39(6): 1476-1482 doi:

1 引言及主要结果

本文将利用Nevanlinna理论研究亚纯函数差分的不动点.设f(z)是定义在复平面C上的亚纯函数,我们使用Nevanlinna理论的标准记号: m(r,f),N(r,f),m(r,1fa),N(r,1fa),T(r,f),S(r,f),,并假设读者熟知这些基本记号(可参考Hayman[1],杨乐[2],仪洪勋、杨重骏[3],郑建华[4]等).此外,用σ(f)表示函数f(z)的级, λ(f,a)表示fa(aC)的零点收敛指数.特别地,记λ(f,0)=λ(f).我们还用λ(1f)表示f(z)的极点的收敛指数.如果λ(f,a)<σ(f) (或λ(1f)<σ(f)),则称a (或)f(z)的Borel例外值.函数f(z)aC{}值点的Nevanlinna亏量δ(a,f)定义为

δ(a,f)=1lim sup

\delta(\infty, f) = 1-\limsup\limits_{r\rightarrow\infty}\frac{N(r, f)}{T(r, f)} = \liminf\limits_{r\rightarrow\infty}\frac{m(r, f)}{T(r, f)}.

对任意的 z_{0}\in \Bbb{C} ,如果 f(z_{0}) = z_{0} ,称 z_{0} 为函数 f(z) 的不动点[5].陈宗煊[6]给出了不动点的收敛指数的如下定义.记 \tau(f) 为函数 f 的不动点的收敛指数,则

\tau(f) = \limsup\limits_{r\rightarrow\infty}\frac{\log N\left(r, \frac{1}{f-z}\right)}{\log r}.

关于亚纯函数的不动点的研究,可参考庄圻泰、杨重骏[5].在1960年前后, Baker[7]证明:对全平面上的超越整函数 f ,如果存在 a\in\Bbb{C} 使得 \delta(a, f)>0 ,则函数 f 有一阶不动点. 1993年, Lahiri[8]部分推广了Baker的结果,得到定理A.

定理A  设 f 是全平面上的超越亚纯函数,如果存在 a\in\Bbb{C} ,使得 \delta(a, f)>0 \delta(\infty, f) = 1 . f 有无穷多个不动点.

关于定理A,易得如下更一般的结果.

定理1.1  设 f 是全平面上的超越亚纯函数,如果存在 a\in\Bbb{C} ,使得 \delta(a, f)>0 \delta(\infty, f) = 1 ,则对任意的正整数 k , f f^{(k)} 有无穷多个不动点,且 \tau(f) = \sigma(f) = \tau(f^{(k)}).

近二十年来,关于亚纯函数及其导函数的Nevanlinna理论的结果被推广到亚纯函数及其差分[9-25].事实上,定理1.1的结果是平凡的,但作者至今尚未发现其完整证明.本文介绍它的主要目的是由此引入我们将要研究的亚纯函数差分的不动点的相关结果.设 f(z) 是定义在复平面 \Bbb{C} 上的亚纯函数,记

\Delta f = f(z+1)-f(z), \Delta^{k+1} f = \Delta^{k} f(z+1)-\Delta^{k} f, k = 1, 2, \cdots.

关于亚纯函数差分的不动点,陈宗煊和Shon证明了如下结果.

定理B[12]  设 P(z), Q(z) R(z) 是不恒为零的多项式且满足

\deg P(z)\geq \max\{\deg R(z), \deg Q(z)\}, \deg P(z)\geq1.

如果存在多项式 h(z) ,使得

(-R(z)+Q(z)+zP(z))^{2}-4zP(z)Q(z) = h^{2}(z).

则Pielou方程

f(z+1) = \frac{R(z)f(z)}{Q(z)+P(z)f(z)}

的每一个有限级超越亚纯解 f(z) 满足 \tau(\Delta f) = \sigma(f).

定理C[10]  设 P(z), Q(z) R(z) 是不恒为零的多项式且 P(z)Q(z)R(z)\not\equiv0 ,则Pielou方程的每一个有限级超越亚纯解 f(z) 满足 \sigma(f)\geq1.

因此,在定理B和定理C的条件下, Pielou方程的每一个有限级超越亚纯函数解 f(z) 满足 \tau(\Delta f) = \sigma(f)\geq1. 对于 \sigma(f)\leq1 的超越亚纯函数,陈宗煊、Shon[11]证明了如下结果.

定理D[11]  设 f 是复平面上的超越亚纯函数, \sigma(f)\leq1 .如果 \lambda(\frac{1}{f})<\lambda(f)<1 ,或者 \lambda(f) = 0 ,但 f 有无限多个零点而仅有有限多个极点,则 \Delta f 有无限多个不动点且 \tau(\Delta f) = \sigma(f) .

在定理D中,如果 \lambda(\frac{1}{f})<\lambda(f)<\sigma(f)\leq 1 ,则 0, \infty f 的Borel例外值.由仪洪勋、杨重骏[3]中定理2.11知 \sigma(f) = 1. 对于级 \sigma(f)<1 的亚纯函数 f ,吴昭君、徐洪焱[21]证明了如下结果.

定理E[21]  设 f 是复平面上的超越亚纯函数, \sigma(f)<1 .如果存在 a\in\Bbb{C} ,使得 \delta(a, f)>0 \delta(\infty, f) = 1 . \Delta f 有无限多个不动点.

本文将定理E的结论推广到亚纯函数的高阶差分,证明如下定理.

定理1.2  设 f 是全平面上的超越亚纯函数, \sigma(f)<1 .如果存在 a\in\Bbb{C} ,使得 \delta(a, f)>0 \delta(\infty, f) = 1 .则对任意的正整数 k , \Delta^{k} f 有无穷多个不动点且 \tau(\Delta^{k} f) = \sigma(f).

定理1.2是定理1.1的差分模拟.

2 定理1.1的证明

定理1.1的证明需要用到如下引理.

引理2.1 (对数导数引理)  设 f(z) 是全平面上的超越亚纯函数,则当 f(z) 为有穷级时

m\left(r, \frac{f^{(k)}}{f}\right) = O(\log r) = S(r, f) = o(T(r, f))(r\rightarrow\infty),

f(z) 为无穷级时

m\left(r, \frac{f^{(k)}}{f}\right) = O\left(\log (rT(r, f))\right) = S(r, f) = o(T(r, f)) (r\rightarrow\infty, r\notin E),

其中 k 为任意正整数, E 是一个有穷线测度的集合.

引理2.2[26]  设 f(z) 是全平面上的非常数亚纯函数, k 为任意正整数, \varphi(z)(\not\equiv0, \infty) f(z) 的小函数,则

T(r, f)\leq \overline{N}(r, f)+N\left(r, \frac{1}{f}\right)+N\left(r, \frac{1}{f^{(k)}-\varphi}\right) -N\left(r, \frac{1}{\left(\frac{f^{(k)}}{\varphi}\right)'}\right)+S(r, f).

引理2.3[3]  设 f(z) 是全平面上的非常数亚纯函数, \varphi_{j}(z) (j = 1, 2, 3) f(z) 的相互判别的小函数,则

T(r, f)\leq \sum\limits_{j = 1}^{3}\overline{N}\left(r, \frac{1}{f-\varphi_{j}(z)}\right)+S(r, f).

定理1.1的证明  由定理A, f 有无穷多个不动点.在引理2.3中,令 \varphi_{1}(z) = \infty, \varphi_{2}(z) = a, \varphi_{3}(z) = z ,则

\begin{equation} T(r, f)\leq N(r, f)+N\left(r, \frac{1}{f-a}\right)+N\left(r, \frac{1}{f-z}\right)+S(r, f). \end{equation}
(2.1)

又因为 \delta(\infty, f) = 1 , \delta(a, f)>0 ,所以存在某个正数 \theta<1 ,使得对任意充分大的 r ,有

\begin{equation} N\left(r, \frac{1}{f-a}\right)<\theta T(r, f), \end{equation}
(2.2)

\begin{equation} N(r, f) = o(T(r, f)). \end{equation}
(2.3)

结合(2.1)–(2.3)式可得

(1-\theta-o(1))T(r, f)\leq N\left(r, \frac{1}{f-z}\right).

因此 \tau(f)\geq\sigma(f) ,故有 \tau(f) = \sigma(f).

此外,在引理2.2中,令 \varphi(z) = z , g = f-a,

\begin{eqnarray*} T(r, f)& = &T(r, g)+O(1)\\ &\leq& \overline{N}(r, g)+N\left(r, \frac{1}{g}\right)+N\left(r, \frac{1}{g^{(k)}-z}\right)+S(r, g)\\ &\leq &N(r, f)+N\left(r, \frac{1}{f-a}\right)+N\left(r, \frac{1}{f^{(k)}-z}\right)+S(r, f). \end{eqnarray*}

由上式并结合(2.2), (2.3)式可得

(1-\theta-o(1))T(r, f)\leq N\left(r, \frac{1}{f^{(k)}-z}\right).

所以 \tau(f^{(k)})\geq\sigma(f) ,故有 \tau(f^{(k)}) = \sigma(f). 证毕.

3 定理1.2的证明

定理1.2的证明需要用到如下引理.

引理3.1[14]  设 f(z) 是复平面上的有限级超越亚纯函数,则 \sigma(\Delta f)\leq\sigma(f).

引理3.2[21]  设 f(z) 是复平面上的超越亚纯函数, \sigma(f)<1 ,则 \Delta f 是超越亚纯函数.

引理3.3[20]  设 f(z) 是复平面上的超越亚纯函数, \sigma(f)<1 , k 为任意的正整数.则

m\left(r, \frac{\Delta^{k}f(z)}{f(z)}\right) = O(\log r).

N(r, f(z+c)) = N(r, f)+O(\log r),

其中 c 为任意非零复数.

引理3.4[3]  设 f(z) 为非常数周期亚纯函数,则 f(z) 的级 \sigma(f)\geq 1.

引理3.5  设 f(z) 是复平面上的超越亚纯函数, \sigma(f)<1 , k 为正整数.则对任意的 a\in\Bbb{C} ,都有

T(r, f)\leq (2k+3)N(r, f)+N\left(r, \frac{1}{f-a}\right)+N\left(r, \frac{1}{\Delta^{k}f-z}\right)+O(\log r).

  记 F = \Delta^{k}f ,由引理3.1和引理3.2, F 是复平面上的超越亚纯函数, \sigma(F)<1 .因此

\sigma(\frac{F}{z})<1.

下证 z\Delta F-F\not\equiv0. 如果 z\Delta F-F\equiv0,

\begin{eqnarray*} (z+1)F(z)\equiv zF(z+1). \end{eqnarray*}

因此 \frac{F(z)}{z} 是一个以1为周期的亚纯函数.由引理3.4知 \sigma(\frac{F}{z})\geq1 ,这与 \sigma(\frac{F}{z})<1 矛盾.因此 z\Delta^{k+1}f-\Delta^{k}f\not\equiv0.

因为

\frac{1}{f} = \frac{\Delta^{k}f}{zf}-\frac{z\Delta^{k+1}f-\Delta^{k}f}{zf}\frac{\Delta^{k}f-z}{z\Delta^{k+1}f-\Delta^{k}f}.

所以由引理3.3可得

\begin{eqnarray*} m\left(r, \frac{1}{f}\right)&\leq& m\left(r, \frac{\Delta^{k}f}{zf}\right)+m\left(r, \frac{z\Delta^{k+1}f-\Delta^{k}f}{zf}\right)+m\left(r, \frac{\Delta^{k}f-z}{z\Delta^{k+1}f-\Delta^{k}f}\right)+\log2\\ &\leq& 2m\left(r, \frac{\Delta^{k}f}{f}\right)+m\left(r, \frac{\Delta^{k+1}f}{f}\right)+m\left(r, \frac{\Delta^{k}f-z}{z\Delta^{k+1}f-\Delta^{k}f}\right)+O(\log r)\\ & = & m\left(r, \frac{\Delta^{k}f-z}{z\Delta^{k+1}f-\Delta^{k}f}\right)+O(\log r). \end{eqnarray*}

应用Nevanlinna第一基本定理,有

\begin{equation} T(r, f)\leq N\left(r, \frac{1}{f}\right)+m\left(r, \frac{\Delta^{k}f-z}{z\Delta^{k+1}f-\Delta^{k}f}\right)+O(\log r), \end{equation}
(3.1)

\begin{eqnarray} m\left(r, \frac{\Delta^{k}f-z}{z\Delta^{k+1}f-\Delta^{k}f}\right)& = & m\left(r, \frac{z\Delta^{k+1}f-\Delta^{k}f}{\Delta^{k}f-z}\right)+N\left(r, \frac{z\Delta^{k+1}f-\Delta^{k}f}{\Delta^{k}f-z}\right)\\ &&-N\left(r, \frac{\Delta^{k}f-z}{z\Delta^{k+1}f-\Delta^{k}f}\right)+O(1) \\ &\leq& m\left(r, \frac{z\Delta^{k+1}f-\Delta^{k}f}{\Delta^{k}f-z}\right)+N\left(r, \frac{z\Delta^{k+1}f-\Delta^{k}f}{\Delta^{k}f-z}\right)+O(1). \qquad \end{eqnarray}
(3.2)

注意到

\frac{z\Delta^{k+1}f-\Delta^{k}f}{\Delta^{k}f-z} = \frac{z\Delta^{k+1}f-z-\Delta^{k}f+z}{\Delta^{k}f-z} = z\frac{\Delta^{k+1}f-1}{\Delta^{k}f-z}-1 = z\frac{\Delta(\Delta^{k}f-z)}{\Delta^{k}f-z}-1.

因此

\begin{equation} m\left(r, \frac{z\Delta^{k+1}f-\Delta^{k}f}{\Delta^{k}f-z}\right)\leq m\left(r, \frac{\Delta(\Delta^{k}f-z)}{\Delta^{k}f-z}\right)+O(\log r). \end{equation}
(3.3)

因为 f(z) 是超越亚纯函数且 \sigma(f)<1 .由引理3.1和引理3.2知, \Delta(f) 也是超越亚纯函数且 \sigma(\Delta(f))<1 .从而 \Delta^{k}f-z 也是超越亚纯函数且 \sigma(\Delta^{k}f-z)<1 .根据引理3.3,知

\begin{equation} m\left(r, \frac{\Delta(\Delta^{k}f-z)}{\Delta^{k}f-z}\right) = O(\log r). \end{equation}
(3.4)

\begin{equation} N(r, \Delta^{k+1}f)\leq \sum\limits_{j = 0}^{k+1}N(r, f(z+j)). \end{equation}
(3.5)

由引理3.3和(3.5)式可得

\begin{eqnarray} N\left(r, \frac{z\Delta^{k+1}f-\Delta^{k}f}{\Delta^{k}f-z}\right) &\leq& N\left(r, z\Delta^{k+1}f-\Delta^{k}f\right)+N\left(r, \frac{1}{\Delta^{k}f-z}\right) \\ &\leq& N\left(r, \frac{1}{\Delta^{k}f-z}\right)+N(r, \Delta^{k+1}f)+N(r, \Delta^{k}f)\\ &\leq &N\left(r, \frac{1}{\Delta^{k}f-z}\right)+(2k+3)N(r, f)+O(\log r). \end{eqnarray}
(3.6)

结合(3.1)–(3.6)式得

\begin{eqnarray*} T(r, f)\leq (2k+3)N(r, f)+N\left(r, \frac{1}{f}\right)+N\left(r, \frac{1}{\Delta^{k}f-z}\right)+O(\log r). \end{eqnarray*}

g = f-a,

\begin{eqnarray*} T(r, f)& = &T(r, g)+O(1)\\ &\leq& (2k+3)N(r, g)+N\left(r, \frac{1}{g}\right)+N\left(r, \frac{1}{\Delta^{k}g-z}\right)+O(\log r)\\ & = &(2k+3)N(r, f)+N\left(r, \frac{1}{f-a}\right)+N\left(r, \frac{1}{\Delta^{k}f-z}\right)+O(\log r). \end{eqnarray*}

证毕.

定理1.2的证明  由引理3.5知

T(r, f)\leq (2k+3)N(r, f)+N\left(r, \frac{1}{f-a}\right)+N\left(r, \frac{1}{\Delta^{k}f-z}\right)+O(\log r).

由上式并结合(2.2), (2.3)可得

(1-\theta-o(1))T(r, f)\leq N\left(r, \frac{1}{\Delta^{k}f-z}\right).

因此 \tau(\Delta^{k}f)\geq\sigma(f) ,故有 \tau(\Delta^{k}f) = \sigma(f). 证毕.

参考文献

Hayman W K . Meromorphic Functions. Oxford: Clarendon Press, 1964

[本文引用: 1]

Yang L . Value Distribution Theory (Translated and Revised from the 1982 Chinese Original). Berlin: Springer-Verlag, 1993

[本文引用: 1]

Yang C C , Yi H X . Uniqueness Theory of Meromorphic Functions. Dordrecht: Kluwer Academic Publishers Group, 2003

[本文引用: 4]

Zheng J H . Value Distribution of Meromorphic Functions. Heidelberg: Springer, 2010

[本文引用: 1]

Chuang C T , Yang C C . Theory of Fix Points and Factorization of Meromorphic Functions. Beijing: Peking University Press, 1986

[本文引用: 2]

陈宗煊.

二阶复域微分方程解的不动点与超级

数学物理学报, 2000, 20A (3): 425- 432

DOI:10.3321/j.issn:1003-3998.2000.03.021      [本文引用: 1]

Chen Z X .

The fixed points and hyper order of solutions of second order complex differential equations

Acta Mathematica Scientia, 2000, 20A (3): 425- 432

DOI:10.3321/j.issn:1003-3998.2000.03.021      [本文引用: 1]

Baker I N .

Some entire functions with fix-points of every order

J Aust Math Soc, 1960, 1: 203- 209

DOI:10.1017/S1446788700025556      [本文引用: 1]

Lahiri I .

Milloux theorem, deficiency and fix-points for vector-valued meromorphic functions

J Indian Math Soc, 1993, 59: 45- 60

[本文引用: 1]

Bergweiler W , Langley J K .

Zeros of differences of meromorphic functions

Math Proc Cambridge Philos Soc, 2007, 142: 133- 147

DOI:10.1017/S0305004106009777      [本文引用: 1]

Chen Z X .

On growth, zeros and poles of meromorphic solutions of linear and nonlinear difference equations

Science China Mathematics, 2011, 54 (10): 2123- 2133

DOI:10.1007/s11425-011-4265-y      [本文引用: 1]

Chen Z X , Shon K H .

Properties of differences of meromorphic functions

Czechoslovak Mathematical Journal, 2011, 61: 213- 224

DOI:10.1007/s10587-011-0008-z      [本文引用: 2]

Chen Z X, Shon K H. Fixed Points of Meromorphic Solutions for Some Difference Equations. Abstract and Applied Analysis, 2013, Article ID: 496096

[本文引用: 1]

Chiang Y M , Feng S J .

On the Nevanlinna characteristic of f(z+η) and difference equations in the complex plane

Ramanujan J, 2008, 16: 105- 129

DOI:10.1007/s11139-007-9101-1     

Chiang Y M , Feng S J .

On the growth of logarithmic difference, difference equations and logarithmic derivatives of meromorphic functions

J Trans Amer Math Soc, 2009, 361: 3767- 3791

DOI:10.1090/S0002-9947-09-04663-7      [本文引用: 1]

Halburd R G , Korhonen R J .

Nevanlinna theory for the difference operator

Ann Acad Sci Fenn Math, 2006, 31: 463- 478

URL    

Halburd R G , Korhonen R J .

Meromorphic solutions of difference equations, integrability and the discrete Painlevé equations

J Phys A:Math Theor, 2007, 40: 1- 38

DOI:10.1088/1751-8113/40/1/001     

Halburd R G , Korhonen R J .

Difference analogue of the lemma on the logarithmic derivative with applications to difference equations

J Math Anal Appl, 2006, 314: 477- 487

DOI:10.1016/j.jmaa.2005.04.010     

Liu K , Cao H Z , Cao T B .

Entire solutions of Fermat type differential differenceequations

Arch Math, 2012, 99: 147- 155

DOI:10.1007/s00013-012-0408-9     

Xu H Y , Cao T B , Liu B X .

The growthof solutions of systems of complex q-shift difference equations

Advances in Difference Equations, 2012, 2012: 216

DOI:10.1186/1687-1847-2012-216     

Wu Z J .

Value distribution for difference operator of meromorphic functions with maximal deficiency sum

Journal of Inequalities and Applications, 2013, 2013: 530

DOI:10.1186/1029-242X-2013-530      [本文引用: 1]

Wu Z J, Xu H Y. Fixed points of difference operatior of meromorphic functions. The Scientific World Journal, 2014, Article ID: 103249

[本文引用: 3]

Xu J F , Zhang X B .

The zeros of q-shift difference polynomials of meromorphic functions

Advances in Difference Equations, 2012, 2012: 200

DOI:10.1186/1687-1847-2012-200     

Li N , Yang L Z .

Value distribution of difference and q-difference polynomials

Advances in Difference Equations, 2013, 2013: 98

DOI:10.1186/1687-1847-2013-98     

Liu H F , Mao Z Q .

On entire solutions of some type of nonlinear difference equations

Acta Mathematica Scientia, 2018, 38B (3): 819- 828

URL    

Cui N , Chen Z X .

Entire functions sharing one small function CM with their shifts and difference

Acta Mathematica Scientia, 2017, 37B (3): 786- 798

URL     [本文引用: 1]

Yang L .

Normality for family of meromorphic functions

Sci Sinica Ser A, 1986, 29 (12): 1263- 1247

URL     [本文引用: 1]

/