亚纯函数差分的不动点
Fixed Points of Meromorphic Functions and Their Differences
收稿日期: 2018-07-4
基金资助: |
|
Received: 2018-07-4
Fund supported: |
|
作者简介 About authors
吴昭君,E-mail:
设f是定义在复平面上的超越亚纯函数,k为任意正整数.记Δf=f(z+1)-f(z),Δk+1f=Δkf(z+1)-Δkf,k=1,2,….文章讨论了亚纯函数f的差分Δkf的不动点.所得结果推广了一些已有的相关结果.
关键词:
Let f be a transcendental meromorphic function in the complex plane C, k is a positive integer, Δf=f(z+1)-f(z), Δk+1f=Δkf(z+1)-Δkf, k=1, 2, …. The author prove some results concerning the fixed points of the differences Δkf. The results obtained in this paper generalize some relative results.
Keywords:
本文引用格式
吴昭君.
Wu Zhaojun.
1 引言及主要结果
本文将利用Nevanlinna理论研究亚纯函数差分的不动点.设
定理A 设
关于定理A,易得如下更一般的结果.
定理1.1 设
关于亚纯函数差分的不动点,陈宗煊和Shon证明了如下结果.
定理B[12] 设
如果存在多项式
则Pielou方程
的每一个有限级超越亚纯解
定理C[10] 设
因此,在定理B和定理C的条件下, Pielou方程的每一个有限级超越亚纯函数解
定理D[11] 设
定理E[21] 设
本文将定理E的结论推广到亚纯函数的高阶差分,证明如下定理.
定理1.2 设
定理1.2是定理1.1的差分模拟.
2 定理1.1的证明
定理1.1的证明需要用到如下引理.
引理2.1 (对数导数引理) 设
当
其中
引理2.2[26] 设
引理2.3[3] 设
定理1.1的证明 由定理A,
又因为
且
结合(2.1)–(2.3)式可得
因此
此外,在引理2.2中,令
由上式并结合(2.2), (2.3)式可得
所以
3 定理1.2的证明
定理1.2的证明需要用到如下引理.
引理3.1[14] 设
引理3.2[21] 设
引理3.3[20] 设
且
其中
引理3.4[3] 设
引理3.5 设
证 记
下证
因此
因为
所以由引理3.3可得
应用Nevanlinna第一基本定理,有
注意到
因此
因为
又
由引理3.3和(3.5)式可得
结合(3.1)–(3.6)式得
令
证毕.
定理1.2的证明 由引理3.5知
由上式并结合(2.2), (2.3)可得
因此
参考文献
二阶复域微分方程解的不动点与超级
,DOI:10.3321/j.issn:1003-3998.2000.03.021 [本文引用: 1]
The fixed points and hyper order of solutions of second order complex differential equations
DOI:10.3321/j.issn:1003-3998.2000.03.021 [本文引用: 1]
Some entire functions with fix-points of every order
,DOI:10.1017/S1446788700025556 [本文引用: 1]
Milloux theorem, deficiency and fix-points for vector-valued meromorphic functions
,
Zeros of differences of meromorphic functions
,DOI:10.1017/S0305004106009777 [本文引用: 1]
On growth, zeros and poles of meromorphic solutions of linear and nonlinear difference equations
,DOI:10.1007/s11425-011-4265-y [本文引用: 1]
Properties of differences of meromorphic functions
,DOI:10.1007/s10587-011-0008-z [本文引用: 2]
On the Nevanlinna characteristic of f(z+η) and difference equations in the complex plane
,
On the growth of logarithmic difference, difference equations and logarithmic derivatives of meromorphic functions
,DOI:10.1090/S0002-9947-09-04663-7 [本文引用: 1]
Meromorphic solutions of difference equations, integrability and the discrete Painlevé equations
,DOI:10.1088/1751-8113/40/1/001
Difference analogue of the lemma on the logarithmic derivative with applications to difference equations
,DOI:10.1016/j.jmaa.2005.04.010
Entire solutions of Fermat type differential differenceequations
,
The growthof solutions of systems of complex q-shift difference equations
,DOI:10.1186/1687-1847-2012-216
Value distribution for difference operator of meromorphic functions with maximal deficiency sum
,DOI:10.1186/1029-242X-2013-530 [本文引用: 1]
The zeros of q-shift difference polynomials of meromorphic functions
,DOI:10.1186/1687-1847-2012-200
Value distribution of difference and q-difference polynomials
,
On entire solutions of some type of nonlinear difference equations
,
Entire functions sharing one small function CM with their shifts and difference
,
/
〈 | 〉 |