数学物理学报, 2019, 39(6): 1405-1420 doi:

论文

具有部分BMO系数的非散度型抛物方程的Lorentz估计

Lorentz Estimates for Nondivergence Parabolic Equations with Partially BMO Coefficients

Zhang Junjie,1, Zheng Shenzhou,2, Yu Haiyan,3

收稿日期: 2018-06-28  

基金资助: 河北师范大学科研基金.  L2019B02
河北省自然科学基金.  A2019205218
内蒙古自治区自然科学基金.  2018MS01008
内蒙古自治区高等学校科学研究项目.  NJZY18164

Received: 2018-06-28  

Fund supported: the Science Foundation of Hebei Normal University.  L2019B02
the Natural Science Foundation of Hebei Province.  A2019205218
the Research Program of Science and Technology at Universities of Inner Mongolia Autonomous Region.  2018MS01008
the Science Research Program of Institution of Higher Education at Universities of Inner Mongolia Autonomous Region.  NJZY18164

作者简介 About authors

张俊杰,E-mail:junjiezhang@hebtu.edu.cn , E-mail:junjiezhang@hebtu.edu.cn

郑神州,E-mail:shzhzheng@bjtu.edu.cn , E-mail:shzhzheng@bjtu.edu.cn

于海燕,E-mail:jiechy@163.com , E-mail:jiechy@163.com

摘要

该文利用"大M不等式原理"证明了非散度型线性抛物方程

强解Hessian矩阵的内部Lorentz估计,其中主项系数aijx,t)满足一致抛物条件和部分BMO条件,即aijx,t)关于一个空间变量可测且关于其余变量具有小的BMO半范数.

关键词: 非散度型抛物方程 ; Lorentz空间 ; 部分BMO

Abstract

In this paer, we prove an interior Lorentz estimate for Hessian of the strong solutions to nondivergence linear parabolic equations ut -aij(x, t)Diju(x, t)=f(x, t). Here, the leading coefficients aij(x, t) are assumed to be merely measurable in one spatial variable and have small BMO semi-norms with respect to the remaining variables.

Keywords: Nondivergence parabolic equations ; Lorentz spaces ; Partially BMO

PDF (413KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

. 具有部分BMO系数的非散度型抛物方程的Lorentz估计. 数学物理学报[J], 2019, 39(6): 1405-1420 doi:

Zhang Junjie, Zheng Shenzhou, Yu Haiyan. Lorentz Estimates for Nondivergence Parabolic Equations with Partially BMO Coefficients. Acta Mathematica Scientia[J], 2019, 39(6): 1405-1420 doi:

1 引言

$\Omega$是欧式空间${{\mathbb{R}}^{n}}(n\ge 2)$中的有界区域.对于$T\in(0, \infty)$,记${{\Omega }_{T}}=\Omega \times (0, T)\subset {{\mathbb{R}}^{n}}\times \mathbb{R}={{\mathbb{R}}^{n+1}}$.本文研究非散度型线性抛物方程

$\begin{equation}\label{nondiv prob} u_{t}-a_{ij}(x, t)D_{ij}u(x, t)=f(x, t), \quad (x, t)\in \Omega_{T}, \end{equation} $

其中主项系数$A(x, t)=(a_{ij}(x, t))$$n\times n$阶对称矩阵,满足如下一致抛物型条件

A1  对任意$\xi \in {{\mathbb{R}}^{n}}$和几乎所有$(x, t)\in \Omega_{T}$,存在常数$0<\nu\leq 1\leq L<\infty$使得

$\begin{equation}\label{uniform parabolicity} \nu|\xi|^{2}\leq \langle A(x, t)\xi, \xi\rangle \leq L|\xi|^{2}.\end{equation}$

上式及以下各处都遵照求和约定,对重复脚标$i, j$将从1至$n$求和. $Du=(D_{1}u, \cdots, D_{n}u)$, $D^{2}u=(D_{ij}u)_{i, j=1}^{n}$分别表示$u$的梯度和Hessian矩阵,其中$D_{i}u=\partial u/\partial x^{i}, D_{ij}u=\partial^{2} u/\partial x^{i}\partial x^{j}, $$ u_{t}=\partial u/\partial t$.

自Calderón和Zygmund的经典论文[8]利用奇异积分算子理论研究位势方程强解的$W^{2, p}(1<p<\infty)$估计(称之为Calderón-Zygmund估计)以来,关于具有间断系数的线性偏微分方程解的Calderón-Zygmund估计被许多著名的数学家研究. 1991年, Chiarenza, Frasca和Longo [6]利用Calderón-Zygmund奇异积分算子理论研究了具有VMO系数的非散度型椭圆方程解的局部$W^{2, p}$估计.之后,他们[7]又得到了非散度型椭圆方程强解的整体正则性. Bramanti和Cerutti[3]也将这一结论推广到非散度型抛物方程. 2003年,王立河[16]应用修正的Vitali覆盖引理、极大值函数理论和紧性方法给出了Calderón-Zygmund估计的另外一种证明方法.利用这种方法, Byun-Lee[4-5]分别证明了具有小的BMO系数的非散度型椭圆和抛物方程的强解在有界$C^{1, 1}$区域上具有全局$W^{2, p}$正则性.与此同时, Krylov[12]给出了一种统一的方法研究了具有$VMO_{x}$系数的非散度型和散度型椭圆和抛物方程解的$W^{2, p}$$W^{1, p}$正则性.这种方法的思想是基于强解(弱解)的二阶(一阶)导数的sharp极大函数的逐点估计,从而避免了使用奇异积分算子理论.该方法的另一个优点是它可以处理具有更弱正则性系数的方程,比如Kim-Krylov[9-11]证明了具有部分小BMO系数的非散度型椭圆和抛物方程强解的$L^{p}$正则性.所谓部分小BMO系数是指,系数$a_{ij}$对某一个固定的$x^{1}$变量可测,并对其余变量$x'$$(x', t)$的BMO半范数随着球体(或柱体)的半径趋于零而充分小,也可参见文献[17].

Lorentz空间是一类比Lebesgue空间更精细的空间,因此解的Lorentz正则性包含了其$L^{p}$正则性.近年来, Baroni[2]、Mengesha-Phuc[14]和Zhang-Zhou[18]分别证明了$p$-Laplacian抛物方程组、拟线性椭圆$p$-Laplacian方程和$p(x)$-Laplacian方程的解具有Lorentz正则性.然而,这些研究都是关于散度型方程(组)且要求主项系数关于空间变量$x$满足VMO或者小BMO条件;进一步地, Zhang-Zheng[17]对非散度椭圆方程得到了部分正则系数下的Lorentz正则性.受Kim-Krylov[9-10, 12]的工作和Baroni[2]的工作的启发,该文的目的是研究具有部分小BMO系数的非散度型线性抛物方程的强解的Lorentz估计.为此,先引入有关一些记号.设$r>0,{{x}_{0}}=(x_{0}^{1},x_{0}^{2},\cdots ,x_{0}^{n})=(x_{0}^{1},{{{x}'}_{0}})\in {{\mathbb{R}}^{n}},{{z}_{0}}=({{x}_{0}},{{t}_{0}})=(x_{0}^{1},{{{z}'}_{0}})\in {{\mathbb{R}}^{n+1}}$,定义

其中$\partial_{p} Q_{r}(z_{0})$表示柱体$Q_{r}(z_{0})$的边界.为方便,下文记$B_{r}=B_{r}(x_{0}), B'_{r}=B'_{r}(x'_{0}), Q_{r}=Q_{r}(z_{0})$等等.除了假设A1外,本文的主要假设是主项系数$A(x, t)=(a_{ij}(x, t))$满足以下部分BMO条件

A2  对任意$\delta\in (0, 1]$存在常数$ R_{0}\in (0, 1]$,使得

其中

本文的主要结果如下.

定理1.1  设$(\gamma, q)\in (2, \infty)\times (0, \infty]$, $u\in W^{2, 1}_{2}(\Omega_{T})$是非散度型线性抛物方程(1.1)的强解.若存在正常数$\delta$$R_{0}$使得其主项系数满足条件A1和A2,则当$f\in L^{\gamma, q}(\Omega_{T})$时,有$u_{t}, D^{2}u\in L^{\gamma, q}_{loc}(\Omega_{T})$;进一步地,对任意柱体$Q_{2R}:=Q_{2R}(x_{0}, t_{0})\subset\subset \Omega_{T}$, $R \in (0, R_{0}]$有估计式

$\begin{equation}\begin{array}{rl}\label{main result-Lorentz inequality} &\|u_{t}\|_{L^{\gamma, q}(Q_{R})}+\|D^{2}u\|_{L^{\gamma, q}(Q_{R})}\\ \leq & C|Q_{2R}|^{\frac{1}{\gamma}-\frac{1}{2}}\left(\|u_{t} \|_{L^{2}(Q_{2R})}+\|D^{2}u\|_{L^{2}(Q_{2R})}\right)+ C\|f\|_{L^{\gamma, q}(Q_{2R})}, \end{array}\end{equation}$

这里常数$\delta$$R_{0}$为依赖于$n, \nu, L, \gamma, q$, $C$为依赖于$n, \nu, L, \gamma, q, R_{0}$的常数.特别地,当$q=\infty$时, $C$仅依赖于$n, \nu, L, \gamma, R_{0}$.

下文安排如下:第2节给出一些相关概念和已知结果,如Lorentz空间嵌入性质、Hardy不等式和Hölder不等式等.第3节是主要结果的证明.

2 准备知识

首先给出Lorentz空间和Lorentz-Sobolev空间的定义和性质.

定义2.1  设$(\gamma, q)\in [1, \infty)\times (0, \infty]$, $k$是正整数.当$q<\infty$时, $L^{\gamma, q}(\Omega_{T})$表示由所有满足

的实值可测函数$g$组成的空间;当$q=\infty$时, $L^{\gamma, \infty}(\Omega_{T})$表示由所有满足

的实值可测函数$g$组成的空间.事实上, $L^{\gamma, \infty}(\Omega_{T})$也称为$\mbox{Marcinkiewicz}$空间${\cal M}^{\gamma}(\Omega_{T})$.特别地,当$q=\gamma$时,有

进一步, Lorentz-Sobolev空间$W^{2, 1}L^{\gamma, q}(\Omega_{T})$表示由所有满足$D^{r}_{t}D^{l}_{x}u\in L^{\gamma, q}(\Omega_{T})$, $0\leq 2r+l\leq 2$, $ r\in \{0, 1\}$的实值可测函数$u$组成的空间,其范数为

注2.1   $\|\cdot\|_{L^{\gamma, q}(A)}$只是一种拟范数而不是范数,因为它不满足范数定义的次可加性质.然而,映射$g\mapsto \|g\|_{L^{\gamma, q}(A)}$关于变量$g$是下半连续的,具体证明参见文献[2]的第三部分.

引理2.1  [2]$U$$\mathbb{R} ^{n+1}$中的一个有限可测集合,则下面的结论成立

(ⅰ)若$1\leq\gamma_{1}\leq \gamma_{2}<\infty$$g\in L^{\gamma_{2}, q}(U)$, $q\in (0, \infty]$,则$L^{\gamma_{2}, q}(U)$可连续嵌入到$L^{\gamma_{1}, q}(U)$中,且

(ⅱ)若$0<q_{1}\leq q_{2}\leq \infty$$g\in L^{\gamma, q_{1}}(U)$, $\gamma\in [1, \infty)$,则$L^{\gamma, q_{1}}(U)$可连续嵌入到$L^{\gamma, q_{2}}(U)$中,且

其中$C$为依赖于$\gamma, q_{1}, q_{2}$的常数.特别地,当$q_{2}=\infty$时, $C$仅依赖于$\gamma, q_{1}$.

(ⅲ)若$(\gamma, p, q)\in[1, \infty)\times[1, \infty)\times (0, \infty]$$\gamma>p$,则$L^{\gamma, q}(U)$可连续嵌入到$L^{p}(U)$中.

下面介绍几个证明定理1.1所需要的重要结论.

引理2.2[10]  设$p\in [2, \infty)$, $a_{ij}(x, t)$满足条件A1-A2.若$f\in L^{p}(Q_{2R})$,则方程

$ \begin{equation}\label{interior eq} u_{t}-a_{ij}(x, t)D_{ij}u=f(x, t) \quad (x, t)\in Q_{2R}, \end{equation} $

有一个强解$u\in W^{2, 1}_{p}(Q_{2R})$,且存在正常数$C=C(n, \nu, L, R)$使得

$\begin{equation}\label{interior W(2, 1)-L2-estimate inequality} \|u\|_{W^{2, 1}_{p}(Q_{R})} \leq C\left( \|f\|_{L^{p}(Q_{2R})}+\|u\|_{L^{p}(Q_{2R})}\right).\end{equation}$

引理2.3  设$a_{ij}=a_{ij}(x^{1})$, $v\in W^{2, 1}_{2}(Q_{2R})$是齐次方程

$\begin{equation}\label{interior f=0} v_{t}-a_{ij}D_{ij}v(x, t)=0, \quad (x, t)\in Q_{2R}\end{equation}$

的强解,则$v_{t}, D^{2}v\in L^{\infty}(Q_{R})$,且有

$\begin{equation}\label{interior f=0 inequality} \|v_{t}\|_{L^{\infty}(Q_{R})}+\|D^{2}v\|_{L^{\infty}(Q_{R})}\leq C\|v\|_{L^{2}(Q_{2R})}.\end{equation}$

  记$v_{x'x'}$表示函数$v$对部分变量的导数,即$v_{x^{i}x^{j}}=\partial^{2} v/\partial x^{i}\partial x^{j}, i\in \{2, \cdots, n\}, $$j\in \{2, \cdots, n\}$.下文中$v_{x'}, v_{x^{1}x'}$有类似含义.根据文献[10,引理4.4]可知

$ \begin{equation}\label{Du youjie-1} \sup\limits_{Q_{R}}|v|+\sup\limits_{Q_{R}}|v_{x^{1}}| \leq C \|v\|_{L^{2}(Q_{2R})}. \end{equation}$

由于主项系数$a_{ij}$与变量$x'$$t$无关,容易验证$v_{t}$, $v_{x'}$$v_{x'x'}$也是方程(2.3)的强解.因此,利用(2.5)式得

再利用引理2.2,有

$ \begin{equation}\label{bufen bound} \sup\limits_{Q_{R}}|v_{t}|\leq C \|v\|_{L^{2}(Q_{2R})}, \quad \sup\limits_{Q_{R}}|v_{x^{1}x'}| \leq C \|v\|_{L^{2}(Q_{2R})}, \quad \sup\limits_{Q_{R}}|v_{x'x'}|\leq C \|v\|_{L^{2}(Q_{2R})}.\end{equation} $

注意到

于是由(2.6)式可进一步得

$\begin{equation}\label{x1x1} \|D_{x^{1}x^{1}}v\|_{L^{\infty}(Q_{R})}\leq C\|v\|_{L^{2}(Q_{2R})}.\end{equation} $

现联合(2.6)式和(2.7)式可得(2.4)式.引理得证.

引理2.4[10]  设$u\in W^{2, 1}_{2}(Q_{R})$是算子$L_{0}u(x, t)=u_{t}(x, t)+a_{ij}D_{ij}u(x, t), a_{ij}=a_{ij}(x^{1})$的强解,且在$\partial Q_{R}$上取值为零,则存在一个正常数$C=C(n, \nu, L)$使得

$\begin{equation}\label{L0-estimate-1-inequality} R^{2}\int_{Q_{R}}|Du|^{2}{\rm d}x{\rm d}t+\int_{Q_{R}}|u|^{2}{\rm d}x{\rm d}t\leq CR^{4}\int_{Q_{R}}|L_{0}u|^{2}{\rm d}x{\rm d}t.\end{equation}$

引理2.5[13]  设$p\in[1, n+2)$$u\in W^{2, 1}_{p}(Q_{R})$, $R>0$.$\int_{Q_{R}}u{\rm d}x{\rm d}t=0$, $\int_{Q_{R}}Du{\rm d}x{\rm d}t=0$,则有

$ \begin{equation}\label{parabolic local bdd inequality} R^{-1}\|u\|_{L^{p^{\ast}}(Q_{R})}+\|Du\|_{L^{p^{\ast}}(Q_{R})} \leq C(n, p)\left(\|u_{t}\|_{L^{p}(Q_{R})}+\|D^{2}u\|_{L^{p}(Q_{R})}\right), \end{equation} $

其中$p^{\ast}=\frac{(n+2)p}{n+2-p}$.

引理2.6  [15]$U$$\mathbb{R} ^{n+1}$中的一个有限可测集合且$g\in {\cal M}^{\gamma}(U)$, $\gamma>2$,则$g\in L^{p}(U)$, $p\in [2, \gamma)$,且有

$ \begin{equation}\label{Holder inequaliy in Marcin estimate} \|g\|_{L^{p}(U)}\leq \left(\frac{\gamma}{\gamma-p}\right)^{\frac{1}{p}}|U|^{\frac{1}{p}-\frac{1}{\gamma}}\|g\|_{{\cal M}^{\gamma}(U)}.\end{equation} $

引理2.7[2] (Hardy不等式)  设$f$是一个定义在$[0, +\infty)$上的非负可测函数且满足

$\begin{equation}\label{Hardy-1} \int_{0}^{\infty}f(\lambda){\rm d}\lambda<\infty, \end{equation}$

则对任意$\alpha\geq 1$$r>0$,有

$\begin{equation}\label{Hardy-2} \int^{\infty}_{0}\lambda^{r}\left(\int^{\infty}_{\lambda}f(\mu){\rm d}\mu\right)^{\alpha}\frac{{\rm d}\lambda}{\lambda}\leq \left(\frac{\alpha}{r}\right)^{\alpha}\int^{\infty}_{0}\lambda^{r}\Big(\lambda f(\lambda)\Big)^{\alpha}\frac{{\rm d}\lambda}{\lambda}.\end{equation}$

引理2.8[2]  (Hölder不等式)  设$h$是一个定义在$[0, +\infty)$上的非负非增可测函数, $\alpha_{1}\leq \alpha_{2}\leq \infty$, $r>0$.$\alpha_{2}<\infty$,则对任意$\varepsilon\in (0, 1]$$\lambda\in [0, \infty)$,有

$ \begin{equation}\label{reverse inequaliy-1} \left(\int^{\infty}_{\lambda}[\mu^{r}h(\mu)]^{\alpha_{2}}\frac{{\rm d}\mu}{\mu}\right)^{\frac{1}{\alpha_{2}}}\leq \varepsilon \lambda^{r}h(\lambda)+\frac{C}{\varepsilon^{\frac{\alpha_{2}}{\alpha_{1}}-1}}\left(\int^{\infty}_{\lambda}[\mu^{r}h(\mu)]^{\alpha_{1}}\frac{{\rm d}\mu}{\mu}\right)^{\frac{1}{\alpha_{1}}}, \end{equation}$

其中$C$为依赖于$\alpha_{1}, \alpha_{2}, r$的常数.若$\alpha_{2}=\infty$,则对任意$\lambda\in [0, \infty)$,存在常数$C=C(\alpha_{1}, r)$使得

$\begin{equation}\label{reverse inequaliy-2}\sup\limits_{\mu>\lambda}[\mu^{r}h(\mu)]\leq C\lambda^{r}h(\lambda)+C\left(\int^{\infty}_{\lambda}[\mu^{r}h(\mu)]^{\alpha_{1}}\frac{{\rm d}\mu}{\mu}\right)^{\frac{1}{\alpha_{1}}}.\end{equation}$

3 主要结论的证明

该节主要利用Acerbi和Mingione在文献[1]中提出的"大$M$不等式原理"方法证明主要结果:定理1.1.

  下面将分六个步骤证明定理1.1中的(1.3)式.

第一步  寻找临界点$\bar{r}$.定义变量$\lambda_{0}$如下

$\begin{equation}\label{lambda-0 defi} \lambda_{0}=\left( \mathit{{\rlap{-} \smallint }}_{Q_{2R}}|u_{t}|^{2}{\rm d}x{\rm d}t\right)^{\frac{1}{2}}+\left(\mathit{{\rlap{-} \smallint }}_{Q_{2R}}|D^{2}u|^{2}{\rm d}x{\rm d}t\right)^{\frac{1}{2}} +M^{\frac{1}{2}}\left(\mathit{{\rlap{-} \smallint }}_{Q_{2R}}|f|^{\eta}{\rm d}x{\rm d}t\right)^{\frac{1}{\eta}}, \end{equation}$

其中$\eta=(2+\gamma)/2\in (2, \gamma)$, $M$是仅依赖于$n, \nu, L, \gamma, q$且大于1的待定常数.根据引理2.1的第三条性质可知对任意$\varepsilon>0$都有$f\in L_{loc}^{\gamma-\varepsilon}(\Omega_{T})$,也就是说,当选取$\varepsilon=\gamma-\eta$时, $f\in L^{\eta}_{loc}(\Omega_{T})$,这就保证了上述$\lambda_{0}$的定义是合理的.现取两个数$r, \lambda$满足

$ \begin{equation}\label{r and lambda range} \frac{R}{32}\leq r\leq \frac{R}{2}, \quad \lambda>64^{n}\lambda_{0}:=B\lambda_{0}, \end{equation} $

并定义一个关于变量$r$的连续函数

其中$\bar{z}\in Q_{R}$.$r\leq R/2$可知$Q_{r}(\bar{z})\subset Q_{2R}$,因此通过将积分区域$Q_{r}(\bar{z})$扩大到$Q_{2R}(\bar{z})$

$\begin{eqnarray}\label{CZ smaller than lambda} CZ(Q_{r}(\bar{z})) &\leq& \left(\frac{|Q_{2R}|}{|Q_{r}(\bar{z})|}\right)^{\frac{1}{2}}\left(\mathit{{\rlap{-} \smallint }}_{Q_{2R}}|u_{t}|^{2}{\rm d}x{\rm d}t\right)^{\frac{1}{2}}+ \left(\frac{|Q_{2R}|}{|Q_{r}(\bar{z})|}\right)^{\frac{1}{2}}\left(\mathit{{\rlap{-} \smallint }}_{Q_{2R}}|D^{2}u|^{2}{\rm d}x{\rm d}t\right)^{\frac{1}{2}}\nonumber\\ &+& \left(\frac{|Q_{2R}|}{|Q_{r}(\bar{z})|}\right)^{\frac{1}{\eta}}M^{\frac{1}{2}}\left(\mathit{{\rlap{-} \smallint }}_{Q_{2R}}|f|^{\eta}{\rm d}x{\rm d}t\right)^{\frac{1}{\eta}}\nonumber\\ &\leq& \left(\frac{|Q_{2R}|}{|Q_{r}(\bar{z})|}\right)^{\frac{1}{2}}\lambda_{0}\leq \left(\frac{2R}{r}\right)^{\frac{n+2}{2}}\lambda_{0}\leq \left(\frac{2R}{R/32}\right)^{n}\lambda_{0}=64^{n}\lambda_{0}<\lambda.\end{eqnarray} $

另一方面,考虑$D^{2}u$的Lebesgue点$\bar{z}$,满足$ \bar{z}\in E(\lambda, Q_{R})=\{z\in Q_{R}: |D^{2}u(z)|>\lambda\}. $应用Lebesgue微分中值定理可知对几乎每一个上述Lebesgue点$\bar{z}$都有

也就是说,对远远小于1的正数$r$$CZ(Q_{r}(\bar{z}))>\lambda$成立.由此可知,对于任意给定$\lambda>B\lambda_{0}$和任意点$\bar{z}\in E(\lambda, Q_{R})$,根据积分的绝对连续性,我们可以找到一个最大的数$\bar{r}=r(\bar{z})$使得

$\begin{eqnarray}\label{CZ equi lambda} CZ(Q_{\bar{r}}(\bar{z}))&=&\left(\mathit{{\rlap{-} \smallint }}_{Q_{\bar{r}}(\bar{z})}|u_{t}|^{2}{\rm d}x{\rm d}t\right)^{\frac{1}{2}}+\left(\mathit{{\rlap{-} \smallint }}_{Q_{\bar{r}}(\bar{z})}|D^{2}u|^{2}{\rm d}x{\rm d}t\right)^{\frac{1}{2}} +M^{\frac{1}{2}}\left(\mathit{{\rlap{-} \smallint }}_{Q_{\bar{r}}(\bar{z})}|f|^{\eta}{\rm d}x{\rm d}t\right)^{\frac{1}{\eta}} \\ &=&\lambda\end{eqnarray}$

并且对于$r\in (\bar{r}, R/2]$都有$CZ(Q_{\bar{r}}(\bar{z}))<\lambda$.此外,我们还可以推导出$\bar{r}<R/32$,于是$Q_{32\bar{r}}(\bar{z})\subset Q_{2R}$

$\begin{eqnarray}\label{low and upper bound} \frac{\lambda}{32^{n}}&\leq& \left(\mathit{{\rlap{-} \smallint }}_{Q_{32\bar{r}}(\bar{z})}|u_{t}|^{2}{\rm d}x{\rm d}t\right)^{\frac{1}{2}}+ \left(\mathit{{\rlap{-} \smallint }}_{Q_{32\bar{r}}(\bar{z})}|D^{2}u|^{2}{\rm d}x{\rm d}t\right)^{\frac{1}{2}}+ M^{\frac{1}{2}}\left(\mathit{{\rlap{-} \smallint }}_{Q_{32\bar{r}}(\bar{z})}|f|^{\eta}{\rm d}x{\rm d}t\right)^{\frac{1}{\eta}} \\ &\leq&\lambda.\end{eqnarray}$

事实上,上式右端不等式可以由$\bar{r}$的定义自然得到,而对于上式左端不等式,其证明如下

根据Vitali覆盖定理,存在一族互不相交的柱体$\{Q_{i}\}, (i\in {\Bbb N})$,满足上述构造:$Q_{i}=Q_{\bar{r}_{i}}(\bar{z}_{i}) \subset Q_{2R}, \bar{z}_{i}\in E(\lambda, Q_{R}), $使得

$\begin{equation} E(\lambda, Q_{R}) \subset \left(\bigcup\limits_{i\in {\Bbb N}}E(\lambda, 4Q_{i})\right)\cup {\cal N}_{\lambda}, \end{equation}$

其中$4Q_{i}=Q_{4\bar{r}_{i}}(\bar{z}_{i})$${\cal N}_{\lambda}$是一个非空集合.因此,有

$\begin{equation}\label{full level set} |E(\lambda, Q_{R})|\leq \sum\limits_{i\in {\Bbb N}} |E(\lambda, Q_{4\bar{r}_{i}}(\bar{z}_{i}))|.\end{equation}$

这说明要想估计水平集$E(\lambda, Q_{R})$的Lebesgue测度,只需估计水平集$E(\lambda, Q_{4\bar{r}_{i}}(\bar{z}_{i}))$的Lebesgue测度,具体见下文第四步.

第二步  引进两个函数$w$$v$.$u\in W^{2, 1}_{2}(\Omega_{T})$是方程(1.1)的强解, $Q_{\bar{r}}(\bar{z})$是第一步中定义的柱体,满足$Q_{32\bar{r}}(\bar{z})\subset Q_{2R}$和(3.5)式.首先,考虑关于函数$w\in W^{2, 1}_{2}(Q_{16\bar{r}}(\bar{z}))$的边值问题

$\begin{equation}\label{w problem}\left\{\begin{array}{ll}w_{t}-\bar{a}_{ij}(x^{1})D_{ij}w=[a_{ij}(x, t)-\bar{a}_{ij}(x^{1})]D_{ij}u+f(x, t), &(x, t)\in Q_{16\bar{r}}(\bar{z}), \\w=0, & (x, t)\in\partial_{p} Q_{16\bar{r}}(\bar{z}).\end{array}\right.\end{equation}$

依次利用引理2.2、引理2.4、Hölder不等式和(3.5)式,有

$\begin{eqnarray}\label{interior compare eq.-pf-3} && \mathit{{\rlap{-} \smallint }}_{Q_{8\bar{r}}(\bar{z})}|D^{2}w|^{2}{\rm d}x{\rm d}t\\\ &\leq& C\mathit{{\rlap{-} \smallint }}_{Q_{16\bar{r}}(\bar{z})}|a_{ij}(x, t)-\overline{a}_{ij}(x^{1})|^{2}|D^{2}u|^{2}{\rm d}x{\rm d}t+C\mathit{{\rlap{-} \smallint }}_{Q_{16\bar{r}}(\bar{z})}|f|^{2}{\rm d}x{\rm d}t+C\mathit{{\rlap{-} \smallint }}_{Q_{16\bar{r}}(\bar{z})}|w|^{2}{\rm d}x{\rm d}t\nonumber\\ &\leq& C\mathit{{\rlap{-} \smallint }}_{Q_{16\bar{r}}(\bar{z})}|a_{ij}(x, t)-\overline{a}_{ij}(x^{1})|^{2}|D^{2}u|^{2}{\rm d}x{\rm d}t+C\mathit{{\rlap{-} \smallint }}_{Q_{16\bar{r}}(\bar{z})}|f|^{2}{\rm d}x{\rm d}t\nonumber\\ &\leq& C\left(\mathit{{\rlap{-} \smallint }}_{Q_{16\bar{r}}(\bar{z})}|a_{ij}(x, t)-\overline{a}_{ij}(x^{1})|^{2\pi}{\rm d}x{\rm d}t\right)^{\frac{1}{\pi}}\left(\mathit{{\rlap{-} \smallint }}_{Q_{16\bar{r}}(\bar{z})}|D^{2}u|^{2\kappa}{\rm d}x{\rm d}t\right)^{\frac{1}{\kappa}} \\ && +C\left(\mathit{{\rlap{-} \smallint }}_{Q_{32\bar{r}}(\bar{z})}|f|^{2}{\rm d}x{\rm d}t\right)^{\frac{1}{2}\cdot 2}\nonumber\\ &\leq& C\left(\mathit{{\rlap{-} \smallint }}_{Q_{16\bar{r}}(\bar{z})}|a_{ij}(x, t)-\overline{a}_{ij}(x^{1})|{\rm d}x{\rm d}t\right)^{\frac{1}{\pi}}\left(\mathit{{\rlap{-} \smallint }}_{Q_{16\bar{r}}(\bar{z})}|D^{2}u|^{2\kappa}{\rm d}x{\rm d}t\right)^{\frac{1}{\kappa}} \\ && +C\left(\mathit{{\rlap{-} \smallint }}_{Q_{32\bar{r}}(\bar{z})}|f|^{\eta}{\rm d}x{\rm d}t\right)^{\frac{1}{\eta}\cdot 2}\nonumber\\ &\leq& C\delta^{\frac{1}{\pi}}\left(\mathit{{\rlap{-} \smallint }}_{Q_{16\bar{r}}(\bar{z})}|D^{2}u|^{2\kappa}{\rm d}x{\rm d}t\right)^{\frac{1}{\kappa}}+\frac{C\lambda^{2}}{M}, \end{eqnarray} $

其中$\pi$$\kappa$满足

注意到函数$\hat{u}=u-(\overline{Du})_{Q_{32\bar{r}}(\bar{z})}x-(\bar{u})_{Q_{32\bar{r}}(\bar{z})}\in W^{2, 1}_{2}(Q_{32\bar{r}}(\bar{z}))$也是方程(2.1)的强解,利用引理2.2和(3.5)式,有

$ \begin{eqnarray}\label{interior compare eq.-pf-4} \mathit{{\rlap{-} \smallint }}_{Q_{16\bar{r}}(\bar{z})}|D^{2}u|^{2\kappa}{\rm d}x{\rm d}t &=&\mathit{{\rlap{-} \smallint }}_{Q_{16\bar{r}}(\bar{z})}|D^{2}\hat{u}|^{2\kappa}{\rm d}x{\rm d}t \nonumber\\ &\leq& C\mathit{{\rlap{-} \smallint }}_{Q_{32\bar{r}}(\bar{z})}|f|^{2\kappa}{\rm d}x{\rm d}t+C\mathit{{\rlap{-} \smallint }}_{Q_{32\bar{r}}(\bar{z})}|\hat{u}|^{2\kappa}{\rm d}x{\rm d}t\nonumber\\ &\leq& C\left(\mathit{{\rlap{-} \smallint }}_{Q_{32\bar{r}}(\bar{z})}|f|^{\eta}{\rm d}x{\rm d}t\right)^{\frac{2\kappa}{\eta}}+C|Q_{32\bar{r}}(\bar{z})|^{-1}\|\hat{u}\|^{2\kappa}_{L^{2\kappa}(Q_{32\bar{r}}(\bar{z}))}\nonumber\\ &\leq &\left(\frac{C\lambda^{2}}{M}\right)^{\kappa}+C|Q_{32\bar{r}}(\bar{z})|^{-1}\|\hat{u}\|^{2\kappa}_{L^{2\kappa}(Q_{32\bar{r}}(\bar{z}))}.\end{eqnarray} $

由引理2.5可得

$ \begin{eqnarray}\label{interior compare eq.-pf-5} \|\hat{u}\|^{2\kappa}_{L^{2\kappa}(Q_{32\bar{r}}(\bar{z}))}&\leq& C\|\hat{u}\|^{2\kappa}_{L^{2^{\ast}}(Q_{32\bar{r}}(\bar{z}))}\nonumber\\ &\leq& C\left(\|\hat{u}_{t}\|^{2\kappa}_{L^{2}(Q_{32\bar{r}}(\bar{z}))}+\|D^{2}\hat{u}\|^{2\kappa}_{L^{2}(Q_{32\bar{r}}(\bar{z}))}\right)\nonumber\\ &=& C\left(\|u_{t}\|^{2\kappa}_{L^{2}(Q_{32\bar{r}}(\bar{z}))}+\|D^{2}u\|^{2\kappa}_{L^{2}(Q_{32\bar{r}}(\bar{z}))}\right).\end{eqnarray} $

现联合(3.9)式、(3.10)式和(3.11)式得

$\begin{eqnarray}\label{w estimate}\mathit{{\rlap{-} \smallint }}_{Q_{8\bar{r}}(\bar{z})}|D^{2}w|^{2}{\rm d}x{\rm d}t &\leq& C\delta^{\frac{1}{\pi}}\left[\frac{\lambda^{2}}{M}+\left(\mathit{{\rlap{-} \smallint }}_{Q_{32\bar{r}}(\bar{z})}|u_{t}|^{2}{\rm d}x{\rm d}t+\mathit{{\rlap{-} \smallint }}_{Q_{32\bar{r}}(\bar{z})}|D^{2}u|^{2}{\rm d}x{\rm d}t\right)\right]+\frac{C\lambda^{2}}{M}\nonumber\\ &\leq& C\left(\frac{\delta^{\frac{1}{\pi}}+1}{M}+1\right)\lambda^{2}.\end{eqnarray}$

定义另一个函数$v=\hat{u}-w$.易证函数$v\in W^{2, 1}_{2}(Q_{16\bar{r}}(\bar{z}))$是边值问题

$\begin{equation}\label{limiting problem-1} \left\{\begin{array}{ll} v_{t}-\bar{a}_{ij}(x_{1})D_{ij}v=0, &(x, t)\in Q_{16\bar{r}}(\bar{z}), \\ v=\hat{u}, & (x, t)\in\partial_{p} Q_{16\bar{r}}(\bar{z}) \end{array}\right. \end{equation}$

的强解,再利用引理2.3得

$ \begin{equation}\label{D2v bdd-0} \|D^{2}v\|_{L^{\infty}(Q_{4\bar{r}}(\bar{z}))}\leq C\|v\|_{L^{2}(Q_{8\bar{r}}(\bar{z}))}\leq C\|v-\hat{u}\|_{L^{2}(Q_{8\bar{r}}(\bar{z}))}+C\|\hat{u}\|_{L^{2}(Q_{8\bar{r}}(\bar{z}))}.\end{equation} $

对方程

的强解$v-\hat{u}$应用引理2.4得

对函数$\hat{u}$应用引理2.5有

因此,存在常数$C_{\ast}=C_{\ast}(n, \nu, L, R)$使得(3.14)式可写成

$ \begin{equation}\label{D2v bdd} \|D^{2}v\|_{L^{\infty}(Q_{4\bar{r}}(\bar{z}))}\leq C\left[\left(\mathit{{\rlap{-} \smallint }}_{Q_{32\bar{r}}(\bar{z})}|u_{t}|^{2}{\rm d}x{\rm d}t\right)^{\frac{1}{2}} +\left(\mathit{{\rlap{-} \smallint }}_{Q_{32\bar{r}}(\bar{z})}|D^{2}u|^{2}{\rm d}x{\rm d}t\right)^{\frac{1}{2}} \right]\leq C_\ast \lambda.\end{equation} $

第三步  估计柱体测度$|Q_{\bar{r}}(\bar{z})|$.$Q\equiv Q_{\bar{r}}(\bar{z})$.由(3.5)式可知对任意给定正数$\lambda$,下面三个不等式至少有一个成立

$\begin{equation}\label{step 2 two cases-1}\left(\frac{\lambda}{3}\right)^{2}\leq \mathit{{\rlap{-} \smallint }}_{Q}|u_{t}|^{2}{\rm d}x{\rm d}t, \end{equation}$

$\begin{equation}\label{step 2 two cases-2}\left(\frac{\lambda}{3}\right)^{2}\leq \mathit{{\rlap{-} \smallint }}_{Q}|D^{2}u|^{2}{\rm d}x{\rm d}t, \end{equation}$

$\begin{equation}\label{step 2 two cases-3} \left(\frac{\lambda}{3}\right)^{\eta}\leq M^{\frac{\eta}{2}}\mathit{{\rlap{-} \smallint }}_{Q}|f|^{\eta}{\rm d}x{\rm d}t.\end{equation}$

情形1  假设(3.16)式成立.根据一致抛物条件(1.2)得

$ \begin{equation}\label{ut bdd} |u_{t}|=|f(z)+a_{ij}(z)D_{ij}u|\leq |f(z)|+L|D^{2}u|, \end{equation} $

于是

由此可知,只需要考虑情形2和情形3即可.

情形2  假设(3.17)式成立.利用Hölder不等式得

$\begin{eqnarray}\label{step 2-1} \mathit{{\rlap{-} \smallint }}_{Q}|D^{2}u|^{2}{\rm d}x{\rm d}t &=&\frac{1}{|Q|}\int_{Q\backslash E(\frac{1}{6}\lambda, Q_{2R})}|D^{2}u|^{2}{\rm d}x{\rm d}t+\frac{1}{|Q|}\int_{Q\cap E(\frac{1}{6}\lambda, Q_{2R})}|D^{2}u|^{2}{\rm d}x{\rm d}t\nonumber\\ &\leq& \frac{|Q\backslash E(\frac{1}{6}\lambda, Q_{2R})|}{|Q|} \left(\frac{\lambda}{6}\right)^{2}+\left(\frac{|Q\cap E(\frac{1}{6}\lambda, Q_{2R})|}{|Q|}\right)^{\frac{\vartheta}{2+\vartheta}}\left(\mathit{{\rlap{-} \smallint }}_{Q}|D^{2}u|^{2+\vartheta}{\rm d}x{\rm d}t\right)^{\frac{2}{2+\vartheta}}\nonumber\\ &\leq& \left(\frac{\lambda}{6}\right)^{2}+\left(\frac{|Q\cap E(\frac{1}{6}\lambda, Q_{2R})|}{|Q|}\right)^{\frac{\vartheta}{2+\vartheta}}\left(\mathit{{\rlap{-} \smallint }}_{Q}|D^{2}u|^{2+\vartheta}{\rm d}x{\rm d}t\right)^{\frac{2}{2+\vartheta}}, \end{eqnarray}$

其中$\vartheta$为某一待定正常数.注意到函数$\hat{u}=u(x, t)-x_{i}(\overline{D_{i}u})_{Q_{32\bar{r}}(\bar{z})}-(\bar{u})_{Q_{32\bar{r}}(\bar{z})}$也是方程(2.1)的强解,依次应用引理2.2的第一条性质,引理2.5和(3.5)式,有

$\begin{eqnarray}\label{step 2-2} \left(\mathit{{\rlap{-} \smallint }}_{Q}|D^{2}u|^{2+\vartheta}{\rm d}x{\rm d}t\right)^{\frac{2}{2+\vartheta}} &=& \left(\mathit{{\rlap{-} \smallint }}_{Q}|D^{2}\hat{u}|^{2+\vartheta}{\rm d}x{\rm d}t\right)^{\frac{2}{2+\vartheta}} \nonumber\\ &\leq& C\left(\mathit{{\rlap{-} \smallint }}_{Q_{32\bar{r}}(\bar{z})}|f|^{2+\vartheta}{\rm d}x{\rm d}t\right)^{\frac{2}{2+\vartheta}} +C\left(\mathit{{\rlap{-} \smallint }}_{Q_{32\bar{r}}(\bar{z})}|\hat{u}|^{2+\vartheta}{\rm d}x{\rm d}t\right)^{\frac{2}{2+\vartheta}}\nonumber\\ &\leq& C\left(\mathit{{\rlap{-} \smallint }}_{Q_{32\bar{r}}(\bar{z})}|f|^{\eta}{\rm d}x{\rm d}t\right)^{\frac{2}{\eta}} \\\ && +C\left(\mathit{{\rlap{-} \smallint }}_{Q_{32\bar{r}}(\bar{z})}|\hat{u}_{t}|^{2}{\rm d}x{\rm d}t +\mathit{{\rlap{-} \smallint }}_{Q_{32\bar{r}}(\bar{z})}|D^{2}\hat{u}|^{2}{\rm d}x{\rm d}t\right)\nonumber\\ &=& C\bigg(\left(\mathit{{\rlap{-} \smallint }}_{Q_{32\bar{r}}(\bar{z})}|f|^{\eta}{\rm d}x{\rm d}t\right)^{\frac{2}{\eta}} \\\ && +\mathit{{\rlap{-} \smallint }}_{Q_{32\bar{r}}(\bar{z})}|u_{t}|^{2}{\rm d}x{\rm d}t+\mathit{{\rlap{-} \smallint }}_{Q_{32\bar{r}}(\bar{z})}|D^{2}u|^{2}{\rm d}x{\rm d}t\bigg)\nonumber\\ &\leq& C\lambda^{2}, \end{eqnarray}$

这里根据引理2.5的条件取$0<\vartheta<\min\{\eta-2, 4/n\}$.联合(3.17)式、(3.20)式和(3.21)式,有

两边同时除以$\lambda^{2}$并用$Q_{\bar{r}}(\bar{z})$替换$Q$

$ \begin{equation}\label{ball estimate-1} |Q_{\bar{r}}(\bar{z})|\leq C|Q_{\bar{r}}(\bar{z})\cap E(\frac{1}{6}\lambda, Q_{2R})|.\end{equation} $

情形3  假设(3.18)式成立.由Fubini定理得

若取$\tau=\frac{1}{6M^{1/2}}$,则

两边同时除以$\lambda^{\eta}$并用$Q_{\bar{r}}(\bar{z})$替换$Q$

$ \begin{equation}\label{ball estimate-2} |Q_{\bar{r}}(\bar{z})|\leq \frac{6^\eta M^{\frac{\eta}{2}}\eta}{(2^\eta-1)\lambda^{\eta}}\int^{\infty}_{\tau\lambda}\mu^{\eta}\Big|\Big\{z\in Q_{\bar{r}}(\bar{z}):|f(z)|>\mu\Big\}\Big|\frac{{\rm d}\mu}{\mu}.\end{equation}$

现联合(3.22)式和(3.23)式,得

$\begin{equation}\label{estimate to special balls} |Q_{\bar{r}}(\bar{z})|\leq C|Q_{\bar{r}}(\bar{z})\cap E(\frac{1}{6}\lambda, Q_{2R})|+\frac{6^\eta M^{\frac{\eta}{2}}\eta}{(2^\eta-1)\lambda^{\eta}}\int^{\infty}_{\tau\lambda}\mu^{\eta}\Big|\Big\{z\in Q_{\bar{r}}(\bar{z}):|f(z)|>\mu\Big\}\Big|\frac{{\rm d}\mu}{\mu}.\end{equation}$

第四步  估计水平集测度$|E(\lambda, Q_{R})|$.考虑水平集合$E(A\lambda, Q_{R})$,其中$A\geq 1$是待定常数.易见$E(A\lambda, Q_{R})\subset E(\lambda, Q_{R})$,即,若$\bar{z}\in E(A\lambda, Q_{R})$,则$|D^{2}u(\bar{z})|>A\lambda$$\bar{z}\in E(\lambda, Q_{R})$.$Q_{\bar{r}}(\bar{z})$是第二步中定义的柱体,满足$CZ(Q_{\bar{r}}(\bar{z}))=\lambda$和(3.5)式.设$w, v$是第三步中定义在柱体$Q_{16\bar{r}}(\bar{z})$上的函数,分别满足(3.12式和(3.15)式.其中(3.15)式说明$D^{2}v$$Q_{16\bar{r}}(\bar{z})$上是局部有界的.由此可知,若取

$\begin{equation}\label{step 4 -1} A=A(n, \lambda, \Lambda, R), \quad A:= \max\{2C_{\ast}, N_{1}\}\geq 1, \quad N_{1}\, \mbox{是}\, \mbox{待}\, \mbox{定}\, \mbox{常}\, \mbox{数}, \end{equation}$

$\left\{z\in Q_{4\bar{r}}(\bar{z}): |D^{2}v|>\frac{A\lambda}{2}\right\}=\emptyset$.依次利用$D^2u=D^2\hat{u}$, $u=w+v$、Hardy-Littlewood极大值函数的弱(1, 1)不等式和(3.12)式,有

$\begin{eqnarray}\label{estimate to special level set} &&\Big|\Big\{z\in Q_{4\bar{r}}(\bar{z}): |D^{2}u|>A\lambda\Big\}\Big|\nonumber\\ &\leq& \left|\left\{z\in Q_{4\bar{r}}(\bar{z}): |D^{2}w|>2^{-1}A\lambda\right\}\right| +\left|\left\{z\in Q_{4\bar{r}}(\bar{z}): |D^{2}v|>2^{-1}A\lambda\right\}\right|\nonumber\\ &=& \left|\left\{z\in Q_{4\bar{r}}(\bar{z}): |D^{2}w|^{2}>\left(2^{-1}A\lambda\right)^{2}\right\}\right|\nonumber\\ &\leq& \frac{C}{(A\lambda)^{2}}\int_{Q_{4\bar{r}}(\bar{z})}|D^{2}w|^{2}{\rm d}x{\rm d}t\nonumber\\ &\leq& \frac{C|Q_{8\bar{r}}(\bar{z})|}{(A\lambda)^{2}}\left(\frac{\delta^{\frac{1}{\pi}}+1}{M}+1\right)\lambda^{2}\nonumber\\ &\leq& C\left(\frac{\delta^{\frac{1}{\pi}}+1}{MN_{1}^{2}}+\frac{1}{N_{1}^{2}}\right)|Q_{\bar{r}}(\bar{z})|.\end{eqnarray}$

将第三步中$|Q_{\bar{r}}(\bar{z})|$的估计(3.24)式代入到(3.26)式中得

其中

$\begin{equation}\label{G definition} G(M, N_{1}, \delta)=(\delta^{\frac{1}{\pi}}+1)(M N_{1}^{2})^{-1}+(N_{1}^{2})^{-1}.\end{equation}$

再结合(3.7)式有

$\begin{eqnarray}\label{estimate to general level set}& &\Big|\Big\{z\in Q_{R}: |D^{2}u(z)|>A\lambda\Big\}\Big|\nonumber\\ & \leq& CG(M, N_{1}, \delta)\bigg(\sum\limits_{i\in {\Bbb N}}\Big| Q_{\bar{r}_{i}}(\bar{z}_{i}) \cap E(\frac{1}{6}\lambda, Q_{2R})\Big| \\ &&+\sum\limits_{i\in {\Bbb N}}\frac{\eta}{(\tau\lambda)^{\eta}}\int^{\infty} _{\tau\lambda}\mu^{\eta}\Big|\Big\{z\in Q_{\bar{r}_{i}}(\bar{z}_{i}) :|f(z)|>\mu\Big\}\Big|\frac{{\rm d}\mu}{\mu}\bigg)\nonumber\\ &\leq& CG(M, N_{1}, \delta)\left(\Big| E(\frac{1}{6}\lambda, Q_{2R}) \Big|+\frac{\eta}{(\tau\lambda)^{\eta}}\int^{\infty}_{\tau\lambda} \mu^{\eta}\Big|\Big\{z\in Q_{2R}:|f(z)|>\mu\Big\}\Big|\frac{{\rm d} \mu}{\mu}\right).\end{eqnarray}$

第五步  $q<\infty$情形下证明Lorentz估计式(1.3).由(3.19)式可知只需估计$\|D^{2}u\|_{L^{\gamma, q}(Q_{R})}$.通过简单计算可得

$\begin{eqnarray}\label{Lorentz estimate-case 1-1} \|D^{2}u\|^{q}_{L^{\gamma, q}(Q_{R})}\leq C(B\lambda_{0})^{q}|Q_{2R}|^{\frac{q}{\gamma}}+q\int^{\infty}_{B\lambda_{0}}\left(\lambda^{\gamma}\Big|\Big\{z\in Q_{R}:|D^{2}u(z)|>\lambda\Big\}\Big|\right)^{\frac{q}{\gamma}}\frac{{\rm d}\lambda}{\lambda}.\end{eqnarray}$

将(3.28)式代入上式第二项中得

$\begin{eqnarray}\label{Lorentz estimate J1-J2} &&q\int^{\infty}_{B\lambda_{0}}\left(\lambda^{\gamma}\Big|\Big\{z\in Q_{R}:|D^{2}u(z)|>\lambda\Big\}\Big|\right)^{\frac{q}{\gamma}}\frac{{\rm d}\lambda}{\lambda}\nonumber\\ &=& qA^{q}\int^{\infty}_{AB\lambda_{0}}\left(\lambda^{\gamma}\Big|\Big\{z\in Q_{R}:|D^{2}u(z)|>A\lambda\Big\}\Big|\right)^{\frac{q}{\gamma}}\frac{{\rm d}\lambda}{\lambda}\nonumber\\ &\leq& C[G(M, N_{1}, \delta)]^{\frac{q}{\gamma}}\int^{\infty}_{0} \left(\lambda^{\gamma}\Big|\Big\{z\in Q_{2R}:|D^{2}u(z)| >\frac{1}{6}\lambda\Big\}\Big|\right)^{\frac{q}{\gamma}}\frac{{\rm d}\lambda}{\lambda}\nonumber\\ &&+ C[G(M, N_{1}, \delta)]^{\frac{q}{\gamma}}\int^{\infty}_{0} \lambda^{q(1-\frac{\eta}{\gamma})}\left(\int^{\infty}_{ \tau\lambda}\mu^{\eta}\Big|\Big\{z\in Q_{2R}:|f(z)|>\mu\Big\} \Big|\frac{{\rm d}\mu}{\mu}\right)^{\frac{q}{\gamma}} \frac{{\rm d}\lambda}{\lambda}\nonumber\\ &:=& C[G(M, N_{1}, \delta)]^{\frac{q}{\gamma}}(J_{1}+J_{2}), \end{eqnarray}$

其中$C$仅依赖于$n, \nu, L, \gamma, q, M, R$.

对于$J_{1}$,通过变量替换得

对于$J_{2}$,作变量替换$\tau\lambda\rightarrow \theta$,并将第三步中$\tau$的取值代入得

下面分$q\geq \gamma$$0<q<\gamma$两种情况讨论.当$q\geq \gamma$时,令引理2.7中

$0<q<\gamma$时,令引理2.8中

结合Fubini定理,有

综合两种情况可知,对$0<q<\infty$,总有

现将$J_{1}$$J_{2}$的估计式代入(3.30)式中,并联合(3.29)式可知存在常数$C_{\ast\ast}=C_{\ast\ast}(n, \lambda, \Lambda, \gamma, $$q, M, R)$使得对任意$\gamma>2$$0<q<\infty$

其中$G(M, N_{1}, \delta)$的定义式为(3.27)式.现在先取一个充分小的数$\delta_{0}$,再取充分大的数$M$$N_{1}$使得对任意$\delta\in (0, \delta_{0}]$都有$C_{\ast\ast}[G(M, N_{1}, \delta)]^{\frac{1}{\gamma}}\leq \frac{1}{2}$,则

一方面,当$\|u_{t}\|_{L^{\gamma, q}(Q_{2R})}+\|D^{2}u\|_{L^{\gamma, q}(Q_{2R})}<\infty$时,迭代可知

$\begin{equation}\label{1} \|u_{t}\|_{L^{\gamma, q}(Q_{R})}+\|D^{2}u\|_{L^{\gamma, q}(Q_{R})}\leq CB\lambda_{0}|Q_{2R}|^{\frac{1}{\gamma}}+C\|f\|_{L^{\gamma, q}(Q_{2R})}.\end{equation}$

将第一步中$B$$\lambda_{0}$的定义代入得

利用引理2.6和(2.14)式,有

$\begin{eqnarray}\label{f estiamte} \left(\mathit{{\rlap{-} \smallint }}_{Q_{2R}}|f|^{\eta}{\rm d}x{\rm d}t\right)^{\frac{1}{\eta}} &\leq &\left[\frac{1}{|Q_{2R}|}\left(\frac{\gamma}{\gamma-\eta}|Q_{2R}|^{\frac{\gamma-\eta}{\gamma}}\|f\|^{\eta}_{{\cal M}^{\gamma}(Q_{2R})}\right)\right]^{\frac{1}{\eta}}\nonumber\\ &\leq& \frac{C(\eta, \gamma, q)}{(\gamma-\eta)^{1/\eta}}|Q_{2R}|^{-\frac{1}{\gamma}}\|f\|_{L^{\gamma, q}(Q_{2R})}, \end{eqnarray}$

因此, (3.31)式可写为

$ \begin{eqnarray}\label{under bdd condi finial estimate} &&\|u_{t}\|_{L^{\gamma, q}(Q_{R})}+\|D^{2}u\|_{L^{\gamma, q}(Q_{R})}\\\ &\leq & C|Q_{2R}|^{\frac{1}{\gamma}-\frac{1}{2}}\left(\|u_{t}\|_{L^{2}(Q_{2R})}+\|D^{2}u\|_{L^{2}(Q_{2R})}\right)+ C\|f\|_{L^{\gamma, q}(Q_{2R})}.\end{eqnarray} $

另一方面,当$\|u_{t}\|_{L^{\gamma, q}(Q_{2R})}+\|D^{2}u\|_{L^{\gamma, q}(Q_{2R})}=\infty$时,对任意$z\in \Omega_{T}$$k\in {\Bbb N}\cap [B\lambda_{0}, \infty)$,定义两个截断函数

显然,有$\||u_{t}|_{k}\|_{L^{\gamma, q}(Q_{2R})}+\||D^{2}u|_{k}\|_{L^{\gamma, q}(Q_{2R})}<\infty$成立.同时定义水平集合

下面证明对$k\in {\Bbb N}\cap [B\lambda_{0}, \infty)$

$\begin{eqnarray}\label{estimate to general level set k} &&|E_{k}(A\lambda, Q_{R})|\\ &\leq &CG(M, N_{1}, \delta)\left(| E_{k}(\frac{1}{6}\lambda, Q_{2R})|+\frac{\eta}{(\tau\lambda)^{\eta}}\int^{\infty}_{\tau\lambda}\mu^{\eta}\Big|\Big\{z\in Q_{2R}:|f(z)|>\mu\Big\}\Big|\frac{{\rm d}\mu}{\mu}\right).\end{eqnarray}$

事实上,若$k\leq A\lambda$,则由$E_{k}(A\lambda, Q_{R})=\varnothing$很容易证明(3.34)式成立.若$k> A\lambda$,则利用(3.28)式和

能推出(3.34)式.因此,通过类似第一步到第五步的证明知道用$|u_{t}|_{k}$$|D^{2}u|_{k}$分别替换$u_{t}$$D^{2}u$后的(3.33)式仍然成立.现在取极限$k\rightarrow \infty$并应用Lorentz拟范数的下半连续性得

即为所证.

第六步  $q=\infty$情形下证明Lorentz估计式(1.3).设$\sigma$是待定正常数.则由

和(3.17)式可知

$\begin{equation}\label{case q infty-1} \left(\frac{\lambda}{3}\right)^{\eta}M^{-\frac{\eta}{2}}\leq \mathit{{\rlap{-} \smallint }}_{Q}|f|^{\eta}{\rm d}x{\rm d}t\leq (\sigma \lambda)^{\eta}+\frac{1}{|Q|}\int_{\{z\in Q:|f(z)|>\sigma\lambda\}}|f|^{\eta}{\rm d}x{\rm d}t.\end{equation} $

$F(\sigma\lambda, Q)=\{z\in Q:|f(z)|>\sigma\lambda\}$,利用引理2.6得

$\begin{eqnarray}\label{case q infty-2} \int_{F(\sigma\lambda, Q)}|f|^{\eta}{\rm d}x{\rm d}t &\leq& \frac{\gamma}{\gamma-\eta}|F(\sigma\lambda, Q)|^{\frac{\gamma-\eta}{\gamma}}\|f\|^{\eta}_{{\cal M}^{\gamma}(F(\sigma\lambda, Q))}\nonumber\\ &=& \frac{\gamma}{\gamma-\eta}|F(\sigma\lambda, Q)|^{\frac{\gamma-\eta}{\gamma}}\sup\limits_{\mu>0}\mu^{\eta}\Big|\Big\{z\in F(\sigma\lambda, Q):|f(z)|>\mu\Big\}\Big|^{\frac{\eta}{\gamma}}\nonumber\\ &\leq& \frac{\gamma}{\gamma-\eta}|F(\sigma\lambda, Q)| ^{\frac{\gamma-\eta}{\gamma}}\sup\limits_{\mu\leq\sigma\lambda}\mu^{\eta}\Big|\Big\{z\in F(\sigma\lambda, Q):|f(z)|>\mu\Big\}\Big|^{\frac{\eta}{\gamma}}\nonumber\\ &&+ \frac{\gamma}{\gamma-\eta}|F(\sigma\lambda, Q)|^{\frac{\gamma-\eta}{\gamma}}\sup\limits_{\mu>\sigma\lambda}\mu^{\eta}\Big|\Big\{z\in F(\sigma\lambda, Q):|f(z)|>\mu\Big\}\Big|^{\frac{\eta}{\gamma}}\nonumber\\ &\leq& \frac{\gamma}{\gamma-\eta}(\sigma\lambda)^{\eta}|F(\sigma\lambda, Q)|+ \frac{\gamma}{\gamma-\eta}|F(\sigma\lambda, Q)|^{\frac{\gamma-\eta}{\gamma}} \sup\limits_{\mu>\sigma\lambda}\mu^{\eta}| F(\mu, Q)|^{\frac{\eta}{\gamma}}.\end{eqnarray}$

联合(3.35)式和(3.36)式,有

取适当的$\sigma=\frac{C(n, \gamma)}{M^{1/2}}$使得

因此,不同于估计式(3.24),在$q=\infty$的情形下有

$\begin{equation}\label{new estimate to special balls} |Q_{\bar{r}}(\bar{z})|\leq C|Q_{\bar{r}}(\bar{z})\cap E(\frac{1}{6}\lambda, Q_{2R})|+\frac{10\gamma}{\gamma-\eta}(\sigma \lambda)^{-\gamma}\sup\limits_{\mu>\sigma \lambda}\mu^{\gamma}\Big| \Big\{z\in Q_{\bar{r}}(\bar{z}):|f(z)|>\mu \Big\}\Big|.\end{equation}$

现在用证明(3.28)式的方法可推导出

其中$G(M, N_{1}, \delta)$定义为(3.27)式.先将上式两端同时乘$(A\lambda)^{\gamma}$,再对$\lambda\in (B\lambda_{0}, \infty)$取上确界得

利用算子${\cal M}$$\lambda_{0}$的定义可知

这里取$\delta$充分小, $M$$N_{1}$充分大,使得$C_{\ast\ast\ast}[G(M, N_{1}, \delta)]^{\frac{1}{\gamma}}\leq 2^{-1}$.又因为由引理2.6可得

所以

利用第五步中截断函数方法,可以证明$q=\infty$情形下(1.3)式也成立.定理1.1得证.

参考文献

Acerbi E Mingione G

Gradient estimates for a class of parabolic systems

Duke Math J 2007, 136 (2): 285- 320

DOI:10.1215/S0012-7094-07-13623-8      [本文引用: 1]

Baroni P

Lorentz estimates for degenerate and singular evolutionary systems

J Diff Equ 2013, 255: 2927- 2951

DOI:10.1016/j.jde.2013.07.024      [本文引用: 6]

Bramanti M Cerutti M C

Wp1, 2-solvability for the Cauchy-Dirichlet problem for parabolic equations with VMO coefficients

Comm Part Diff Equ 1993, 18 (9/10): 1735- 1763

[本文引用: 1]

Byun S S Lee M

On weighted Wp1, 2-estimates for elliptic equations with BMO coefficients in nondivergence form

International J Math 2015, 26 (1): 1550001

DOI:10.1142/S0129167X15500019      [本文引用: 1]

Byun S S Lee K A Oh J Park J

Nondivergence elliptic and parabolic problems with irregular obstacles

Math Z 2018, 290 (3/4): 973- 990

URL     [本文引用: 1]

Chiarenza F Frasca M Longo P

Interior W2, p-estimates for nondivergence elliptic equations with discontinuous coeffcients

Ricerche Mat 1991, 40: 149- 168

[本文引用: 1]

Chiarenza F Frasca M Longo P

W2, p-solvability of the Dirichlet problem for nonlinear elliptic equations with VMO coeffcients

Trans Amer Math Soc 1993, 336 (2): 841- 853

[本文引用: 1]

Calderon A P Zygmund A

On the existence of certain singular integrals

Acta Mathematica 1952, 88 (1): 85- 139

URL     [本文引用: 1]

Kim D Krylov N V

Elliptic differenrial equations with coefficients measurable with respact to one variable and VMO with respect to the others

SIAM J Math Anal 2007, 32 (9): 489- 506

[本文引用: 2]

Kim D Krylov N V

Parabolic equations with measurable coefficients

Potential Anal 2007, 26 (4): 345- 361

DOI:10.1007/s11118-007-9042-8      [本文引用: 4]

Kim D

Parabolic equations with measurable coefficients Ⅱ

J Math Anal Appl 2007, 334: 534- 548

DOI:10.1016/j.jmaa.2006.12.077      [本文引用: 1]

Krylov N V

Parabolic and elliptic equations with VMO coeffficients

Comm Part Diff Equ 2007, 32: 453- 475

DOI:10.1080/03605300600781626      [本文引用: 2]

Lieberman G M

A mostly elementary proof of Morrey space estimates for elliptic and parabolic equations with VMO coefficients

J Funct Anal 2003, 201: 457- 479

DOI:10.1016/S0022-1236(03)00125-3      [本文引用: 1]

Mengesha T Phuc N C

Global estimates for quasilinear elliptic equations on Reifenberg flat domains

Arch Rational Mech Anal 2012, 203: 189- 216

DOI:10.1007/s00205-011-0446-7      [本文引用: 1]

Mingione G

The Calderón-Zygmund theory for elliptic problems with measure data

Ann Sc Norm Super Pisa Cl Sci 2007, 6 (5): 195- 261

[本文引用: 1]

Wang L H

A geometric approach to the Calderón-Zygmmund estimates

Acta Math Sin 2003, 19: 381- 396

DOI:10.1007/s10114-003-0264-4      [本文引用: 1]

Zhang J J Zheng S Z

Weighted Lorentz estimates for nondivergence linear elliptic equations with partially BMO coefficients

Commun Pure Appl Anal 2017, 16 (3): 899- 914

DOI:10.3934/cpaa.2017043      [本文引用: 2]

Zhang C Zhou S L

Global weighted estimates for quasilinear elliptic equations with non-standard growth

J Funct Anal 2014, 267: 605- 642

DOI:10.1016/j.jfa.2014.03.022      [本文引用: 1]

/