Processing math: 11%

数学物理学报, 2019, 39(6): 1376-1380 doi:

论文

半线性退化椭圆方程解的奇异性与退化性

李冬艳1, 董艳,2

Singularity and Decay of Solutions for a Degenerate Semilinear Elliptic Equation

Li Dongyan1, Dong Yan,2

通讯作者: 董艳, E-mail: w408867388w@126.com

收稿日期: 2018-12-12  

基金资助: 国家自然科学基金.  11701162
陕西省自然科学基金.  2016JQ1029
陕西省教育厅自然科学基金.  16JK1320

Received: 2018-12-12  

Fund supported: the NSFC.  11701162
the Natural Science Foundation of Shaanxi Province.  2016JQ1029
the Natural Science Foundation of Education Department of Shaanxi Province.  16JK1320

摘要

该文基于Re-scaling变换,建立了半线性退化椭圆方程解的奇异性和退化性.作为应用,在有界区域上,建立带有边值问题退化椭圆方程正解的先验估计.

关键词: 先验估计 ; Re-scaling变换 ; 奇异性与退化性

Abstract

In this paper, we establish a singularity and decay of solutions for a degenerate semilinear elliptic equation based on re-scaling arguments combined with a doubling property. As an application, we derive a priori bounds of solutions of a boundary value problem.

Keywords: a Priori bounds ; Re-scaling ; Singularity and decay

PDF (259KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

李冬艳, 董艳. 半线性退化椭圆方程解的奇异性与退化性. 数学物理学报[J], 2019, 39(6): 1376-1380 doi:

Li Dongyan, Dong Yan. Singularity and Decay of Solutions for a Degenerate Semilinear Elliptic Equation. Acta Mathematica Scientia[J], 2019, 39(6): 1376-1380 doi:

1 引言

本文研究半线性退化椭圆方程

div(|x|θu)=|x|lf(u),xΩ
(1.1)

正解的性质,其中θ,lR, ΩRN(N2)中适当光滑的区域.设函数f:[0,)R是连续的.

pc(τ):=N+2+2τN2>1,τ:=lθ>2,
(1.2)

N=N+θ,除非特殊说明,所考虑解均属于C2(Ω{0})C(Ω)空间.

Ω=RN, θ=l=0, f(u)=up时,方程(1.1)已被很多数学家研究. Gidas等[1]证明了方程(1.1)的Liouvile定理,即方程(1.1)不存在正解当且仅当

p<pc:=N+2N2(=N2).

θ,l0, f(u)=up时,方程(1.1)近三十年来得到了很多关注.此方程作为描述与各相异性介质平衡相关的几个物理现象而引入的.关于方程(1.1)的更多研究结果,可参见文献[3-5, 7]. Guo等[6]证明了Ω=RN时方程非负解的不存在性.他们的结论如下.

定理1.1  设(1.2)式成立, uC2(RN{0})C0(RN)是方程(1.1)的非负解,则当1<p<pc(τ)时,在RN中, u0.

基于此,本文进一步研究方程(1.1),研究方程解的奇异性与退化性,结论如下.

定理1.2  设N3, (1.2)式成立.若

lim
(1.3)

其中1 < p < p_c.则存在一常数C=C(N, p, \tau)>0 (与\Omegau无关),使得有如下结论成立

(ⅰ)在\Omega=\{x\in \mathbb{R} ^N: 0 < |x| < \rho\} (\rho>0)中,方程(1.1)的任一正解都满足

\begin{equation}\label{4}u(x)\leq C|x|^{-\frac{2+\tau}{p-1}}\, \, \mbox{, }\, \, |\nabla u(x)|\leq C|x|^{-\frac{p+1+\tau}{p-1}}, \, 0<|x|<\frac{\rho}{2}.\end{equation}
(1.4)

(ⅱ)在\Omega=\{x\in \mathbb{R} ^N: |x|>\rho\} (\rho\geq0)中,方程(1.1)的任一正解都满足

\begin{equation}\label{5}u(x)\leq C|x|^{-\frac{2+\tau}{p-1}}\, \, \mbox{, }\, \, |\nabla u(x)|\leq C|x|^{-\frac{p+1+\tau}{p-1}}, \, \, \, \, |x|>2\rho.\end{equation}
(1.5)

定理1.2的证明基于Re-scaling变换及Double性质,且需要全空间或半空间中非平凡解的不存在性结果.同理,在f(u)=u^p这种特殊情形下,定理1.2的结果涵盖了文献[6]中的结果,且进一步给出了在外区域上解的退化性估计.即

定理1.3  设N\geq 3, 1 < p < p_c且(1.2)式成立.则存在一常数C=C(N, p, \tau)>0 (与\Omegau无关)使得有如下结论成立

(ⅰ)在\Omega=\{x\in \mathbb{R} ^N: 0 < |x| < \rho\} (\rho>0)中,方程(1.1)的任一正解都满足

\begin{equation}\label{44}u(x)\leq C|x|^{-\frac{2+\tau}{p-1}}\, \, \mbox{, }\, \, |\nabla u(x)|\leq C|x|^{-\frac{p+1+\tau}{p-1}}, \, 0<|x|<\frac{\rho}{2}.\end{equation}
(1.6)

(ⅱ)在\Omega=\{x\in \mathbb{R} ^N: |x|>\rho\} (\rho\geq0)中,方程(1.1)的任一正解都满足

\begin{equation}\label{55}u(x)\leq C|x|^{-\frac{2+\tau}{p-1}}\, \, \mbox{, }\, \, |\nabla u(x)|\leq C|x|^{-\frac{p+1+\tau}{p-1}}, \, \, \, \, |x|>2\rho.\end{equation}
(1.7)

作为定理1.2的应用,考虑如下边值问题

\begin{equation}\label{6}\left\{\begin{array}{ll} -\mbox{div}(|x|^{\theta}\nabla u)=|x|^{l}f(u), & x\in \Omega, \\ u=\varphi, \, &x\in\partial \Omega. \end{array} \right.\end{equation}
(1.8)

这里

\begin{equation}\Omega\subset \mathbb{R} ^N \, \mbox{是包含原点的有界光滑区域}\label{7}\end{equation}
(1.9)

\varphi\in C(\partial \Omega)是非负函数.为此,采用Gidas在文献[2]中的blow-up方法,有

定理1.4  设N\geq2, 1 < p < {\rm min}\{p_c, p_c(\tau)\},且(1.2)式成立.假设0\leq\varphi\in C(\partial\Omega), \|\varphi\|_\infty\leq M(M>0),且(1.3)式成立.则方程(1.8)在C^2(\Omega\backslash\{0\})\cap C(\Omega)空间中一致有界.

2 奇异性与退化性

本节内容给出定理1.2的证明.

  对任一\Omega=\{x\in \mathbb{R} ^N: 0 < |x| < \rho\}, 0 < |x_0| < \rho/2,或\Omega=\{x\in \mathbb{R} ^N: |x|>\rho\}, |x_0|>2\rho.R=\frac{1}{2}|x_0|,注意到\frac{|x_0|}{2} < |x_0+Ry| < \frac{3|x_0|}{2}, y\in B_1(0),则x_0+Ry\in\Omega.定义

U(y)=R^{\frac{2+\tau}{p-1}}u(x_0+Ry).

U满足方程

\begin{equation}\nonumber -\mbox{div}(|y+\frac{x_0}{R}|^{\theta}\nabla U)=|y+\frac{x_0}{R}|^{l}R^\frac{(2+\tau)p}{p-1}f(R^{-\frac{2+\tau}{p-1}}U), \, \, y\in B_1, \end{equation}
(2.1)

并且对所有的y\in \bar{B}_1, |y+\frac{x_0}{R}|\in [1, 3].

首先证明存在一常数C>0 (与N, p\tau无关)使得

\begin{equation}\nonumber|U(y)|^{\frac{p-1}{2}}+|\nabla U(y)|^{\frac{p-1}{p+1}}\leq C(1+{\rm dist}^{-1}(y, \partial B_1)).\end{equation}
(2.2)

反证法.假设存在点列z_k\in B_1,序列x_k\in \OmegaU_k满足方程

\begin{equation}\nonumber-\mbox{div}(|y+\frac{x_k}{R_k}|^{\theta}\nabla U_k)=|y+\frac{x_k}{R_k}|^{l}R_k^\frac{(2+\tau)p}{p-1}f(R_k^{-\frac{2+\tau}{p-1}}U_k), \end{equation}
(2.3)

其中R_k=\frac{|x_k|}{2}使得函数M_k=|U_k|^{\frac{p-1}{2}}+|\nabla U_k|^{\frac{p-1}{p+1}}满足

M_k(z_k)>2k(1+{\rm dist}^{-1}(z_k, \partial B_1))>2k{\rm dist}^{-1}(z_k, \partial B_1).

由Doubling引理[8],存在y_k使得

M_k(y_k)\geq M_k(z_k), \, M_k(y_k)>2k{\rm dist}^{-1}(y_k, \partial B_1))

且对所有满足\, |y-y_k|\leq kM^{-1}(y_k)y,有

\begin{equation}\label{9}M_k(y)\leq2M_k(y_k).\end{equation}
(2.4)

因为M_k(y_k)\geq M_k(z_k)>2k,

\begin{equation}\label{10}\lambda_k:=M^{-1}_k(y_k)\rightarrow 0, \, \, k\rightarrow\infty.\end{equation}
(2.5)

V_k(z)=\lambda_k^\frac{2}{p-1} U_k(y_k+\lambda_k z), 显然, |V_k(0)|^{\frac{p-1}{2}}+|\nabla V_k(0)|^{\frac{p-1}{p+1}}=1,且由(2.4)式知

\begin{equation}\label{11}\left[|V_k|^{\frac{p-1}{2}}+|\nabla V_k|^{\frac{p-1}{p+1}}\right](z)\leq 2, \, \, |z|\leq k.\end{equation}
(2.6)

直接计算可知, V_k满足方程

\begin{equation}\label{12} -\mbox{div}(|y_k+\lambda_k z+\frac{x_k}{R_k}|^{\theta}\nabla V_k(z))=|y_k+\lambda_k z+\frac{x_k}{R_k}|^{l}f_k(V_k(z)), \, |z|\leq k, \end{equation}
(2.7)

其中, f_k(z)=R_k^\frac{(2+\tau)p}{p-1}\lambda_k^\frac{2p}{p-1}f(R_k^{-\frac{2+\tau}{p-1}}\lambda_k^{-\frac{2}{p-1}}V_k(z)).由条件(1.3)及函数f的连续性可知, -C\leq f(s)\leq C(1+s^p), s\geq 0.从而

\begin{equation}\label{13}-CR_k^\frac{(2+\tau)p}{p-1}\lambda_k^\frac{2p}{p-1}\leq f_k(z)\leq C', \, |z|\leq k.\end{equation}
(2.8)

注意到对所有的k, |y_k+\lambda_k z+\frac{x_k}{R_k}|\in [1, 3].我们抽取一组子序列,由标准嵌入定理,内部Schauder估计及条件(1.3),可以设y_k\rightarrow y_0\in \overline{B}_1, \frac{x_k}{R_k}\rightarrow \tilde{x}\in \partial B_2和在C^2_{loc}(\mathbb{R} ^N)空间中, V_k\rightarrow V(V>0).再次由条件(1.3)可得,对任一z\in \mathbb{R} ^N,当k\rightarrow \infty时, f_k(z)\rightarrow hV^p(z).因此, V是方程

\begin{equation}\nonumber -\Delta V=CV^p, \, \, z\in \mathbb{R} ^N\end{equation}
(2.9)

的经典解,其中0 < C=h|y_0+\tilde{x}|^{\tau} < \infty,且|V(0)|^{\frac{p-1}{2}}+|\nabla V(0)|^{\frac{p-1}{p+1}}=1.这与文献[1,定理1.1]的结论矛盾.故|U(0)|+|\nabla U(0)|\leq C.因此

\begin{equation}\nonumber u(x_0)\leq C|x_0|^{-\frac{2+\tau}{p-1}}\, \, \mbox{且}\, \, |\nabla u(x_0)|\leq C|x_0|^{-\frac{p+1+\tau}{p-1}}.\end{equation}
(2.10)

证毕.

3 先验估计

本节内容证明定理1.3.设d={\rm {\rm dist}}(0, \partial\Omega)>0.假设定理1.3结论不成立.则由定理1.2的估计式(1.4)可知,方程(1.8)的所有远离\{0\}\cup\partial\Omega的解都一致有界.从而,只需讨论以下两种可能情形.

情形1  存在一序列解u_k和一组点列P_k\rightarrow 0\in\Omega使得

N_k=\sup\limits_{|x|<\frac{d}{2}}u(x)=u_k(P_k)\rightarrow\infty \mbox{, }\, \, \, \, k\rightarrow\infty.

v_k(y)=\lambda_k^{\frac{2+\tau}{p-1}}u_k(P_k+\lambda_ky), \, \, \lambda_k=N_k^{-\frac{p-1}{2+\tau}},

v_k满足方程

\begin{equation}\label{15} -\mbox{div}(|y+\frac{P_k}{\lambda_k}|^{\theta}\nabla v_k)=|y+\frac{P_k}{\lambda_k}|^{l}\underbrace{\lambda_k^{\frac{(2+\tau)p}{p-1}}f( \lambda_k^{-\frac{2+\tau}{p-1}}v_k(y))}_{f_k(y)}, \, \, y\in B_{\frac{d}{2\lambda_k}}(0) \end{equation}
(3.1)

v_k(0)=1.由定理1.2中的估计式(1.4)可得,序列\lambda_k^{-1}|P_k|=|P_k|u_k^{\frac{p-1}{2+\tau}}(P_k)有界.故可设当k\rightarrow\infty时, \lambda_k^{-1}P_k\rightarrow \bar{x}.

由条件(1.3)知, \|f_k\|_{L^\infty}(B_{\frac{d}{2\lambda_k}})关于k有界.由椭圆估计,标准嵌入定理及条件(1.3),对方程(3.1),我们推得, v_{k}\in C_{loc}(\mathbb{R} ^N)收敛于v\in \mathbb{R} ^N.再次利用条件(1.3)可得,对任一y\in \mathbb{R} ^N,当k\rightarrow \infty时, f_k(v_k(y))\rightarrow hv^p(y).v满足方程

\begin{equation}\nonumber-\mbox{div}(|y+\bar{x}|^{\theta}\nabla v)=c|y+\bar{x}|^{l}v^p, \, \, y\in \mathbb{R} ^N \end{equation}
(3.2)

v(0)=1.经坐标转换后,所得结果与文献[6,定理1.1]矛盾.

情形2  存在一序列解u_k和点列P_k\rightarrow P\in \partial \Omega使得

\begin{equation}\nonumber N_k=\sup\limits_{x\in\Omega:{\rm dist}(x, \partial\Omega)<\frac{d}{2}}u_k(x)=u_k(P_k)\rightarrow\infty, \, \, \, \, k\rightarrow\infty.\end{equation}
(3.3)

不失一般性,我们可设在点P\in\partial\Omega附近的边界\partial\Omega包含在超平面x_N=0中.对方程解作如下变换

\begin{equation}\nonumber v_k(z)=\lambda_k^{\frac{2}{p-1}} u(P_k+\lambda_k z), \, \, \, \lambda_k=N^{-\frac{p-1}{2}}_k.\end{equation}
(3.4)

d_k={\rm dist}(P_k, \partial\Omega).注意到k充分大时, v_k(z)B_{\frac{\delta}{2\lambda_k}}\cap\{z_n>-\frac{d_k}{\lambda_k}\}(\delta为常数)上有定义,且满足

\begin{equation}\nonumber -\mbox{div}(|P_k+\lambda_k z|^{\theta}\nabla v_k)=|P_k +\lambda_kz|^{l}\underbrace{\lambda_k^{\frac{2p}{p-1}}f( \lambda_k^{-\frac{2}{p-1}}v_k(y))}_{f_k(y)}, \end{equation}
(3.5)

v_k(0)=1.因为

\begin{equation}\nonumber|v_k(0)-v_k(0', -\frac{d_k}{\lambda_k})|\leq C\frac{d_k}{\lambda_k}, \end{equation}
(3.6)

1-\lambda_k^{\frac{2}{p-1}}\mbox{sup}\varphi(x)\leq C\frac{d_k}{\lambda_k}.

注意到\varphi(x)有界,当k\rightarrow \infty时, \lambda_k\rightarrow 0,故可推得\frac{d_k}{\lambda_k}一致下有界.并且可推得\frac{d_k}{\lambda_k}要么无上界,要么有一子序列,当k\rightarrow \infty时, \frac{d_k}{\lambda_k}\rightarrow s (s>0).对于\frac{d_k}{\lambda_k}无上界的情形,我们可由情形1的讨论直接得出结论.对于有一子序列,当k\rightarrow \infty时, \frac{d_k}{\lambda_k}\rightarrow s (s>0)的情形,同情形1,抽取一收敛子列v_k\rightarrow v, v是方程

\begin{equation}\nonumber\left\{\begin{array}{ll}-\Delta v=h|P|^\tau v^p, &x\in H^N_s, \\v(y)=0, \, &x\in \partial H^N_s, \\v(0)=1\end{array} \right. \end{equation}
(3.7)

的解,其中H^N_s=\{y\in \mathbb{R} ^N: y_N>-s\}.由于1 < p < {\rm min}\{p_c, p_c(\tau)\},故此结论与文献[2,定理1.3]的结论矛盾.

参考文献

Gidas B , Spruck J .

Global and local behavior of positive solutions of nonlinear elliptic equations

Comm Pure Appl Math, 1981, 34 (4): 525- 598

DOI:10.1002/cpa.3160340406      [本文引用: 2]

Gidas B , Spruck J .

A priori bounds for positive solutions of nonlinear elliptic equations

Comm Partial Differential Equations, 1981, 6 (8): 883- 901

DOI:10.1080/03605308108820196      [本文引用: 2]

Du Y H , Guo Z M .

Finite Morse index solutions of weighted elliptic equations and the critical exponents

Calc Var Partial Dif, 2015, 54: 3161- 3181

DOI:10.1007/s00526-015-0897-z      [本文引用: 1]

Guo Z M , Guan X H , Wan F S .

Sobolev type embedding and weak solutions with a prescribed singular set

Sci China Math, 2016, 50: 1975- 1994

URL    

Guo Z M , Mei L F , Wan F S , et al.

Embedding of weighted Sobolev spaces and degenerate elliptic problems

Sci China Math, 2017, 60: 1399- 1418

DOI:10.1007/s11425-016-0403-6      [本文引用: 1]

Guo Z M , Wan F S .

Further study of a weighted elliptic equation

Sci China Math, 2017, 60 (12): 2391- 2406

DOI:10.1007/s11425-017-9134-7      [本文引用: 3]

Guo Z M , Zhou F .

Sub-harmonicity, monotonicity formula and finite Morse index solutions of an elliptic with negative exponent

Sci China Math, 2015, 58: 2301- 2316

DOI:10.1007/s11425-015-4988-2      [本文引用: 1]

Poláčik P , Quittner P , Souplet P .

Singularity and decay estimates in superlinear problems via Liouville-type theorems, Ⅰ:Elliptic equations and systems

Duke Math J, 2007, 139 (3): 555- 579

DOI:10.1215/S0012-7094-07-13935-8      [本文引用: 1]

/