多项式型迭代方程的多项式解
Polynomial Solutions of the Polynomial-Like Iterative Equation
通讯作者:
收稿日期: 2018-09-20
基金资助: |
|
Received: 2018-09-20
Fund supported: |
|
关于多项式型迭代方程的绝大多数结果都是在已知函数为单调函数情形下给出的.该文研究了多项式型迭代方程在已知函数为特殊的非单调函数-多项式函数情形下的多项式解.首先,在一维情形下,利用计算机代数系统SINGULAR分解代数簇的方法分别给出了二次和三次多项式型迭代方程有二次多项式解的充分必要条件,以及解的具体形式,并进一步给出计算多项式解的算法.最后利用一维情形的思想研究了二维情形下多项式型迭代方程的多项式解,在已知函数为平面二次齐次多项式映射时,得到了二次多项式型迭代方程有平面二次保次多项式解的几个充要条件.
关键词:
Most of known results for the polynomial-like iterative equation were given for monotone functions. In this paper, we discuss this equation for a polynomial function, which is non-monotonic. In one-dimensional case, we apply the method of computer algebra system SINGULAR decomposing algebraic varieties to find a sufficient and necessary condition for the polynomial-like iterative equation of orders 2 and 3 having quadratic polynomial solutions respectively and give quadratic polynomial solutions of both two equations. Then we give a procedure for computing polynomial solutions of the polynomial-like equation. In two-dimensional case, applying the idea of one-dimensional case we obtain several sufficient and necessary conditions for second order polynomial-like iterative equation having quadratic degree-preserving polynomial solutions when the given function is a two-dimensional homogeneous polynomial mapping of degree 2.
Keywords:
本文引用格式
余志恒, 龚小兵.
Yu Zhiheng, Gong Xiaobing.
1 引言
设
关于首项系数问题的所有结果都是在已知函数为单调函数的情形下给出的. 2017年,在已知函数为PM函数(逐段单调函数)情形下,一类特殊的非单调解被讨论了并利用延拓的方法给出了多项式型迭代方程解的一般构造[22].
2 一维情形
设方程(1.2)中
2.1 $F$ 为4次多项式时的多项式解
首先考虑如下方程
的多项式解,其中
定理2.1 设
并且其任一多项式解
证 令
最后,在计算机代数系统SINGULAR中利用minAssGTZ程序包(此方法是基于Gianni, Trager和Zacharias的工作[12])得到理想
其中
进一步,将得到的二次多项式
注意到
时方程(2.2)成立.证毕.
注2.1 在定理2.1中如果
2.2 寻找多项式解的算法
为了给出计算方程(1.2)次数更高时的多项式解的算法,我们引入代数簇和不可约分解的基本定义.
设
算法
第一步 计算
第二步 计算理想
第三步 将
2.3 $F$ 为8次多项式时的多项式解
本节将利用上节给出算法求解三次多项式型迭代方程,即如下多项式型迭代方程
并给出方程(2.5)有二次多项式解的充分必要条件,其中
定理2.2 设
并且方程(2.5)的任一多项式解
证 由上节给出的算法第一步令
令
然后利用计算机代数系统SINGULAR中的程序包minAssGTZ计算出
其中
类似定理2.1的证明,将上面得到的
时方程(2.5)成立.证毕.
同样,定理2.2在实数集
3 二维情形
本节我们将利用一维情形的思想研究多项式型迭代方程(1.2)在二维空间中存在多项式解的条件.由于平面多项式的迭代计算比较复杂,迭代后的次数无规律,因此在二维空间中要判断多项式型迭代方程(1.2)有多项式解要比一维情形复杂得多.为了简洁地给出符号计算的过程,考虑一类特殊的平面二次多项式映射,称为保次映射[4],这类多项式经过迭代后次数不超过2.我们考虑如下迭代方程
其中
的条件,其中
因此,我们将根据上述11种类型给出方程(3.1)存在二次多项式解的条件.为了方便起见,如果
定理3.1 (ⅰ)方程(3.1)没有
(ⅱ)方程(3.1)有
(ⅲ)方程(3.1)有
(ⅳ)方程(3.1)有
(ⅴ)方程(3.1)有
(ⅵ)方程(3.1)有
(ⅶ)方程(3.1)有
(ⅷ)方程(3.1)有
(ⅸ)方程(3.1)有
(ⅹ)方程(3.1)有
(ⅹⅰ)方程(3.1)有
证 令
将保次条件
其中
由于半代数系统的消元十分困难,注意到
这样问题就转化为计算代数簇
运用命令eliminate计算出代数系统
即方程(3.1)的
这样就给出方程(3.1)的
时方程(3.1)成立.
利用
注3.1 在定理3.1中,虽然给出了方程(3.1)有
参考文献
On the singularities of divergent majorant series arising from normal form theory
,
Planar quadratic degree-preserving maps and their iteration
,DOI:10.1007/s00025-009-0389-6 [本文引用: 2]
Decomposition of algebraic sets and applications to weak centers of cubic systems
,DOI:10.1016/j.cam.2009.06.029 [本文引用: 3]
Leading coefficient problem for polynomial-like iterative equations
,DOI:10.1016/j.jmaa.2008.09.015 [本文引用: 1]
Universal properties of maps on an interval
,DOI:10.1007/BF02193555 [本文引用: 1]
Reducing the polynomial-like iterative equations order and a generalized Zoltán Boros' problem
,DOI:10.1007/s00010-016-0420-4 [本文引用: 1]
Transversal homoclinic points of a class of conservative diffeomorphisms
,DOI:10.1016/0022-0396(90)90012-E [本文引用: 1]
Gröbner basis and primary decomposition of polynomials
,
Convex solutions of the polynomial-like iterative equation on open set
,DOI:10.4134/BKMS.2014.51.3.641 [本文引用: 1]
Convex solutions of the polynomial-like iterative equation with variable coefficents
,
Convex solutions of the polynomial-like iterative equation in Banach spaces
,DOI:10.5486/PMD.2013.5305 [本文引用: 1]
Dynamics of a quadratic map in two complex variables
,DOI:10.1006/jdeq.2000.3895 [本文引用: 1]
Iterative functional equations in the class of Lipschitz functions
,DOI:10.1007/s00010-002-8028-2 [本文引用: 1]
Continuously decreasing solutions for polynomial-like iterative equations
,
The polynomial-like iterative equation for PM functions
,DOI:10.1007/s11425-016-0319-x [本文引用: 1]
Method of characteristic for functional equations in polynomial form
,DOI:10.1007/BF02560023 [本文引用: 1]
Characteristic analysis for a polynomial-like iterative equation
,
The general exact bijective continuous solution of Feigenbaum's functional equation
,DOI:10.1007/BF01208784 [本文引用: 1]
On the functional equation
DOI:10.1007/BF01834919 [本文引用: 1]
Invariant curves for planar mappings
,DOI:10.1080/10236199708808092 [本文引用: 1]
Periodic and continuous soltuions of a polynomial-like iterative equation
,DOI:10.1007/s00010-016-0456-5 [本文引用: 1]
迭代方程
The existence of local analytic solutions of the iterated equations
Iterative equations in Banach spaces
,DOI:10.1016/j.jmaa.2004.06.011 [本文引用: 1]
On a linear iterative equation
,DOI:10.1007/BF03322847 [本文引用: 1]
On zeros of algebraic equations-An appliation of Ritt's principle
,DOI:10.1360/csb1986-31-1-1 [本文引用: 1]
Construction of continuous solutions and stability for the polynomial-like iterative equation
,
Decreasing solutions and convex solutions of the polynomial-like iterative equation
,
On a multivalued iterative equation of order
Characteristic solutions of polynomial-like iterative equations
,DOI:10.1007/s00010-003-2708-4 [本文引用: 1]
Real polynomial iterative roots in the case of nonmonotonicity height
DOI:10.1007/s11425-012-4537-1 [本文引用: 2]
Discussion on polynomials having polynomial iterative roots
,DOI:10.1016/j.jsc.2011.12.038 [本文引用: 2]
Some advances on functional equations
,
Discussion on the iterated equation
DOI:10.1360/csb1987-32-19-1444 [本文引用: 1]
Discussion on the differentiable solutions of the iterated equation
DOI:10.1016/0362-546X(90)90147-9 [本文引用: 1]
On existence for polynomial-like iterative equations
,DOI:10.1007/BF03323006 [本文引用: 1]
Solutions of equivariance for a polynomial-like iterative equation
,DOI:10.1017/S0308210500000615 [本文引用: 1]
Continuous solutions of a polynomial-like iterative equation with variable coefficients
,DOI:10.4064/ap-73-1-29-36 [本文引用: 1]
On continuous solutions of
Global solutions for leading coefficient problem of polynomial-like iterative equations
,DOI:10.1007/s00025-011-0162-5 [本文引用: 1]
/
〈 | 〉 |