数学物理学报, 2019, 39(6): 1323-1333 doi:

论文

带椭球势阱的Kirchhoff型方程的变分问题

李容星,, 王文清,, 曾小雨,

A Constrained Variational Problem of Kirchhoff Type Equation with Ellipsoid-Shaped Potential

Li Rongxing,, Wang Wenqing,, Zeng Xiaoyu,

通讯作者: 曾小雨, E-mail: xyzeng@whut.edu.cn

收稿日期: 2019-01-3  

基金资助: 国家自然科学基金.  11871387
国家自然科学基金.  11601173
中央高校基本科研业务费专项基金.  WUT:2019IB009
中央高校基本科研业务费专项基金.  2019IB084

Received: 2019-01-3  

Fund supported: the NSFC.  11871387
the NSFC.  11601173
the Fundamental Research Funds for the Central Universities.  WUT:2019IB009
the Fundamental Research Funds for the Central Universities.  2019IB084

作者简介 About authors

李容星,E-mail:1436538761@qq.com , E-mail:1436538761@qq.com

王文清,E-mail:1923226881@qq.com , E-mail:1923226881@qq.com

摘要

该文研究了一种具有特殊势阱的Kirchhoff椭圆方程的变分问题.这里势阱的底部为一个椭球.当相关参数趋向于某个临界值时,该文讨论了该变分问题解的渐近行为并证明了变分问题的解会在势阱底部椭球长轴的端点处发生爆破.

关键词: 约束变分法 ; 能量估计 ; Kirchhoff泛函 ; 椭圆方程

Abstract

In this paper, we are considered with a constrained variational problem for certain type of Kirchhoff equation with trapping potential and the bottom of the potential is an ellipsoid. We are interested in the asymptotic behavior of solutions of variational problem and we prove that the minimizers of the minimization problem blows up at one of the endpoints of the major axis of the ellipsoid as the related parameter approaches a critical value.

Keywords: Constraint variational method ; Energy estimates ; Kirchhoff functional ; Elliptic equation

PDF (330KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

李容星, 王文清, 曾小雨. 带椭球势阱的Kirchhoff型方程的变分问题. 数学物理学报[J], 2019, 39(6): 1323-1333 doi:

Li Rongxing, Wang Wenqing, Zeng Xiaoyu. A Constrained Variational Problem of Kirchhoff Type Equation with Ellipsoid-Shaped Potential. Acta Mathematica Scientia[J], 2019, 39(6): 1323-1333 doi:

1 引言

该文考虑如下形式的Kirchhoff椭圆方程

$\begin{equation}\label{fc1}-\left(a+b\int_{\mathbb{R} ^3}|\nabla u|^{2}{\rm d}x\right)\bigtriangleup u+V(x)u=\beta|u|^pu+\lambda u, \ \ x\in\mathbb{R} ^3, \end{equation}$

其中$\lambda\in\mathbb{R} \setminus\{0\}, \ \ a, b$为正常数, $\beta$为实参数, $V(x)\in C(\mathbb{R} ^3, \mathbb{R} ^+), \ \ p\in(0, 4).$

$b = 0$时,上述方程(1.1)即为经典的半线性椭圆方程,特别是$N=2$的情形对应于冷原子物理中的Bose-Einstein凝聚现象相关的Gross-Pitaevskii (GP)方程.这时GP方程的$L^2$范数解有明确的物理意义,即质量约束解.近年来关于GP方程的$L^2$范数约束解备受关注,例如Guo等[6]讨论GP方程的$L^2$范数约束解关于参数$\beta$的渐近行为;而Zhou等[1]研究了参数$\beta$固定时GP方程的$L^2$范数约束解随着参数$p$趋向于$2$ (即GP方程的质量临界指标)的渐近行为.另外Zeng等[2]证明了当$\beta = 1, \ V(x)\equiv 0$时方程(1.1)在约束$\|u\|_{L^{2}}=c$下解的存在性和唯一性.

$b\neq 0$时,方程(1.1)就从局部型变为非局部型的Kirchhoff椭圆方程.近十多年来,很多学者都十分关注Kirchhoff型椭圆方程的研究.例如Zou等[3]利用山路引理和Nehari流形方法得到了方程(1.1)在$\lambda=0, \ \ p\in(2, 4)$时基态解的存在性.当$V(x)$为非负常数时, Wu等[4]研究了方程(1.1)的径向对称解.另外Guo等[5]讨论了如下形式的$V(x)$

$\begin{equation}\label{v}0\not\equiv V(x)\in C(\mathbb{R} ^N, \mathbb{R} ^+), \ \ \inf\limits_{x\in\mathbb{R} ^N}V(x)=0\ \ \mbox{及}\ \ \lim\limits_{|x|\to\infty}V(x)=\infty, \end{equation}$

利用约束变分法结合能量估计讨论了方程(1.1)解的存在性并研究了解的渐近行为.

已有文献的研究的结果表明,为了更加具体地刻画解的爆破点的位置往往需要知道$V(x)$更加具体的形式.例如文献[6]中在假设

的条件下精确分析了GP方程$L^2$范数约束解的渐近行为.而文献[7]中则在假设

的前提下精细刻画了GP方程$L^2$范数约束解的爆破性质.受以上文献的启发,本文的主要目的就是希望将文献[7]中关于GP方程的相关结果推广到Kirchhoff方程.为此,我们假设$V(x)$为具有椭球型底部的势阱即

$\begin{equation}\label{v1}V(x)=\left(\sqrt{\frac{x_1^2}{a_1^2}+\frac{x_2^2}{a_2^2}+\frac{x_3^2}{a_3^2}}-1\right)^2, \ \ \mbox{其中}\ \ a_1>\max\{a_2, a_3\}>0, \ \ x=(x_1, x_2, x_3)\in\mathbb{R} ^3.\end{equation}$

显然势阱$V(x)$底部是一个椭球$\{(x_1, x_2, x_3)\in\mathbb{R} ^3:\frac{x_1^2}{a_1^2}+\frac{x_2^2}{a_2^2}+\frac{x_3^2}{a_3^2}=1\}$.本文将在此类位势下讨论方程(1.1)解的爆破行为,并将更加具体地确定解的爆破点的可能位置.

为了下文讨论的方便,我们记

$\begin{equation}\label{v2}f(x)=\sqrt{\frac{x_1^2}{a_1^2}+\frac{x_2^2}{a_2^2}+\frac{x_3^2}{a_3^2}}, \end{equation}$

并令

$\begin{equation}\label{v3}Z_1\triangleq\{(\pm a_1, 0, 0)\}, \end{equation}$

则集合$Z_1$为势阱$V(x)$的椭球底部的长轴的两个端点,并且$V(x)=(f(x)-1)^2$.

该文引入如下半线性椭圆方程

$\begin{equation}\label{fc2}-\frac{3p}{4}\bigtriangleup u+(1-\frac{p}{4})u-u^{p+1}=0, \ \ \mbox{其中}\ \ 0<p<4, \ \ x\in\mathbb{R} ^3.\end{equation}$

文献[8]已证明了方程(1.6)存在唯一的径向对称正解$\phi_p\in H^1(\mathbb{R} ^3)$,另外$\phi_p$在无穷远处呈指数型衰减,即存在$R>0$,使得当$|x|>R$时有

$\begin{equation}\label{fc3}\phi_p(x)<Ce^{-\delta|x|}, \end{equation}$

其中$C, \delta$为正常数.对此$\phi_p$定义

$\begin{equation}\label{p1}\beta_p\triangleq\frac{b}{2}||\phi_p||_{L^2}^p, \ \ \mbox{特别地,当}\ \ p={p^*}\triangleq\frac{8}{3}\ \ \mbox{时我们记}\ \ \beta_{p^*}\triangleq\frac{b}{2}||\phi_{p^*}||_{L^2}^{p^*}.\end{equation}$

我们知道为了得到方程(1.1)的解,一个最为经典的方法就是研究如下约束变分问题

$\begin{equation}\label{d1}d_\beta(p)=\inf\limits_{u\in S_1} E_p^\beta(u), \end{equation}$

其中

$\begin{equation}\label{d2}E_p^\beta(u)=\frac{a}{2}\int_{\mathbb{R} ^3} |\nabla u|^2{\rm d}x+\frac{b}{4}\left(\int_{\mathbb{R} ^3} |\nabla u|^2{\rm d}x\right)^2-\frac{\beta}{p+2}\int_{\mathbb{R} ^3} |u|^{p+2}{\rm d}x+\frac{1}{2}\int_{\mathbb{R} ^3} V(x)u^2{\rm d}x, \end{equation}$

$\begin{equation}\label{d3}S_1=\left\{u\in H:\int_{\mathbb{R} ^3} |u|^2{\rm d}x=1\right\}, \ \H\triangleq\left\{u\in H^1(\mathbb{R} ^3):\int_{\mathbb{R} ^3} V(x)|u|^2{\rm d}x<+\infty\right\}, \end{equation}$

其中$a, b$为正常数, $\beta$为实参数, $0<p<{p^*}\triangleq\frac{8}{3}$.

$V(x)\equiv0$时,上述约束变分问题我们记为

$\begin{equation}\label{d4}\tilde{d}_\beta(p)=\inf\limits_{u\in \tilde{S}_1} \tilde{E}_p^\beta(u), \end{equation}$

其中

$\begin{equation}\label{d5}\tilde{E}_p^\beta(u)=\frac{a}{2}\int_{\mathbb{R} ^3} |\nabla u|^2{\rm d}x+\frac{b}{4}\left(\int_{\mathbb{R} ^3} |\nabla u|^2{\rm d}x\right)^2-\frac{\beta}{p+2}\int_{\mathbb{R} ^3} |u|^{p+2}{\rm d}x, \end{equation}$

$\begin{equation}\label{d6}\tilde{S}_1=\left\{u\in H^1(\mathbb{R} ^3):\int_{\mathbb{R} ^3} |u|^2{\rm d}x=1\right\}, \end{equation}$

文献[5]已证明了当$\beta>\beta_{p^*}, \ \ 0<p<{p^*}$时,变分问题(1.12)总存在非负的极小元,并且如果还有$V(x)$满足(1.2)式,变分问题(1.9)也存在非负的极小元,并且极小元在$V(x)=0$处爆破.文献[5]的结果概括如下.

定理1.1[5, Theorem, 1.5]  对任意给定的$\beta>\beta_{p^*}$,若$0<p<{p^*}\triangleq\frac{8}{3}$$V(x)$满足(1.2)式,记极小化问题(1.9)的非负极小元为$u_p\in S_1$.则对任意满足$p\nearrow {p^*}$的序列$\{p\}$,存在$\{y_{\varepsilon_p}\}\subset\mathbb{R} ^3$$y_0\in\mathbb{R} ^3$使得

$\begin{equation}\label{t1.1}\lim\limits_{p\nearrow\ p^*} \varepsilon_p^{\frac{3}{2}}u_p(\varepsilon_px+\varepsilon_py_{\varepsilon_p})=\frac{1}{||\phi_{p^*}||_{L^2}}\phi_{p^*}(|x-y_0|)\ \ \mbox{于}\ \ H^1(\mathbb{R} ^3), \end{equation}$

其中

$\begin{equation}\label{t1.2}\varepsilon_p=\left(\frac{\beta p}{\beta_pp^*}\right)^{-\frac{p^*}{4(p^*-p)}}\rightarrow 0\ \ (\mbox{当}\ \ p\nearrow {p^*}\ \ \mbox{时}), \end{equation}$

此外, $\{y_{\varepsilon_p}\}$满足$\varepsilon_py_{\varepsilon_p}\rightarrow z_0$ (当$p\nearrow {p^*}$时),并且$z_0$$V(x)$的一个全局最小点,即$V(z_0)=0$.

在文献[5]的基础上,为了更加具体地刻画解的爆破位置,该文进一步假设$V(x)$满足(1.3)式,并证明解在$z_0\in Z_1$即椭球的长轴端点处爆破.主要结论如下.

定理1.2  对任意给定的$\beta>\beta_{p^*}$,且$V(x)$满足(1.3)式,任取$(0, {p^*})$中满足$p\nearrow {p^*}$的的一列$\{p\}$,则一定存在$\{y_{\varepsilon_p}\}\subset\mathbb{R} ^3$$y_0\in\mathbb{R} ^3$使得当$p\nearrow {p^*}$$\varepsilon_py_{\varepsilon_p}\rightarrow z_0$$V(z_0)=0$.此外

(ⅰ)对于(1.9)和(1.12)式中定义的$d_\beta(p)$$\tilde{d}_\beta(p)$必存在$\{p\}$的子列$\{p_k\}\nearrow {p^*}$满足

$\begin{equation}\label{t2.1}\lim\limits_{k\rightarrow\infty} \frac{d_\beta(p_k)-\tilde{d}_\beta(p_k)}{\varepsilon_{p_k}^2}=\frac{1}{6a_1^2||\phi_{p^*}||_{L^2}^2}\int_{\mathbb{R} ^3} |z|^2\phi_{p^*}^2(z){\rm d}z, \end{equation}$

(ⅱ)对于$\{y_{\varepsilon_p}\}$$y_0$我们有

(ⅲ)对于上述子列$\{p_k\}$$z_0$必有

$\begin{equation}\label{t2.2}\lim\limits_{k\rightarrow\infty} \frac{f(\varepsilon_{p_k}y_{\varepsilon_{p_k}})-1}{\varepsilon_{p_k}}=-\bigtriangledown f(z_0)\cdot y_0, \ \ \mbox{其中}\ \ z_0\in Z_1, \end{equation}$

并且

其中

2 预备知识

在这一节中我们会证明一些必要的引理并在下一节证明我们的结论.

首先我们给出下列的Gagliardo-Nirenberg不等式[9]

$\begin{equation}\label{g1}||u||_{L^{p+2}}^{p+2}\leq\frac{p+2}{2||\phi_p||_{L^2}^p}||\bigtriangledown u||_{L^2}^{\frac{3p}{2}}||u||_{L^2}^{2-\frac{p}{2}}, \ \ u\in H^1(\mathbb{R} ^3), \ \ 0<p<4.\end{equation}$

根据文献[9]和Pohozaev恒等式,我们有

$\begin{equation}\label{g2}\int_{\mathbb{R} ^3} \phi_p^2{\rm d}x=\int_{\mathbb{R} ^3} |\bigtriangledown\phi_p|^2{\rm d}x, \ \\int_{\mathbb{R} ^3} \phi_p^2{\rm d}x=\frac{2}{p+2}\int_{\mathbb{R} ^3} |\phi_p|^{p+2}{\rm d}x, \ \ 0<p<4.\end{equation}$

文献[5]对$d_\beta(p)$的非负极小元$u_p$$\tilde{d}_\beta(p)$的非负极小元$\tilde{u}_p$有如下估计.

引理2.1[5, Theorem 3.2]  对任意给定的$\beta>\beta_{p^*}$,若$0<p<{p^*}$$V(x)$满足(1.3)式,设$u_p$$d_\beta(p)$的非负极小元, $\tilde{u}_p$$\tilde{d}_\beta(p)$的非负极小元.令$r_p\triangleq(\frac{\beta p}{\beta_p{p^*}})^{\frac{p^*}{{p^*}-p}}$,则有

$\begin{equation}\label{l1.1}\lim\limits_{p\nearrow\ {p^*}}\frac{(\int_{\mathbb{R} ^3} |\nabla u_p|^2{\rm d}x)^2}{r_p}=\lim\limits_{p\nearrow\ {p^*}}\frac{(\int_{\mathbb{R} ^3} |\nabla\tilde{u}_p|^2{\rm d}x)^2}{r_p}=1.\end{equation}$

类似于文献[7],我们对$\bigtriangledown f(z)$有如下估计.

引理2.2  设$V(x), f(x)$$Z_1$分别由(1.3), (1.4)和(1.5)式给出.对任意$z=(z_1, z_2, z_3)\in\mathbb{R} ^3$,如果$V(z)=0$,则有

$\begin{equation}\label{l2.1}|\bigtriangledown f(z)|^2\geq\frac{1}{a_1^2}.\end{equation}$

此外, (2.4)式中等号成立当且仅当$z\in Z_1$.

  令$z=(z_1, z_2, z_3)\in\mathbb{R} ^3$满足$V(z)=0$.于是

$a_1>\max\{a_2, a_3\}>0$$\frac{z_1^2}{a_1^2}=1-\frac{z_2^2}{a_2^2}-\frac{z_3^2}{a_3^2}$我们有

上式等号成立当且仅当$z_2=z_3=0$,此时必有$z_1=\pm a_1$,即$z\in Z_1$.

我们对方程(1.6)的唯一正解$\phi_p\in H^1(\mathbb{R} ^3)$有如下公式.

引理2.3  对任意给定的$y\in\mathbb{R} ^3$和方程(1.6)的唯一正解$\phi_p\in H^1(\mathbb{R} ^3)$

$\begin{equation}\label{l3.1}\int_{\mathbb{R} ^3} (y\cdot x)\phi_p^2(x){\rm d}x=0, \end{equation}$

并且

$\begin{equation}\label{l3.2}\int_{\mathbb{R} ^3} |y\cdot x|^2\phi_p^2(x){\rm d}x=\frac{|y|^2}{3}\int_{\mathbb{R} ^3} |x|^2\phi_p^2(x){\rm d}x.\end{equation}$

  令$y=(y_1, y_2, y_3)\in\mathbb{R} ^3$,对$x=(x_1, x_2, x_3)\in\mathbb{R} ^3$使用极坐标变换

$\begin{equation}\label{lp3.1}\left\{\begin{array}{l}x_1=r\cos\theta_1\\x_2=r\sin\theta_1\cos\theta_2\\x_3=r\sin\theta_1\sin\theta_2\end{array}\right.\end{equation}$

其中$r\geq0, \ \ 0\leq\theta_1\leq\pi, \ \ 0\leq\theta_2\leq 2\pi$.雅可比行列式为

$\begin{equation}\label{lp3.2}J=\left|\frac{\partial(x_1, x_2, x_3)}{\partial(r, \theta_1, \theta_2)}\right|=r^2\sin\theta_1.\end{equation}$

由(1.7)式知$\int_{\mathbb{R} ^3} (y\cdot x)\phi_p^2(x){\rm d}x, \ \\int_{\mathbb{R} ^3} |y\cdot x|^2\phi_p^2(x){\rm d}x, \ \ \int_{\mathbb{R} ^3}|x|^2\phi_p^2(x){\rm d}x$存在并有界.

首先我们来证明(2.5)式.注意到对任意正整数$n$

$\begin{equation}\label{lp3.3}\int_0^\pi\sin^n\theta\cos\theta {\rm d}\theta=0, \end{equation}$

于是

即证明了(2.5)式.

现在我们来证明(2.6)式.由(2.9)式有

于是

$\begin{eqnarray}\label{lp3.4}\int_{\mathbb{R} ^3} |y\cdot x|^2\phi_p^2(x){\rm d}x&=&\int_{\mathbb{R} ^3} (y_1x_1+y_2x_2+y_3x_3)^2\phi_p^2(x){\rm d}x\nonumber\\&=&\int_{\mathbb{R} ^3} (y_1^2x_1^2+y_2^2x_2^2+y_3^2x_3^2)\phi_p^2(x){\rm d}x.\end{eqnarray}$

$x$做一次坐标轮换,即令$x_1=x_2, \ \ x_2=x_3, \ \ x_3=x_1$,我们有

$\begin{equation}\label{lp3.5}\int_{\mathbb{R} ^3} |y\cdot x|^2\phi_p^2(x){\rm d}x=\int_{\mathbb{R} ^3} (y_1^2x_2^2+y_2^2x_3^2+y_3^2x_1^2)\phi_p^2(x){\rm d}x.\end{equation}$

再对$x$做一次坐标轮换,即令$x_1=x_3, \ \ x_2=x_1, \ \ x_3=x_2$,我们有

$\begin{equation}\label{lp3.6}\int_{\mathbb{R} ^3} |y\cdot x|^2\phi_p^2(x){\rm d}x=\int_{\mathbb{R} ^3} (y_1^2x_3^2+y_2^2x_1^2+y_3^2x_2^2)\phi_p^2(x){\rm d}x.\end{equation}$

把(2.10), (2.11)式和(2.12)式相加再除以$3$,有

即证明了(2.6)式.

3 定理1.2的证明

  (ⅰ)我们先证

$\begin{equation}\label{tp2.1}\lim\limits_{p\nearrow p^*}\frac{d_\beta(p)-\tilde{d}_\beta(p)}{\varepsilon_p^2}\leq\frac{1}{6a_1^2||\phi_{p^*}||_{L^2}^2}\int_{\mathbb{R} ^3} |z|^2\phi_{p^*}^2(z){\rm d}z.\end{equation}$

$\forall x_0\in Z_1\triangleq\{(\pm a_1, 0, 0)\}, \ \ \forall t>0$,我们令

$\begin{equation}\label{tp2.2}u_t(x)\triangleq\frac{t^{\frac{3}{2}}}{||\phi_p||_{L^2}}\cdot\phi_p(t(x-x_0)), \end{equation}$

于是

$\begin{equation}\label{tp2.3}\int_{\mathbb{R} ^3} u_t^2(x){\rm d}x=\frac{1}{||\phi_p||_{L^2}^2}\int_{\mathbb{R} ^3} t^3\phi_p^2(t(x-x_0)){\rm d}x=\frac{1}{||\phi_p||_{L^2}^2}\int_{\mathbb{R} ^3} \phi_p^2(z){\rm d}z=1.\end{equation}$

由(2.2)式有

$\begin{eqnarray}\label{tp2.4}\int_{\mathbb{R} ^3} |\bigtriangledown u_t(x)|^2{\rm d}x&=&\frac{1}{||\phi_p||_{L^2}^2}\int_{\mathbb{R} ^3} t^3|\bigtriangledown\phi_p(t(x-x_0))|^2{\rm d}x=\frac{1}{||\phi_p||_{L^2}^2}\int_{\mathbb{R} ^3} t^2|\bigtriangledown\phi_p(z)|^2{\rm d}z\nonumber\\&=&\frac{1}{||\phi_p||_{L^2}^2}\int_{\mathbb{R} ^3} t^2\phi_p^2(z){\rm d}z=t^2.\end{eqnarray}$

再由(2.2)式和$\beta_p\triangleq\frac{b}{2}||\phi_p||_{L^2}^p$可得

$\begin{eqnarray}\label{tp2.5}\int_{\mathbb{R} ^3} u_t^{p+2}(x){\rm d}x&=&\frac{1}{||\phi_p||_{L^2}^{p+2}}\int_{\mathbb{R} ^3} t^{\frac{3}{2}(p+2)}\phi_p^{p+2}(t(x-x_0)){\rm d}x=\frac{1}{||\phi_p||_{L^2}^{p+2}}\int_{\mathbb{R} ^3} t^{\frac{3p}{2}}\phi_p^{p+2}(z){\rm d}z\nonumber\\&=&\frac{p+2}{2||\phi_p||_{L^2}^p}t^{\frac{3p}{2}}=\frac{b(p+2)}{4\beta_p}t^{\frac{4p}{p^*}}.\end{eqnarray}$

由(1.7)式知$\int_{\mathbb{R} ^3} |x|^2\phi_p^2(x){\rm d}x$存在并有界.又$x_0\in Z_1$,由引理2.2知$|\bigtriangledown f(x_0)|^2=\frac{1}{a_1^2}$.于是由(1.3)及(2.6)式有

$\begin{eqnarray}\label{tp2.6}\lim\limits_{t\rightarrow\infty}t^2\int_{\mathbb{R} ^3} V(x)u_t^2(x){\rm d}x&=&\lim\limits_{t\rightarrow\infty}\frac{t^2}{||\phi_p||_{L^2}^2}\int_{\mathbb{R} ^3} t^3V(x)\phi_p^2(t(x-x_0)){\rm d}x\nonumber\\&=&\lim\limits_{t\rightarrow\infty}\frac{t^2}{||\phi_p||_{L^2}^2}\int_{\mathbb{R} ^3} V\left(\frac{z}{t}+x_0\right)\phi_p^2(z){\rm d}z\nonumber\\&=&\lim\limits_{t\rightarrow\infty}\frac{1}{||\phi_p||_{L^2}^2}\int_{\mathbb{R} ^3}\left(\frac{f\left(\frac{z}{t}+x_0\right)-f(x_0)}{1/t}\right)^2\phi_p^2(z){\rm d}z\nonumber\\&=&\frac{1}{||\phi_p||_{L^2}^2}\int_{\mathbb{R} ^3} (\bigtriangledown f(x_0)\cdot z)^2\phi_p^2(z){\rm d}z\nonumber\\&=&\frac{|\bigtriangledown f(x_0)|^2}{3||\phi_p||_{L^2}^2}\int_{\mathbb{R} ^3} |z|^2\phi_p^2(z){\rm d}z\nonumber\\&=&\frac{1}{3a_1^2||\phi_p||_{L^2}^2}\int_{\mathbb{R} ^3} |z|^2\phi_p^2(z){\rm d}z<+\infty.\end{eqnarray}$

由(3.3)式及(3.6)式有$u_t\in S_1$,故结合(3.4), (3.5)式以及定义(1.10)有

$\begin{eqnarray}\label{tp2.7}E_p^\beta(u_t)=\frac{a}{2}t^2+\frac{b}{4}t^4-\frac{b\beta}{4\beta_p}(t^4)^{\frac{p}{p^*}}+\frac{1}{2}\int_{\mathbb{R} ^3} V(x)u_t^2(x){\rm d}x.\end{eqnarray}$

$u_p\in S_1$是(1.9)式的极小元, $\tilde{u}_p\in\tilde{S}_1$是(1.12)式的极小元.则由$||\tilde{u}_p||_{L^2}=1$及(2.1)式有

$\begin{eqnarray}\label{tp2.8}||\tilde{u}_p||_{L^{p+2}}^{p+2}&\leq&\frac{p+2}{2||\phi_p||_{L^2}^p}||\bigtriangledown\tilde{u}_p||_{L^2}^{\frac{3p}{2}}||\tilde{u}_p||_{L^2}^{2-\frac{p}{2}}=\frac{p+2}{2||\phi_p||_{L^2}^p}||\bigtriangledown\tilde{u}_p||_{L^2}^{\frac{3p}{2}}\nonumber\\&=&\frac{p+2}{2||\phi_p||_{L^2}^p}\left(\int_{\mathbb{R} ^3} |\nabla\tilde{u}_p|^2{\rm d}x\right)^{\frac{3p}{4}}=\frac{p+2}{2||\phi_p||_{L^2}^p}\left(\int_{\mathbb{R} ^3} |\nabla\tilde{u}_p|^2{\rm d}x\right)^{\frac{2p}{{p^*}}}.\end{eqnarray}$

于是由(3.7)和(3.8)式有

$t=t_p\triangleq\left(\int_{\mathbb{R} ^3} |\nabla\tilde{u}_p|^2{\rm d}x\right)^{\frac{1}{2}}$,则可知

由引理2.1及$t^2=\int_{\mathbb{R} ^3} |\nabla\tilde{u}_p|^2{\rm d}x, \ \r_p\triangleq(\frac{\beta p}{\beta_pp^*})^{\frac{p^*}{p^*-p}}=\frac{1}{\varepsilon_p^4}$$\mathop {\lim }\limits_{p \nearrow {p^*}} \varepsilon_p^2\cdot t^2=1$.又因当$t\rightarrow\infty$$ (p\nearrow {p^*})$时有$\varepsilon_p\rightarrow 0$$ (p\nearrow {p^*})$于是

即证明了(3.1)式.

下证(1.17)式.由定理1.1,对任意给定的$\beta>\beta_{p^*}$,若$0<p<{p^*}$$V(x)$满足(1.3)式,则方程(1.9)存在非负的极小元$u_p\in S_1$.并且对任意满足$p\nearrow {p^*}$的可达元序列$\{u_p\}$,存在$\{y_{\varepsilon_p}\}\subset\mathbb{R} ^3$$y_0\in\mathbb{R} ^3$使得当$p\nearrow {p^*}$时有

$\varepsilon_p=\left(\frac{\beta p}{\beta_p{p^*}}\right)^{-\frac{p^*}{4({p^*}-p)}}$,我们定义

$\begin{equation}\label{tp2.9}w_p(x)\triangleq \varepsilon_p^{\frac{3}{2}}u_p(\varepsilon_px+\varepsilon_py_{\varepsilon_p}), \end{equation}$

以及

$\begin{equation}\label{tp2.10}\mu_p\triangleq\frac{1}{\varepsilon_p^2}\int_{\mathbb{R} ^3} V(\varepsilon_px+\varepsilon_py_{\varepsilon_p})w_p^2(x){\rm d}x, \end{equation}$

$\begin{eqnarray}\label{tp2.11}\mu_p&=&\frac{1}{\varepsilon_p^2}\int_{\mathbb{R} ^3} V(\varepsilon_px+\varepsilon_py_{\varepsilon_p})w_p^2(x){\rm d}x=\frac{1}{\varepsilon_p^2}\int_{\mathbb{R} ^3} V(\varepsilon_px+\varepsilon_py_{\varepsilon_p})\varepsilon_p^3u_p^2(\varepsilon_px+\varepsilon_py_{\varepsilon_p}){\rm d}x\nonumber\\&=&\frac{1}{\varepsilon_p^2}\int_{\mathbb{R} ^3} V(z)u_p^2(z){\rm d}z.\end{eqnarray}$

$u_p\in S_1$是(1.9)式的极小元, $\tilde{u}_p\in\tilde{S}_1$是(1.12)式的极小元.我们有

于是

$\begin{equation}\label{tp2.12}\frac{d_\beta(p)-\tilde{d}_\beta(p)}{\varepsilon_p^2}\geq\frac{1}{2\varepsilon_p^2}\int_{\mathbb{R} ^3} V(z)u_p^2(z){\rm d}z=\frac{1}{2}\mu_p, \end{equation}$

结合(3.1)式,我们知道$\{\mu_p\}$关于$p$一致有界.由定理1.1知在$H^1(\mathbb{R} ^3)$范数意义下有

其中$y_0\in\mathbb{R} ^3$,则在$L^2(\mathbb{R} ^3)$范数意义下有

于是对任意满足$p_k\nearrow {p^*}(k\rightarrow\infty)$的序列$\{p_k\}$,存在子列,我们依然记为$\{p_k\}$,使得

$\begin{equation}\label{tp2.13}w_{p_k}\mathop{\rightarrow}\limits^{k}\frac{1}{||\phi_{p^*}||_{L^2}}\phi_{p^*}(|x-y_0|)\ \ \mbox{在}\ \ \mathbb{R} ^3\ \ \mbox{中几乎收敛}.\end{equation}$

下面,我们用反证法证明$\left\{\frac{f(\varepsilon_{p_k}y_{\varepsilon_{p_k}})-f(z_0)}{\varepsilon_{p_k}}\right\}$有界.

假设$\left\{\frac{f(\varepsilon_{p_k}y_{\varepsilon_{p_k}})-f(z_0)}{\varepsilon_{p_k}}\right\}$无界,则存在$\{p_k\}$的子列,我们依然记为$\{p_k\}$,使得

注意到$\varepsilon_{p_k}y_{\varepsilon_{p_k}}\rightarrow z_0\ (k\rightarrow\infty)$$f(z_0)=1$,由(1.3)式, (3.13)式及Fatou引理,对任意$M>0$我们有

这与$\{\mu_p\}$有界相矛盾,因此$\left\{\frac{f(\varepsilon_{p_k}y_{\varepsilon_{p_k}})-f(z_0)}{\varepsilon_{p_k}}\right\}$有界.于是一定存在实数$\alpha\in\mathbb{R} $$\{p_k\}$的子列(仍记为$\{p_k\}$),使得$\frac{f(\varepsilon_{p_k}y_{\varepsilon_{p_k}})-f(z_0)}{\varepsilon_{p_k}}\rightarrow\alpha \ (k\rightarrow\infty)$.

$K=\bigtriangledown f(z_0)\cdot y_0+\alpha$,则$K$是一个实数.由(1.7)式知$\int_{\mathbb{R} ^3} (\bigtriangledown f(z_0)\cdot z+K)^2\phi_{p^*}^2(z){\rm d}z$存在并有界.注意到$\varepsilon_{p_k}y_{\varepsilon_{p_k}}\rightarrow z_0\ (k\rightarrow\infty), \ \ f(z_0)=1$,由(1.3)式, (3.13)式及Fatou引理有

由引理2.3有

$\begin{eqnarray}\label{tp2.14}\liminf\limits_{k\rightarrow\infty} \mu_{p_k}&\geq&\frac{1}{||\phi_{p^*}||_{L^2}^2}\int_{\mathbb{R} ^3}(\bigtriangledown f(z_0)\cdot z+K)^2\phi_{p^*}^2(z){\rm d}z\nonumber\\&=&\frac{1}{||\phi_{p^*}||_{L^2}^2}\int_{\mathbb{R} ^3}[(\bigtriangledown f(z_0)\cdot z)^2+2K\bigtriangledown f(z_0)\cdot z+K^2]\phi_{p^*}^2(z){\rm d}z\nonumber\\&=&\frac{|\bigtriangledown f(z_0)|^2}{3||\phi_{p^*}||_{L^2}^2}\int_{\mathbb{R} ^N} |z|^2\phi_{p^*}^2(z){\rm d}z+\frac{1}{||\phi_{p^*}||_{L^2}^2}\int_{\mathbb{R} ^3} K^2\phi_{p^*}^2(z){\rm d}z\nonumber\\&\geq&\frac{|\bigtriangledown f(z_0)|^2}{3||\phi_{p^*}||_{L^2}^2}\int_{\mathbb{R} ^3} |z|^2\phi_{p^*}^2(z){\rm d}z, \end{eqnarray}$

由引理2.2有$|\bigtriangledown f(z_0)|^2\geq\frac{1}{a_1^2}$,于是

$\begin{equation}\label{tp2.15}\liminf\limits_{k\rightarrow\infty} \mu_{p_k}\geq\frac{|\bigtriangledown f(z_0)|^2}{3||\phi_{p^*}||_{L^2}^2}\int_{\mathbb{R} ^3} |z|^2\phi_{p^*}^2(z){\rm d}z\geq\frac{1}{3a_1^2||\phi_{p^*}||_{L^2}^2}\int_{\mathbb{R} ^3} |z|^2\phi_{p^*}^2(z){\rm d}z, \end{equation}$

结合(3.12)和(3.15)式有

$\begin{equation}\label{tp2.16}\liminf\limits_{k\rightarrow\infty} \frac{d_\beta(p_k)-\tilde{d}_\beta(p_k)}{\varepsilon_{p_k}^2}\geq\liminf\limits_{k\rightarrow\infty} \frac{1}{2}\mu_{p_k}\geq\frac{1}{6a_1^2||\phi_{p^*}||_{L^2}^2}\int_{\mathbb{R} ^3} |z|^2\phi_{p^*}^2(z){\rm d}z, \end{equation}$

因此由(3.1)式有

$\begin{equation}\label{tp2.17}\liminf\limits_{k\rightarrow\infty} \frac{d_\beta(p_k)-\tilde{d}_\beta(p_k)}{\varepsilon_{p_k}^2}=\frac{1}{6a_1^2||\phi_{p^*}||_{L^2}^2}\int_{\mathbb{R} ^3}| z|^2\phi_{p^*}^2(z){\rm d}z.\end{equation}$

于是(1.17)式成立.

(ⅱ)这是定理1.1的直接推论,本文重点是给出$\{\varepsilon_py_{\varepsilon_p}\}$的极限点更为具体的位置,即我们的结论(ⅲ).

(ⅲ)最后,结合(3.16)和(3.17)式我们知道

$\begin{equation}\label{tp2.18}\liminf\limits_{k\rightarrow\infty} \mu_{p_k}=\frac{1}{3a_1^2||\phi_{p^*}||_{L^2}^2}\int_{\mathbb{R} ^3} |z|^2\phi_{p^*}^2(z){\rm d}z.\end{equation}$

为使(3.18)式成立,则(3.14)和(3.15)式中的不等式必须是等式. (3.14)式中的不等式是等式当且仅当$K=0$,即$\alpha=-\bigtriangledown f(z_0)\cdot y_0$,于是

于是(1.18)式成立. (3.15)式中的不等式是等式当且仅当$|\bigtriangledown f(z_0)|^2=\frac{1}{a_1^2}$,由引理2.2知$z_0\in Z_1$,即

至此定理1.2证毕.

参考文献

Guo Y J , Zeng X Y , Zhou H S .

Concentration behavior of standing waves for almost mass critical nonlinear Schrȑdinger equations

J Differential Equations, 2014, 256 (7): 2079- 2100

DOI:10.1016/j.jde.2013.12.012      [本文引用: 1]

Zeng X Y , Zhang Y M .

Existence and uniqueness of normalied solutions for the Kirchhoff equation

Applied Mathematics Letters, 2017, 74: 52- 59

DOI:10.1016/j.aml.2017.05.012      [本文引用: 1]

He X M , Zou W M .

Existence and concentration behavior of positive solutions for a Kirchhoff equation in $\mathbb{R}$3

J Differential Equations, 2012, 252: 1813- 1834

DOI:10.1016/j.jde.2011.08.035      [本文引用: 1]

Jin J H , Wu X .

Infinitely many radial solutions for Kirchhoff-type problems in $\mathbb{R}$N

J Math Anal Appl, 2010, 369: 564- 574

DOI:10.1016/j.jmaa.2010.03.059      [本文引用: 1]

Guo H L , Zhang Y M , Zhou H S .

Blow-up solutions for a Kirchhoff type elliptic equation with trapping potential

Communications on Pure and Applied Analysis, 2018, 17 (5): 1875- 1897

DOI:10.3934/cpaa.2018089      [本文引用: 7]

Guo Y J , Seiringer R .

On the mass concentration for Bose-Einstein conden-sates with attractive interactions

Lett Math Phys, 2014, 104 (2): 141- 156

DOI:10.1007/s11005-013-0667-9      [本文引用: 2]

Guo H L , Zhou H S .

A constrained variational problem arising in attractive Bose-Einstein condensate with ellipse-shaped potential

Applied Mathematics Letters, 2019, 87: 35- 41

DOI:10.1016/j.aml.2018.07.023      [本文引用: 3]

Willem M. Minimax Theorems. Boston:Birkhäuser, 1996

[本文引用: 1]

Weinstein M I .

Nonlinear Schrödinger equations and sharp interpolation estimates

Comm Math Phys, 1983, 87: 567- 576

DOI:10.1007/BF01208265      [本文引用: 2]

/