数学物理学报, 2019, 39(5): 1183-1191 doi:

论文

WOD随机变量序列的完全收敛性和矩完全收敛性

章茜,, 蔡光辉,

Complete Convergence and Complete Moment Convergence for WOD Random Variables Sequences

Zhang Qian,, Cai Guanghui,

通讯作者: 蔡光辉, E-mail: cghzju@163.com

收稿日期: 2018-06-7  

基金资助: 浙江省自然科学基金.  LY17A010003
浙江省一流学科A类.  浙江工商大学统计学

Received: 2018-06-7  

Fund supported: the Natural Science Foundation of Zhejiang Province.  LY17A010003
the First Class Discipline of Zhejiang-A.  浙江工商大学统计学

作者简介 About authors

章茜,E-mail:qiwa_007@163.com , E-mail:qiwa_007@163.com

摘要

该文采用五段截尾法,将Chen和Sung(2014)[5]的定理2.1以及Qiu和Chen(2014)[6]中的定理2.1推广至WOD随机变量序列情形,证明方法较已有的证明方法有所不同.

关键词: WOD随机变量序列 ; 完全收敛性 ; 矩完全收敛性

Abstract

In this paper, we use a new method to improve the corresponding result of Chen and Sung (2014)[5] and Qiu and Chen (2014)[6] by truncating the WOD random variables into five parts.

Keywords: WOD random variables sequences ; Complete convergence ; Complete moment convergence

PDF (292KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

章茜, 蔡光辉. WOD随机变量序列的完全收敛性和矩完全收敛性. 数学物理学报[J], 2019, 39(5): 1183-1191 doi:

Zhang Qian, Cai Guanghui. Complete Convergence and Complete Moment Convergence for WOD Random Variables Sequences. Acta Mathematica Scientia[J], 2019, 39(5): 1183-1191 doi:

1 引言

Hus和Robbins (1947)[1]提出了完全收敛性的概念, Chow (1988)[2]则提出了矩完全收敛性的概念.矩完全收敛性是完全收敛性的深化,许多学者进行了研究,得到很多深刻的结果,如文献[4-17]等等.特别地,最近Chen和Sung (2014)[5]利用三段截尾法获得了如下的Baum-Katz型完全收敛性结果.

定理1.1[5]  设$\{X, X_{n}, n\geq 1\}$是独立同分布的随机变量序列且$EX=0$,记$S_{n}=\sum\limits_{k=1}^{n}X_{k}$,令$\alpha>1$, $E\exp(\ln^{\alpha}|X|) < \infty$,则有

$ \begin{eqnarray}\sum\limits_{n=1}^{\infty}\exp (\ln^{\alpha}n)\frac{\ln^{\alpha-1}n}{n^{2}}P(|S_{n}|>n)<\infty. \end{eqnarray}$

定理1.1推广了Gut和Stadtüller (2011)[4]中的定理2.1. Qiu和Chen (2014)[6]在Gut和Stadtüller (2011)[4]的基础上,讨论了矩完全收敛性,结果如下.

定理1.2[6]  设$\{X, X_{n}, n\geq 1\}$是独立同分布的随机变量序列且$EX=0$,记$S_{n}=\sum\limits_{k=1}^{n}X_{k}$,令$\alpha>1$, $E\exp(\ln^{\alpha}|X|) < \infty$,则对所有的$\varepsilon >1$$q>0$

$ \begin{eqnarray}\sum\limits_{n=1}^{\infty}\exp (\ln^{\alpha}n)\frac{\ln^{\alpha-1}n}{n^{2+q}}E\{|S_{n}|-\varepsilon n\}^{q}_{+}<\infty. \end{eqnarray}$

本论文考虑将定理1.1及定理1.2推广至WOD情形.下面介绍WOD随机变量序列的定义.

引理1.1[3]  称$\{X_{n}, n\geq 1\}$是带有控制系数$\{g_{U}(n), n\geq 1\}$的WUOD (widely upper orthant dependent)序列,如果存在有限的实数序列$\{g_{U}(n), n\geq 1\}$,任取$n\geq 1$$x_{i}\in (-\infty, \infty)$, $1\leq i \leq n$满足

$\{X_{n}, n\geq 1\}$是带有控制系数$\{g_{L}(n), n\geq 1\}$的WLOD (widely lower orthant dependent)序列,如果存在有限的实数序列$\{g_{L}(n), n\geq 1\}$,任取$n\geq 1$$x_{i}\in (-\infty, \infty)$, $1\leq i \leq n$满足

$\{X_{n}, n\geq 1\}$是WOD (widely orthant dependent)序列,如果$\{X_{n}, n\geq 1\}$既是WUOD序列,又是WLOD序列,其控制系数记为$g(n)=\max\{g_{U}(n), g_{L}(n)\}$.

WOD这一概念是由学者Wang等(2013)[3]提出的,以END (extended negatively dependent)为特殊情形($g(n)\equiv C$),当然, NOD (negatively orthant dependent)更是为其特殊情形($g(n)\equiv 1$).如Qiu等(2014)[11]研究了NOD随机变量序列的完全收敛性.邱德华等(2017)[12]研究了END随机变量序列加权和的矩完全收敛性.郭明乐和祝东进(2013)[13]研究了NOD随机变量序列加权和的矩完全收敛性的等价条件. Wang等(2014)[14]研究了WOD随机变量序列的完全收敛性和在非参数回归模型中的应用. Qiu和Chen (2014)[15]在适当条件下获得了WOD随机变量序列加权和的完全收敛性和矩完全收敛性.丁洋等(2015)[16]利用WOD随机变量序列部分和的Rosenthal型不等式获得了WOD随机变量序列加权和的完全收敛性. Liu等(2017)[17]获得了WOD随机变量序列的矩完全收敛性.蔡光辉和潘雪艳(2015)[18]在一个独立随机变量序列的重对数律的基础上,获得了不同分布WOD随机变量序列的重对数律等等.

本文首先在一个独立同分布随机变量序列的Baum-Katz型完全收敛性结果的基础上,获得了一个同分布的WOD随机变量序列的Baum-Katz型完全收敛性的类似结果(见如下定理1.3).

定理1.3  设$\{X, X_{n}, n\geq 1\}$是同分布的WOD随机变量序列且$EX=0$,记$S_{n}=\sum\limits_{k=1}^{n}X_{k}$,令$\alpha>1$, $E\exp(\ln^{\alpha}|X|) < \infty$, $g(n)=O(n^{\theta})$, $0 < \theta < 1$,则有

$ \begin{eqnarray} \sum\limits_{n=1}^{\infty}\exp(\ln^{\alpha}n)\frac{\ln^{\alpha-1}n}{n^{2}}P(|S_{n}|>n)<\infty. \end{eqnarray} $

注1.1  若$g(n)\equiv1$时, $\{X, X_{n}, n\geq 1\}$为同分布的NOD随机变量序列,则定理1.3仍旧成立.

注1.2  若$g(n)\equiv C$时, $\{X, X_{n}, n\geq 1\}$为同分布的END随机变量序列,则定理1.3仍旧成立.

注1.3  若仍旧采用Chen和Sung(2014)[5]的三段截尾法,我们无法获得WOD情形时的类似Chen和Sung (2014)[5]中的定理2.1(即文中定理1.1).故本文采用五段截尾法,在所用的条件一致的情况下将Chen和Sung (2014)[5]中的定理2.1推广至WOD的情形.

其次,本文受Qiu和Chen (2014)[6]中的定理2.1的启发,获得了一个同分布的WOD随机变量序列的矩完全收敛性的类似结果(见如下定理1.4).

定理1.4  设$\{X, X_{n}, n\geq 1\}$是同分布的WOD随机变量序列且$EX=0$,记$S_{n}=\sum\limits_{k=1}^{n}X_{k}$,令$\alpha>1$, $E\exp(\ln^{\alpha}|X|) < \infty$, $g(n)=O(n^{\theta})$, $0 < \theta < 1$.则对所有的$\varepsilon \geq 1$$q>0$

$ \begin{eqnarray} \sum\limits_{n=1}^{\infty}\exp(\ln^{\alpha}n)\frac{\ln^{\alpha-1}n}{n^{2+q}}E\{|S_{n}|-\varepsilon n\}^{q}_{+}<\infty. \end{eqnarray}$

注1.4  若$g(n)\equiv1$时, $\{X, X_{n}, n\geq 1\}$为同分布的NOD随机变量序列,则定理1.4仍旧成立.

注1.5  若$g(n)\equiv C$时, $\{X, X_{n}, n\geq 1\}$为同分布的END随机变量序列,则定理1.4仍旧成立.

注1.6  若仍旧采用Qiu和Chen (2014)[6]的三段截尾法,我们无法获得WOD情形时的类似Qiu和Chen (2014)[6]中的定理2.1 (即文中定理1.2).故本文采用五段截尾法,将Qiu和Chen (2014)[6]中的定理2.1推广至WOD的情形,并且我们得到了$\varepsilon = 1$时的定理2.1.

本文中$ C $表示正常数,且在不同的地方可为不同的值. $a_{n}\ll b_{n}$表示$a_{n}=O(b_{n})$. $a_{n}=O(b_{n})$表示$a_{n}\leq C b_{n}$.

2 定理的证明

为了证明定理,需要如下4个引理.

引理2.1  设$\{X_{n}, n\geq 1\}$为WOD随机变量序列,如果$\{f_{n}(\cdot), n\geq 1\}$是均非升(或均非降)的函数,则$\{f_{n}(X_{n}), n\geq 1\}$仍为WOD随机变量序列.

引理2.2  设$\{X_{n}, n\geq 1\}$为WOD随机变量序列, $EX_{n}=0$, $EX_{n}^{2} < \infty$, $B_{n}=\sum\limits_{k=1}^{n}EX_{k}^{2}$, $S_{n}=\sum\limits_{k=1}^{n}X_{k}$.记控制系数$g(n)=\max \{g_{U}(n), g_{L}(n)\}$.则对所有的$x>0$, $y>0$均有

引理2.3[19]  对所有的$x>0$,均有

引理2.4  设$Y$为一个随机变量,当$\alpha>1$时, $E\exp(\ln^{\alpha}|Y|) < \infty$,则我们有

  对于足够大的$n_{0}$,当$x\in[n_{0}, +\infty)$时,可得$x/\ln^{\alpha}x$$ \exp(\ln^{\alpha}x)\ln^{\alpha-1}x /x$为增函数.令$d_{n}=n/\ln^{\alpha}n$,且$\ln^{\alpha}(n+1)-\ln^{\alpha}n=\textit{o}(1)$, $\ln^{\alpha}n-\ln^{\alpha}d_{n}=\textit{o}(1)$,我们有

引理2.4证明完毕.

定理1.3的证明  $\forall 1\leq k\leq n$,令

其中$b_{n}=n/4\ln^{2\alpha}n$, $c_{n}=n/4\ln^{\alpha}n$.

$ \begin{eqnarray} \sum\limits_{n=1}^{\infty} \exp(\ln^{\alpha}n)\frac{\ln^{\alpha-1}n}{n^{2}}P(|S_{n}|>n) &\leq& \sum\limits_{l=1}^{5}\sum\limits_{n=1}^{\infty} \exp(\ln^{\alpha}n)\frac{\ln^{\alpha-1}n}{n^{2}}P(|\sum\limits_{k=1}^{n}X_{k}(l)|>n)\nonumber\\ &:=&\sum\limits_{l=1}^{5}I_{l}. \end{eqnarray} $

先证$I_{1} < \infty$.由引理2.1,可得$\{X_{k}(1), 1\leq k \leq n, n\geq1\}$也是WOD的.由$E\exp(\ln^{\alpha}|X|) < \infty$, $\alpha>1$,推出$EX^{2} < \infty$.注意到$EX=0$,我们有

$ \begin{eqnarray} \bigg|\sum\limits_{k=1}^{n}EX_{k}(1)\bigg|& \leq& \sum\limits_{k=1}^{n}[E|X_{k}|I(|X_{k}|\leq b_{n})+b_{n}I(|X_{k}|>b_{n})]\nonumber\\ &= &n E|X|I(|X|>b_{n})+n b_{n}EI(|X|>b_{n})\nonumber\\ &\leq& n \frac{EX^{2}I(|X|>b_{n})}{b_{n}}+n b_{n}^{-1}EX^{2}I(|X|>b_{n})\nonumber\\ &=&\frac{2n EX^{2}I(|X|>b_{n})}{b_{n}} \nonumber\\ &=&\textit{o}(\ln^{2\alpha}n), \quad n \rightarrow\infty. \end{eqnarray} $

由(2.2)式可知,对于足够大的$n_{0}$,当$n\geq n_{0}$时,可得$|\sum\limits_{k=1}^{n}EX_{k}(1)|\leq \ln^{2\alpha}n$.由引理2.2,引理2.3, $E|X_{k} (1)|\leq b_{n}$,令$x=n-\ln^{2\alpha}n$, $y=2b_{n}=n/2\ln^{2\alpha}n$,注意到, $B_{n}=\sum\limits_{k=1}^{n}E[X_{k}(1)-EX_{k}(1)]^{2}\leq n EX^{2}$,当$n\geq n_{0}$时,我们可得

$\begin{eqnarray} P(|\sum\limits_{k=1}^{n}X_{k}(1)|>n)&\leq &P(|\sum\limits_{k=1}^{n}(X_{k}(1)-EX_{k}(1))|>n- \ln^{2\alpha}n)\nonumber\\ & \leq& \sum\limits_{k=1}^{n} P(|X_{k}(1)-EX_{k}(1)|\geq y)+2 g(n)\exp\bigg\{\frac{x}{y}-\frac{x}{y}\ln(1+\frac{xy}{B_{n}})\bigg\}\nonumber\\& \leq &\sum\limits_{k=1}^{n} P(|X_{k}(1)|\geq y-b_{n})+2 g(n)\exp\bigg\{\frac{x}{y}-\frac{x}{y}\ln(1+\frac{xy}{B_{n}})\bigg\}\nonumber\\ &=&2g(n)\exp\bigg\{\frac{x}{y}(1-\ln(1+\frac{xy}{B_{n}}))\bigg\}\nonumber\\ &\leq& 2g(n)\exp\bigg\{\frac{x}{y}(\frac{1}{1+\frac{xy}{B_{n}}} -\frac{(\frac{xy}{B_{n}})^{2}}{2(1+\frac{xy}{B_{n}})^{2}}(1+\frac{2}{3}\ln(1+\frac{xy}{B_{n}})))\bigg\}\nonumber\\ &\leq&2 Cg(n)\exp\bigg\{\frac{x}{y}\frac{B_{n}}{B_{n}+xy}\bigg\}\exp \bigg\{-\frac{x}{y}\frac{(xy)^{2}}{2(B_{n}+xy)^{2}}\bigg\}\nonumber\\ &\leq&2 C g(n) \exp\bigg\{\frac{B_{n}}{y^{2}}\}\exp\{-\frac{x^{3}y}{2(B_{n}+xy)^{2}}\bigg\}\nonumber\\ & =&2 C g(n)\exp\bigg\{\frac{nEX^{2}}{(\frac{n}{2\ln^{2\alpha}n})^{2}}\bigg\} \exp\bigg \{-\frac{(1-\frac{\ln^{2\alpha}n}{n})^{3} \ln^{2\alpha}n}{4[\frac{\ln^{2\alpha}nEX^{2}}{n}+\frac{1}{2}- \frac{\ln^{2\alpha}n}{2n}]^{2}}\bigg\}\\ &\ll& 2g(n)\exp\{-\ln^{2\alpha}n\}. \end{eqnarray}$

将(2.3)式代入到(2.1)式中,由$g(n)=O(n^{\theta})$, $0 < \theta < 1$,我们可得

$\begin{eqnarray} I_{1}& \ll& \sum\limits_{n=1}^{\infty} \exp\{-\ln^{2\alpha}n+ \ln^{\alpha}n\}\ln^{\alpha-1}n\frac{1}{n^{2}}g(n)\nonumber\\ &\leq& C\sum\limits_{n=1}^{\infty} \exp\{-\ln^{2\alpha}n+\ln^{\alpha}n\}\ln^{\alpha-1}n\frac{1}{n^{2-\theta}}\nonumber\\ &<&\infty. \end{eqnarray}$

对于$I_{2}$,由引理2.1,可得$\{X_{k}(2), 1\leq k \leq n, n\geq1\}$也是WOD的.由$E\exp(\ln^{\alpha}|X|) < \infty$, $\alpha > 1$,推出$EX^{2} < \infty$.可得

$ \begin{eqnarray} \bigg|\sum\limits_{k=1}^{n}EX_{k}(2)\bigg|& =& \bigg|\sum\limits_{k=1}^{n}E\{(X_{k}-b_{n})I(b_{n}\leq X_{k}< b_{n}+c_{n})+c_{n}I(X_{k}>b_{n}+c_{n})\}\bigg|\nonumber\\ &\leq &n E|X|I(|X|>b_{n})+\frac{n^{2}}{4\ln^{\alpha}n}EI(|X|>b_{n})\nonumber\\ &\leq &n \frac{EX^{2}I(|X|>b_{n})}{b_{n}}+\frac{n^{2}}{4\ln^{\alpha}n}\frac{EX^{2}I(|X|>b_{n})}{b_{n}^{2}}\nonumber\\ &=&\textit{o}(\ln^{3\alpha}n), \quad n \rightarrow\infty. \end{eqnarray} $

由(2.5)式可知,对于足够大的$n_{0}$,当$n\geq n_{0}$时,可得$|\sum\limits_{k=1}^{n}EX_{k}(2)|\leq \ln^{3\alpha}n$.由引理2.2,引理2.3, $E|X_{k}(2)|\leq c_{n}$,令$x=n-\ln^{3\alpha}n$, $y=2 c_{n}=n/2\ln^{\alpha}n$,注意到$B_{n}=\sum\limits_{k=1}^{n}E[X_{k}(2)-EX_{k}(2)]^{2}\leq n EX^{2}$,当$n\geq n_{0}$时,类似于(2.3)的证明方法,我们可得

$ \begin{eqnarray} P(|\sum\limits_{k=1}^{n}X_{k}(2)|>n)& \leq& P(|\sum\limits_{k=1}^{n}(X_{k}(2)-EX_{k}(2))|>n- \ln^{3\alpha}n)\nonumber\\ &\leq& P(|\sum\limits_{k=1}^{n}(X_{k}(2)-EX_{k}(2))|\geq y)+2 g(n)\exp\bigg\{\frac{x}{y}-\frac{x}{y} \ln(1+\frac{xy}{B_{n}})\bigg\}\nonumber\\ & \leq& \sum\limits_{k=1}^{n} P(|X_{k}(2)|\geq y-c_{n})+2 g(n)\exp\bigg\{\frac{x}{y}-\frac{x}{y} \ln(1+\frac{xy}{B_{n}})\bigg\}\nonumber\\ & \leq &2 C g(n) \exp\bigg\{\frac{B_{n}}{y^{2}}\bigg\}\exp\bigg\{-\frac{x^{3}y}{2(B_{n}+xy)^{2}}\bigg\}\nonumber\\ &=&2 C g(n) \exp\bigg\{\frac{nEX^{2}}{(\frac{n}{2\ln^{\alpha}n})^{2}}\bigg\} \exp\bigg \{-\frac{(1-\frac{\ln^{3\alpha}n}{n})^{3} \ln^{\alpha}n}{4[\frac{\ln^{\alpha}nEX^{2}}{n}+\frac{1}{2}- \frac{\ln^{3\alpha}n}{2n}]^{2}}\bigg\}\nonumber\\ &\ll& 2 g(n)\exp\{-\ln^{\alpha}n\}. \end{eqnarray} $

将(2.6)式代入到(2.1)式中,由$g(n)=O(n^{\theta})$, $0 < \theta < 1$,我们可得

$ \begin{eqnarray} I_{2}\ll \sum\limits_{n=1}^{\infty} \ln^{\alpha-1}n\frac{1}{n^{2}}g(n)\leq C\sum\limits_{n=1}^{\infty} \ln^{\alpha-1}n\frac{1}{n^{2-\theta}}<\infty.\end{eqnarray} $

同理可证

$\begin{equation} I_{3}\ll\sum\limits_{n=1}^{\infty} \ln^{\alpha-1}n\frac{1}{n^{2-\theta}}<\infty.\end{equation}$

对于$I_{4}$,在引理2.4中将$Y$替换成$4X$可得

$ \begin{eqnarray}I_{4}& \ll &\sum\limits_{n=1}^{\infty}\exp(\ln^{\alpha}n)\frac{\ln^{\alpha-1}n}{n}P(|X|>b_{n}+c_{n})\nonumber\\ &\leq& C \sum\limits_{n=1}^{\infty} \exp(\ln^{\alpha}n)\frac{\ln^{\alpha-1}n}{n}P(|X|>\frac{n}{4\ln^{\alpha}n})\nonumber\\ &<&\infty. \end{eqnarray} $

同理可证

$ \begin{equation} I_{5}\ll\sum\limits_{n=1}^{\infty} \exp(\ln^{\alpha}n)\frac{\ln^{\alpha-1}n}{n}P(|X|>\frac{n}{4\ln^{\alpha}n})<\infty. \end{equation} $

由(2.4)-(2.10)式,我们可得(1.3)式成立.至此定理1.3的证明完毕.

定理1.4的证明

因为$\varepsilon \geq 1$,由定理1.3可知$\sum\limits_{n=1}^{\infty}\exp(\ln^{\alpha}n)\frac{\ln^{\alpha-1}n}{n^{2}}P(|S_{n}| > \varepsilon n) < \infty$.因此,为了证明(1.4)式成立,我们只需证明

$ \begin{eqnarray} \sum\limits_{n=1}^{\infty}\exp(\ln^{\alpha}n)\frac{\ln^{\alpha-1}n}{n^{2+q}}\int_{n}^{\infty}{x^{q-1}P(|S_{n}|>\varepsilon x)}\, {\rm d}x<\infty.\end{eqnarray} $

$\forall 1\leq k\leq n$, $x\geq n$,令

其中$b_{x}=x/4\ln^{2\alpha}x$, $c_{x}=x/4\ln^{\alpha}x$.

所以

$\begin{eqnarray}& &\sum\limits_{n=1}^{\infty}\exp(\ln^{\alpha}n)\frac{\ln^{\alpha-1}n}{n^{2+q}}\int_{n}^{\infty}{x^{q-1}P(|S_{n}|>\varepsilon x)}\, {\rm d}x\nonumber\\ &\leq& \sum\limits_{J=1}^{5} \sum\limits_{n=1}^{\infty}\exp(\ln^{\alpha}n)\frac{\ln^{\alpha-1}n}{n^{2+q}}\int_{n}^{\infty}{x^{q-1} P(|\sum\limits_{k=1}^{n}Y_{k}(J)|>\varepsilon x)}\, {\rm d}x\nonumber\\ &:=&\sum\limits_{J=1}^{5}I'_{J}. \end{eqnarray}$

类似地运用证明(2.3)和(2.6)式的方法,当$x\geq n \geq n_{0}$时,可得

$\begin{equation}P(|\sum\limits_{k=1}^{n}Y_{k}(1)|>\varepsilon x)\ll 2g(n)\exp\{-\ln^{2\alpha}x\}, \end{equation}$

$\begin{equation}P(|\sum\limits_{k=1}^{n}Y_{k}(2)|>\varepsilon x)\ll 2g(n)\exp\{-\ln^{\alpha}x\}.\end{equation}$

事实上, $\forall a>0$, $b>0$, $\alpha>1$,有$(a+b)^{\alpha}\geq a^{\alpha}+b^{\alpha}$成立.将(2.13)式代入(2.12)式,由$g(n)=O(n^{\theta})$, $0 < \theta < 1$,我们有

$ \begin{eqnarray}I'_{1}& \ll&\sum\limits_{n=1}^{\infty}\exp (\ln^{\alpha}n)\frac{\ln^{\alpha-1}n}{n^{2+q}} \int_{n}^{\infty}{x^{q-1}2g(n) \exp(-\ln^{2\alpha}x)}\, {\rm d}x\nonumber\\ &\leq& \sum\limits_{n=1}^{\infty}\exp (\ln^{\alpha}n)\frac{\ln^{\alpha-1}n}{n^{2-\theta+q}}n^{q}\exp(-\ln^{2\alpha}n) \int_{1}^{\infty}{t^{q-1}\exp(-\ln^{2\alpha}t)}{\rm d}t\nonumber\\ & \leq& C\sum\limits_{n=1}^{\infty} \exp\{-\ln^{2\alpha}n+\ln^{\alpha}n\}\ln^{\alpha-1}n\frac{1}{n^{2-\theta}}\nonumber\\ &<&\infty. \end{eqnarray} $

将(2.14)式代入(2.12)式,由$g(n)=O(n^{\theta})$, $0 < \theta < 1$,我们有

$ \begin{eqnarray}I'_{2}& \ll&\sum\limits_{n=1}^{\infty}\exp (\ln^{\alpha}n)\frac{\ln^{\alpha-1}n}{n^{2+q}} \int_{n}^{\infty}{x^{q-1}2g(n) \exp(-\ln^{\alpha}x)}\, {\rm d}x\nonumber\\ &\leq& \sum\limits_{n=1}^{\infty}\exp (\ln^{\alpha}n)\frac{\ln^{\alpha-1}n}{n^{2-\theta+q}}n^{q}\exp(-\ln^{\alpha}n) \int_{1}^{\infty}{t^{q-1}\exp(-\ln^{\alpha}t)}{\rm d}t\nonumber\\ &\ll&\sum\limits_{n=1}^{\infty} \frac{\ln^{\alpha-1}n}{n^{2-\theta}}\nonumber\\ &<&\infty. \end{eqnarray} $

同理可证

$ \begin{equation} I'_{3} \ll\sum\limits_{n=1}^{\infty}\frac{ \ln^{\alpha-1}n}{n^{2-\theta}} <\infty. \end{equation} $

在引理2.4中将$Y$替换成$4X$,可得

$ \begin{eqnarray}I'_{4}& \ll&\sum\limits_{n=1}^{\infty}\exp (\ln^{\alpha}n)\frac{\ln^{\alpha-1}n}{n^{1+q}}\int_{n}^{\infty}{x^{q-1} P(|X|>\frac{x}{4\ln^{\alpha}x})}\, {\rm d}x\nonumber\\&=&\sum\limits_{n=1}^{\infty}\exp (\ln^{\alpha}n)\frac{\ln^{\alpha-1}n}{n^{1+q}}\sum\limits_{j=n}^{\infty}\int_{j}^{j+1}{x^{q-1} P(|X|>\frac{x}{4\ln^{\alpha}x})}\, {\rm d}x\nonumber\\&\ll& \sum\limits_{n=1}^{\infty}\exp (\ln^{\alpha}n)\frac{\ln^{\alpha-1}n}{n^{1+q}}\sum\limits_{j=n}^{\infty}P(|X|>\frac{j}{4\ln^{\alpha}j})j^{q-1}\nonumber\\&=&\sum\limits_{j=1}^{\infty}P(|X|>\frac{j}{4\ln^{\alpha}j})j^{q-1}\sum\limits_{n=1}^{j}\exp (\ln^{\alpha}n)\frac{\ln^{\alpha-1}n}{n^{1+q}}\nonumber\\ &\ll& \sum\limits_{j=1}^{\infty}\exp (\ln^{\alpha}j)\frac{\ln^{\alpha-1}j}{j}P(|X|>\frac{j}{4\ln^{\alpha}j})\nonumber\\&<&\infty.\end{eqnarray} $

同理可证

$\begin{equation}I'_{5}\ll \sum\limits_{j=1}^{\infty}\exp (\ln^{\alpha}j)\frac{\ln^{\alpha-1}j}{j}P(|X|>\frac{j}{4\ln^{\alpha}j})<\infty.\end{equation}$

由(2.15)-(2.19)式,我们可得(2.12)式成立,即(1.4)式得证.至此定理1.4的证明完毕.

参考文献

Hus P L , Robbins H .

Complete convergence and the law of large numbers

Proc Natl Acad Sci USA, 1947, 33: 25- 31

DOI:10.1073/pnas.33.2.25      [本文引用: 1]

Chow Y .

On the rate of moment convergence of sample sums and extremes

Bull Inst Math Acad Sin, 1988, 16: 177- 201

URL     [本文引用: 1]

Wang K Y , Wang Y B , Gao Q W .

Uniform asymptotics for the finite-time ruin probability of a new dependent risk model with a constant interest rate

Meth Comp Appl Prob, 2013, 15: 109- 124

DOI:10.1007/s11009-011-9226-y      [本文引用: 2]

Gut A , Stadtüller U .

An intermediate Baum-Katz theorem

Stat Probab Lett, 2011, 81: 1486- 1492

DOI:10.1016/j.spl.2011.05.008      [本文引用: 3]

Chen P Y , Sung H S .

A Baum-Katz theorem for i.i.d. random variables with higher order moments

Stat Probab Lett, 2014, 94: 63- 68

DOI:10.1016/j.spl.2014.07.005      [本文引用: 7]

Qiu D H , Chen P Y .

Complete moment convergence for i.i.d. random variables

Stat Probab Lett, 2014, 91 (1): 76- 82

URL     [本文引用: 8]

Wang X J , Hu T C , Volodin A , et al.

Complete convergence for weighted wums and arrays of rowwise extended negatively dependent random variables

Commun in Stat, 2013, 42 (13): 2391- 2401

DOI:10.1080/03610926.2011.609321     

Wang X J , Shen A T , Chen Z Y , Hu S H .

Complete convergence for weighted sums of NSD random variables and its application in the EV regression model

Test, 2015, 24 (1): 166- 184

URL    

Wu Q Y , Jiang Y Y .

Complete convergence and complete moment convergence for negatively associated sequences random variables

J Inequal Appl, 2014, 1: 1- 10

URL    

李炜.

END序列加权和的完全收敛性

数学物理学报, 2016, 36A (3): 448- 455

DOI:10.3969/j.issn.1003-3998.2016.03.006     

Li W .

Complete convergence for weighted sums under END setup

Acta Math Sci, 2016, 36A (3): 448- 455

DOI:10.3969/j.issn.1003-3998.2016.03.006     

Qiu D H , Wu Q Y , Chen P Y .

Complete convergence for negatively orthant dependent random variables

J Inequal Appl, 2014, 1: 1- 12

URL     [本文引用: 1]

邱德华, 陈平炎, 肖娟.

END随机变量序列加权和的矩完全收敛性

应用数学学报, 2017, 40 (3): 436- 448

URL     [本文引用: 1]

Qiu D H , Chen P Y , Xiao J .

Complete moment convergence for sequences of END random variables

Acta Math Appl Sin, 2017, 40 (3): 436- 448

URL     [本文引用: 1]

郭明乐, 祝东进.

NOD随机变量序列加权和的矩完全收敛性的等价条件

系统科学与数学, 2013, 33 (9): 1093- 1104

URL     [本文引用: 1]

Guo M L , Zhu D J .

Equivalent conditions of complete moment convergence for weighted sums of NOD sequences of random variables

J Sys Sci & Math Scis, 2013, 33 (9): 1093- 1104

URL     [本文引用: 1]

Wang X J , Xu CH , Hu T CH , Volodin A , Hu Shuhe .

On complete convergence for widely orthant-dependent random variables and its applications in nonparametric regression models

Test, 2014, 23: 607- 629

DOI:10.1007/s11749-014-0365-7      [本文引用: 1]

Qiu D H , Chen P Y .

Complete and complete moment convergence for weighted sums of widely orthant dependent random variables

Acta Math Sin, 2014, 30 (9): 1539- 1548

DOI:10.1007/s10114-014-3483-y      [本文引用: 1]

丁洋, 吴燚, 王学军, .

WOD随机变量加权和的完全收敛性

高校应用数学学报, 2015, 30 (4): 417- 424

DOI:10.3969/j.issn.1000-4424.2015.04.005      [本文引用: 1]

Ding Y , Wu Y , Wang X J , et al.

Complete convergence for weighted sums of widely orthant dependent random variables

Appl Math J Chinese Univ Ser A, 2015, 30 (4): 417- 424

DOI:10.3969/j.issn.1000-4424.2015.04.005      [本文引用: 1]

Liu X , Shen Y , Yang J .

Complete moment convergence of widely orthant dependent random variables

Communication in Statistics-Theort and Methods, 2017, 46 (14): 7256- 7265

DOI:10.1080/03610926.2016.1148728      [本文引用: 2]

蔡光辉, 潘雪艳.

不同分布WOD随机变量序列的重对数律

高校应用数学学报, 2015, 30 (4): 425- 431

DOI:10.3969/j.issn.1000-4424.2015.04.006      [本文引用: 1]

Cai G H , Pan X Y .

Law of iterated logarithm for WOD random variables sequences with different distributions

Appl Math J Chinese Univ Ser A, 2015, 30 (4): 425- 431

DOI:10.3969/j.issn.1000-4424.2015.04.006      [本文引用: 1]

Shao Q M .

A comparison theorem on moment inequalities between Negatively associated and independent random variables

J Theo Probab, 2000, 13: 343- 356

DOI:10.1023/A:1007849609234      [本文引用: 1]

/