数学物理学报, 2019, 39(5): 1041-1054 doi:

论文

二阶广义Emden-Fowler型延迟微分方程的振荡性分析

李继猛,

Oscillation Analysis of Second-Order Generalized Emden-Fowler-Type Delay Differential Equations

Li Jimeng,

收稿日期: 2018-06-18  

基金资助: 湖南省自然科学基金.  12JJ3008
湖南省教育厅教学改革研究项目.  2016JG671
邵阳市科技计划项目.  2016GX04

Received: 2018-06-18  

Fund supported: the Hunan Natural Science Foundation.  12JJ3008
the Research Project on Teaching Reform of Hunan Education Department.  2016JG671
the Science and Technology Plan Project of Shaoyang City.  2016GX04

作者简介 About authors

李继猛,E-mail:syxyljm@163 , E-mail:syxyljm@163

摘要

研究了一类二阶广义Emden-Fowler型非线性延迟泛函微分方程的振荡性.利用广义双Riccati变换技术及一些分析技巧,在正则和非正则两种情形下获得了该方程振荡的一系列新准则,推广且改进了现有文献中的一些结果,并给出了3个实例来说明文中的主要结论.

关键词: 振荡性 ; 延迟 ; Emden-Fowler型微分方程 ; Riccati变换

Abstract

We study the oscillatory behavior of a class of second-order generalized EmdenFowler-type nonlinear delay functional differential equations in this paper. By using a couple generalized Riccati transformation and some necessary analytic techniques, we establish some new oscillation criteria for the equations under both the cases canonical form and noncanonical form, which deal with some cases not covered by existing results in the literature. Three examples are given to illustrate the main results of this article.

Keywords: Oscillation ; Delay ; Emden-Fowler-type differential equation ; Riccati transformation

PDF (380KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

李继猛. 二阶广义Emden-Fowler型延迟微分方程的振荡性分析. 数学物理学报[J], 2019, 39(5): 1041-1054 doi:

Li Jimeng. Oscillation Analysis of Second-Order Generalized Emden-Fowler-Type Delay Differential Equations. Acta Mathematica Scientia[J], 2019, 39(5): 1041-1054 doi:

1 引言

由于微分方程在自然科学和工程技术、生物医药及金融学等领域都有广泛的应用,因而微分方程的振动性等定性理论的研究引起了国内外学者们的广泛兴趣,见文献[1-12]及其参考文献.笔者考虑如下形式的二阶广义Emden-Fowler型延迟非线性的微分方程

$ \begin{equation} [\alpha(t)\phi_1(z'(t))]'+q(t)f(\phi_2(x(\delta(t)))) = 0, \quad t\geq t_0 \end{equation} $

的振荡性, (1.1)式中, $ z(t) = x(t)+p(t)x(\tau(t)), \phi_1(u) = |u|^{\lambda-1}u, \phi_2(u) = |u|^{\beta-1}u $ ($ \lambda, \beta>0 $为实常数).并总假设以下条件(H$ _1) $–(H$ _4) $成立.

(H$ _1)\ a\in C^1([t_0, +\infty), (0, +\infty)) $;

(H$ _2)\ p, q\in C([t_0, +\infty), {\Bbb R} ) $,且$ q(t)>0, p(t)\geq 0 $;

(H$ _3) $滞量函数$ \tau, \delta:[t_0, \infty)\rightarrow(0, +\infty) $,满足$ \tau(t)\leq t, \lim\limits_{t\rightarrow+\infty}\tau(t) = +\infty, \delta(t)\leq t $,和$ \lim\limits_{t\rightarrow+\infty}\delta(t) = +\infty $,并且$ \tau\circ\delta = \delta\circ\tau, \tau'(t)\geq\tau_0 $ (这里$ \tau_0>0 $为常数);

(H$ _4)\ f\in C(\mathbb{(R, R)}) $,当$ u\neq0 $$ uf(u)>0 $,并且$ \frac{f(u)}{u}\geq L $,这里$ L>0 $是常数.

如果称函数$ x(t)\in C^1([T_x, +\infty), {\Bbb R} )(T_x\geq t_0) $是方程$ (1.1) $的一个解,则这个函数$ x(t) $满足$ \alpha(t)\phi_1(z'(t))\in C^1([T_x, +\infty), {\Bbb R} ) $且在区间$ [T_x, +\infty) $满足方程(1.1).本文只讨论方程(1.1)的非平凡解,方程(1.1)的一个解称为是振荡的,如果它既不最终为正也不最终为负,否则称它是非振荡的;方程(1.1)称为是振荡的,如果它的所有解都是振荡的.

方程(1.1)含有许多典型的微分方程,如下列方程

$ \begin{equation} [\alpha(t)|x'(t)|^{\gamma-1}x'(t)]'+q(t)|x(t)|^{\gamma-1}x(\delta(t)) = 0, \end{equation} $

$ \begin{equation} \{{\alpha(t)|[x(t)+p(t)x(\tau(t))]'|^{\gamma-1}[x(t)+p(t)x(\tau(t))]'}\}'+q(t)|x(\delta(t))|^{\beta-1}x(\delta(t)) = 0 \end{equation} $

等等,对于这些特殊类型的Emden-Fowler型延迟微分方程的振荡性,已有一些研究成果(参见文献[1-12]及其参考文献).如文献[1-2]研究了一类较为典型的二阶Emden-Fowler型延迟微分方程(1.2)的振荡性,其主要结果之一如下.

定理A[2]  设方程(1.2)满足条件: $ \alpha'(t)\geq 0, \delta'(t)>0 $,且

$ R(t) = \int _{t_0}^t\alpha^{\frac{-1}{\gamma}}(t){\rm d}t $,如果

则方程(1.2)是振荡的.

这里,我们看到条件"$ \alpha'(t)\geq0 $"似乎有点苛刻.以此为契机,文献[3]研究了更一般的二阶Emden-Fowler型延迟微分方程(1.3)的振荡性,在正则和非正则两种情形下得到了方程(1.3)的一系列振荡准则,改进了文献[2]的结果,其主要结论之一如下.

定理B[3]  设方程(1.3)满足条件: $ \alpha'(t)\geq0, \delta'(t)>0, 0\leq p(t)<1, \gamma\geq\beta $,且(C$ _1) $成立.如果有函数$ \varphi\in C^1([t_0, +\infty), (0, +\infty)) $,使得

这里$ k>0 $是某常数,则方程(1.3)是振荡的.

对于非正则情形,有如下结论.

定理C[3]  设方程(1.3)满足条件: $ \alpha'(t)\geq0, \tau'(t)>0, 0\leq p(t)<1, \gamma\geq\beta, p'(t)\geq0 $,且

并且有$ \int_{t_0}^{+\infty}q(t)[1-p(\delta(t))]^\beta {\rm d}t = +\infty $$ \int_{t_0}^{+\infty}\Big(\frac{1}{\alpha(t)}\int_{t_0}^tq(s){\rm d}s\Big)^{\frac{1}{\gamma}}{\rm d}t = +\infty $,则方程(1.3)的每一个解$ x(t) $或者振荡或者满足$ \lim\limits_{t\rightarrow+\infty}x(t) = 0 $.

显然,定理B和定理C中有限制条件"$ \alpha'(t)\geq0 $$ 0\leq p(t)<1 $",且$ \gamma<\beta $时文献[3]没有给出方程(1.3)的振荡准则.而且在非正则的情形,定理C的结论是不确定的,因此应用时就会有很多限制.例如,对下列Emden-Fowler型延迟微分方程

由于不满足$ 0\leq p(t)<0 $,因此定理B不能用于上述方程.再例如,对于著名的Euler方程

定理C也不能确定其是否振荡.其它文献如[4-12]中的定理也不能确定方程(E$ _1) $和(E$ _2) $是否振荡.

本文的目的是利用双黎卡提(Riccati)变换技术及各种分析技巧来研究方程(1.1)的振荡性,在正则和非正则的情形下(即在条件(C$ _1) $和(C$ _2) $下),得到了该方程的一系列新的振荡准则,推广、改进且丰富了现有文献中关于Emden-Fowler型延迟微分方程的振荡性结果.

2 方程(1.1)振荡的判别定理

首先给出如下引理.

引理2.1[6]  设X, Y为非负实数,则当$ 0<\lambda\leq1 $$ X^\lambda+Y^\lambda\geq(X+Y)^\lambda $,等号成立当且仅当$ X = Y $.

引理2.2[7]  设X, Y为非负实数,当$ \lambda>1 $$ X^\lambda+Y^\lambda\geq2^{1-\lambda}(X+Y)^\lambda $,等号成立当且仅当$ X = Y $.

引理2.3[8]  设$ A>0, B>0 $$ \alpha>0 $均为常数,则当$ x>0 $时, $ Ax-Bx^{\frac{\alpha+1}{\alpha}}\leq\frac{\alpha^\alpha A^{\alpha+1}}{(\alpha+1)^{\alpha+1}B^\alpha} $.其次,我们引入如下三个记号(使用时不再说明): $ L_0 = \Bigg\{\begin{array}{ll} L, &0<\beta\leq 1, \\ L2^{1-\beta}, &\beta>1, \end{array}\Bigg., $$ Q(t) = \min\{q(t), q(\tau(t))\}, $$ A(t) = \int_{t_0}^t\alpha^{\frac{-1}{\lambda}}(t){\rm d}t $.

定理2.1  设条件(C$ _1 $)成立且$ 0\leq p(t)\leq p_0<+\infty $(这里$ p_0 $为常数), $ \delta(t)\leq\tau(t) $$ \delta'(t)>0 $,如果存在函数$ \varphi\in C^1([t_0, +\infty), (0, +\infty)) $使得

$ \begin{equation} \limsup\limits_{t\rightarrow+\infty}\int_{t_0}^t\varphi(s)\Big[L_0Q(s)-\frac{k\alpha^{\omega_1}(\delta(s))}{(\delta'(s))^{\omega_2}}\Big(\frac{\varphi'_+(s)}{\varphi(s)}\Big)^{\omega_2+1}\Big]{\rm d}s = +\infty, \end{equation} $

其中常数$ k = \Bigg\{\begin{array}{ll} \frac{1+\frac{p_0^\beta}{\tau_0}}{(\lambda+1)^{\lambda+1}}, &\lambda = \beta, \\ c, &\lambda\neq\beta, \end{array}\Bigg., $$ c $为正常数.而$ \omega_1 = \min\{1, \frac{\beta}{\lambda}\}, \omega_2 = \min\{\lambda, \beta\} $,则方程(1.1)是振荡的.

  反证法.设方程(1.1)存在一个非振荡解$ x(t) $,不妨设$ x(t) $为方程(1.1)的最终正解(当$ x(t) $为最终负解时类似可证),则$ \exists t_1\geq t_0 $,使得当$ t\geq t_1 $时,有$ x(t)>0, x(\tau(t))>0, $$ x(\delta(t))>0 $,于是由$ z(t) $的定义知, $ z(t)>0 $$ z(t)\geq x(t)(t\geq t_1) $.由方程(1.1),得

$ \begin{equation} [\alpha(t)\phi_1(z'(t))]' = -q(t)f(\phi_2(x(\delta(t))))\leq-Lq(t)(x(\delta(t)))^\beta<0. \end{equation} $

注意到条件(C$ _1) $,于是由(2.2)式就不难推出$ z'(t)>0(t\geq t_1) $.应用(2.2)式,可得

$ \begin{equation} \frac{[\alpha(\tau(t))\phi_1(z'(\tau(t)))]'}{\tau'(t)}+Lq(\tau(t))(x(\delta(\tau(t))))^\beta\leq0, t\geq t_1, \end{equation} $

因此,综合(2.2)和(2.3)两式,当$ t\geq t_1 $时,就有

$ \begin{equation} [\alpha(t)\phi_1(z'(t))]'+Lq(t)(x(\delta(t)))^\beta+p_0^\beta Lq(\tau(t))(x(\delta(\tau(t))))^\beta+p_0^\beta\frac{[\alpha(\tau(t))\phi_1(z'(\tau(t)))]'}{\tau'(t)}\leq0. \end{equation} $

$ 0<\beta\leq1 $时,注意到$ \tau'(t)\geq\tau_0>0, \tau\circ\delta = \delta\circ\tau $$ z(t)\leq x(t)+p_0x(\tau(t)) $以及引理2.1,则(2.4)式进一步可写成

$ \beta>1 $时,注意到引理2.2,则类似地可得

注意到记号$ L_0 $的定义,则上述两式可写成

$ \begin{equation} [\alpha(t)\phi_1(z'(t))]'+\frac{p_0^\beta}{\tau_0}[\alpha(\tau(t))\phi_1(z'(\tau(t)))]'\leq-L_0Q(t)z^\beta(\delta(t))\leq0. \end{equation} $

情形(a)  $ \lambda\leq\beta $.首先,作Riccati变换:

$ \begin{equation} w(t) = \varphi(t)\frac{\alpha(t)\phi_1(z'(t))}{\phi_2(z(\delta(t)))} = \varphi(t)\frac{\alpha(t)(z'(t))^\lambda}{z^\beta(\delta(t))}, t\geq t_1, \end{equation} $

$ w(t)>0(t\geq t_1) $,注意到$ \tau'(t)\geq \tau_0>0 $,由(2.6)式就有

$ \begin{eqnarray} w'(t)& = &\varphi'(t)\frac{\alpha(t)(z'(t))^\lambda}{z^\beta(\delta(t))}+\varphi(t)\frac{[\alpha(t)(z'(t))^\lambda]'z^\beta(\delta(t))-\alpha(t)(z'(t))^\lambda\beta z^{\beta-1}(\delta(t))z'(\delta(t))\delta'(t)}{z^{2\beta}(\delta(t))} \\ & = &\frac{\varphi'(t)}{\varphi(t)}w(t)+\frac{\varphi(t)}{z^\beta(\delta(t))}[\alpha(t)(z'(t))^\lambda]'-\beta\frac{\varphi(t)\alpha(t)\delta'(t)(z'(t))^\lambda z'(\delta(t))}{z^{\beta+1}(\delta(t))}. \end{eqnarray} $

因为函数$ \alpha(t)[z'(t)]^\lambda $单调减少,所以$ \alpha(\delta(t))[z'(\delta(t))]^\lambda\geq\alpha(t)[z'(t)]^\lambda $,亦即$ z'(\delta(t))\geq\Big(\frac{\alpha(t)}{\alpha(\delta(t))}\Big)^{\frac{1}{\lambda}}z'(t) $.此外,由$ z(t)>0, z'(t)>0 $知,存在常数$ \eta>0 $使得当$ t\geq t_1 $时,有$ z(t)\geq\eta $$ z(\delta(t))\geq\eta $.于是,综合(2.7)式和(2.6)式,并注意到引理2.3中的不等式,得

$ \begin{eqnarray} w'(t)&\leq&\frac{\varphi'(t)}{\varphi(t)}w(t)+\frac{\varphi(t)}{z^\beta(\delta(t))}[\alpha(t)(z'(t))^\lambda]'-\beta\frac{\varphi(t)\alpha(t)\delta'(t)(z'(t))^\lambda }{z^{\beta+1}(\delta(t))}\Big(\frac{\alpha(t)}{\alpha(\delta(t))}\Big)^{\frac{1}{\lambda}}z'(t) \\ & = &\frac{\varphi(t)}{z^\beta(\delta(t))}[\alpha(t)(z'(t))^\lambda]'+\frac{\varphi'(t)}{\varphi(t)}w(t)-\frac{\beta\delta'(t)z^{\frac{\beta-\lambda}{\lambda}}(t)}{[\varphi(t)\alpha(\delta(t))]^{\frac{1}{\lambda}}}w^{\frac{\lambda+1}{\lambda}}(t) \\ &\leq&\frac{\varphi(t)}{z^\beta(\delta(t))}[\alpha(t)(z'(t))^\lambda]'+\frac{\varphi'_+(t)}{\varphi(t)}w(t)-\frac{\beta\delta'(t)\eta^{\frac{\beta-\lambda}{\lambda}}}{[\varphi(t)\alpha(\delta(t))]^{\frac{1}{\lambda}}}w^{\frac{\lambda+1}{\lambda}}(t) \\ &\leq&\frac{\varphi(t)}{z^\beta(\delta(t))}[\alpha(t)(z'(t))^\lambda]'+\frac{\lambda^\lambda\varphi(t)\alpha(\delta(t))}{(\lambda+1)^{\lambda+1}\beta^\lambda\eta^{\beta-\lambda}(\delta'(t))^\lambda}\Big(\frac{\varphi'_+(t)}{\varphi(t)}\Big)^{\lambda+1}. \end{eqnarray} $

其次,再作Riccati变换:

$ \begin{equation} v(t) = \varphi(t)\frac{\alpha(\tau(t))\phi_1(z'(\tau(t)))}{\phi_2(z(\delta(t)))} = \varphi(t)\frac{\alpha(\tau(t))(z'(\tau(t)))^\lambda}{z^\beta(\delta(t))}, t\geq t_1. \end{equation} $

$ v(t)>0(t\geq t_1) $.类似于上面的推导过程,并注意到$ \alpha(\delta(t))[z'(\delta(t))]^\lambda\geq\alpha(\tau(t))[z'(\tau(t))]^\lambda $$ z(\delta(t))\geq\eta $,得

$ \begin{eqnarray} v'(t)& = &\varphi(t)\frac{[\alpha(\tau(t))(z'(\tau(t)))^\lambda]'z^\beta(\delta(t))-\alpha(\tau(t))(z'(\tau(t)))^\lambda\beta z^{\beta-1}(\delta(t))z'(\delta(t))\delta'(t)}{z^{2\beta}\delta(t)} \\ && +\varphi'(t)\frac{\alpha(\tau(t))(z'(\tau(t)))^\lambda}{z^\beta(\delta(t))} \\ &\leq&\frac{\varphi'(t)}{\varphi(t)}v(t)+\frac{\varphi(t)}{z^\beta(\delta(t))} [\alpha(\tau(t))(z'(\tau(t)))^\lambda]'\\ &&-\beta\frac{\varphi(t)\alpha(\tau(t))(z'(\tau(t)))^\lambda\delta'(t)}{z^{\beta+1}(\delta(t))}\Big(\frac{\alpha(\tau(t))}{\alpha(\delta(t))}\Big)^{\frac{1}{\lambda}}z'(\tau(t)) \\ &\leq & \frac{\varphi(t)}{z^\beta(\delta(t))}[\alpha(\tau(t))(z'(\tau(t)))^\lambda]'+\frac{\varphi'_+(t)}{\varphi(t)}v(t)-\frac{\beta\delta'(t)\eta^{\frac{\beta-\lambda}{\lambda}}}{[\varphi(t)\alpha(\delta(t))]^{\frac{1}{\lambda}}}v^{\frac{\lambda+1}{\lambda}}(t) \\ &\leq&\frac{\varphi(t)}{z^\beta(\delta(t))}[\alpha(\tau(t))(z'(\tau(t)))^\lambda]'+\frac{\lambda^\lambda\varphi(t)\alpha(\delta(t))}{(\lambda+1)^{\lambda+1}\beta^\lambda\eta^{\beta-\lambda}(\delta'(t))^\lambda}\Big(\frac{\varphi'_+(t)}{\varphi(t)}\Big)^{\lambda+1}. \end{eqnarray} $

于是,综合(2.8)和(2.10)两式,并注意到(2.5)式,就有

两边从$ t_1 $$ t(t\geq t_1) $积分,得

这与(2.1)式矛盾.

情形(b)  $ \lambda>\beta $.作Riccati变换如(2.6)式,则(2.7)式成立.注意到$ \alpha(t)\phi_1(z'(t)) = \alpha(t)(z'(t))^\lambda $单调减少,所以$ \alpha(t)(z'(t))^\lambda\leq\alpha(\tau(t))(z'(\tau(t)))^\lambda\leq\eta_1, t\geq t_1 $, (常数$ \eta_1>0 $),即

$ \begin{equation} \frac{1}{(z'(t))^{\frac{\lambda-\beta}{\beta}}}\leq\frac{\alpha^{\frac{\lambda-\beta}{\beta\lambda}}(t)}{\eta_1^{\frac{\lambda-\beta}{\beta\lambda}}}, \frac{1}{(z'(\tau(t)))^{\frac{\lambda-\beta}{\beta}}}\leq\frac{\alpha^{\frac{\lambda-\beta}{\beta\lambda}}(\tau(t))}{\eta_1^{\frac{\lambda-\beta}{\beta\lambda}}}. \end{equation} $

于是由(2.7)式,并注意到(2.11)式的第1个式子,得

$ \begin{eqnarray} w'(t)&\leq&\frac{\varphi'(t)}{\varphi(t)}w(t)+\frac{\varphi(t)}{z^\beta(\delta(t))}[\alpha(t)(z'(t))^\lambda]'-\beta\frac{\varphi(t)\alpha(t)\delta'(t)(z'(t))^\lambda}{z^{\beta+1}(\delta(t))}\Big(\frac{\alpha(t)}{\alpha(\delta(t))}\Big)^{\frac{1}{\lambda}}z'(t) \\ &\leq&\frac{\varphi(t)}{z^\beta(\delta(t))}[\alpha(t)(z'(t))^\lambda]'+\frac{\varphi'_+(t)}{\varphi(t)}w(t)-\frac{\beta\delta'(t)(w(t))^{\frac{\beta+1}{\beta}}}{\varphi^{\frac{1}{\beta}}(t)\alpha^{\frac{1}{\lambda}}(\delta(t))\alpha^{\frac{\lambda-\beta}{\beta\lambda}}(t)(z'(t))^{\frac{\lambda-\beta}{\beta}}} \\ &\leq&\frac{\varphi(t)}{z^\beta(\delta(t))}[\alpha(t)(z'(t))^\lambda]'+\frac{\varphi'_+(t)}{\varphi(t)}w(t)-\frac{\beta\delta'(t)(w(t))^{\frac{\beta+1}{\beta}}}{\varphi^{\frac{1}{\beta}}(t)\alpha^{\frac{1}{\lambda}}(\delta(t))\eta_1^{\frac{\lambda-\beta}{\beta\lambda}}} \\ &\leq&\frac{\varphi(t)}{z^\beta(\delta(t))}[\alpha(t)(z'(t))^\lambda]'+\frac{\eta_1^{\frac{\lambda-\beta}{\lambda}}\varphi(t)\alpha^{\frac{\beta}{\lambda}}(\delta(t))}{(\beta+1)^{\beta+1}(\delta'(t))^\beta}\Big(\frac{\varphi'_+(t)}{\varphi(t)}\Big)^{\beta+1}. \end{eqnarray} $

再作Riccati变换如(2.9)式,同(2.10)式的推导过程类似,注意到(2.11)式的第2个式子可得

$ \begin{equation} v'(t)\leq\frac{\varphi(t)}{z^\beta(t)}[\alpha(\tau(t))(z'(\tau(t)))^\lambda]'+\frac{\eta_1^{\frac{\lambda-\beta}{\lambda}}\varphi(t)\alpha^{\frac{\beta}{\lambda}}(\delta(t))}{(\beta+1)^{\beta+1}(\delta'(t))^\beta}\Big(\frac{\varphi'_+(t)}{\varphi(t)}\Big)^{\beta+1}. \end{equation} $

于是,综合(2.12)和(2.13)两式,并分别注意到(2.5)式,可得

因此

这与(2.1)式矛盾.定理证毕.

由定理2.1可以得到以下一系列结果.

推论2.2  设条件(C$ _1) $成立且$ 0\leq p(t)\leq p_0<+\infty $ ($ p_0 $为常数), $ \beta = \lambda, \delta(t)\leq\tau(t), $$ \delta'(t)>0 $,如果

$ \begin{equation} \limsup\limits_{t\rightarrow+\infty}\int_{t_0}^t\Big[L_0A(\delta(s))Q(s)-\frac{(1+\frac{p_0^\lambda}{\tau_0})\delta'(s)}{(\lambda+1)^{\lambda+1}A^\lambda(\delta(s))\alpha^{\frac{1}{\lambda}}(\delta(s))}\Big]{\rm d}s = +\infty. \end{equation} $

则方程(1.1)是振荡的.

  在定理2.1中取$ \varphi(t) = A(\delta(t)) $即得.

推论2.3  设条件(C$ _1) $成立且$ 0\leq p(t)\leq p_0<+\infty $ ($ p_0 $为常数), $ \beta = \lambda\leq1, \delta(t)\leq\tau(t), $$ \delta'(t)>0 $,如果

$ \begin{equation} \liminf\limits_{t\rightarrow+\infty}\frac{1}{A^{1-\lambda}(\delta(t))}\int_{t_0}^tA(\delta(s))Q(s){\rm d}s>\frac{(1+\frac{p_0^\lambda}{\tau_0})}{L_0(\lambda+1)^{\lambda+1}(1-\lambda)}, (\lambda<1), \end{equation} $

$ \begin{equation} \liminf\limits_{t\rightarrow+\infty}\frac{1}{\ln A(\delta(t))}\int_{t_0}^tA(\delta(s))Q(s){\rm d}s>\frac{(1+\frac{P_0}{\tau_0}}{4L_0}, (\lambda = 1), \end{equation} $

则方程(1.1)是振荡的.

  当$ \lambda<1 $时,由(2.15)式知:存在常数$ \varepsilon>0 $,对充分大的$ t $,有

于是

即(2.14)式成立,于是由推论2.2知,方程(1.1)是振荡的.

$ \lambda = 1 $时,注意到$ [\ln A(\delta(s))]' = \frac{\delta'(s)}{A(\delta(s))\alpha(\delta(s))} $,则类似可证.证毕.

推论2.4  设条件(C$ _1) $成立且$ 0\leq p(t)\leq p_0<+\infty $ ($ p_0 $为常数), $ \beta = \lambda\leq1, $$ \delta(t)\leq\tau(t), $$ \delta'(t)>0 $,如果

$ \begin{equation} \liminf\limits_{t\rightarrow+\infty}\frac{Q(t)A^{\lambda+1}(\delta(t))\alpha^{\frac{1}{\lambda}}(\delta(t))}{\delta'(t)}>\frac{(1+\frac{p_0^\lambda}{\tau_0})}{L_0(\lambda+1)^{\lambda+1}}, (\lambda<1), \end{equation} $

$ \begin{equation} \liminf\limits_{t\rightarrow+\infty}\frac{Q(t)A^2(\delta(t))\alpha(\delta(t))}{\delta'(t)}>\frac{(1+\frac{p_0}{\tau_0})}{4L_0}, (\lambda = 1), \end{equation} $

则方程(1.1)是振荡的.

  当$ \lambda<1 $时,由(2.15)式知:存在常数$ \varepsilon>0 $,对充分大的$ t $,有

两边同乘以$ \frac{\delta'(t)}{A^\lambda(\delta(t))\alpha^{\frac{1}{\lambda}}(\delta(t))} $,可得

由此式不难看出(2.14)式成立,于是由推论2.2知,方程(1.1)是振荡的.

$ \lambda = 1 $时,注意到$ [\ln A(\delta(s))]' = \frac{\delta'(s)}{A(\delta(s))\alpha(\delta(s))} $,则类似可证.证毕.

注2.1  由定理2.1看出,在$ \lambda>\beta $$ \lambda<\beta $的情形,方程(1.1)的振荡准则是有差异的.若$ \beta = 1 $$ \lambda = 1 $,则定理2.1即为文献[9]中的定理2.1.

定理2.5  设条件(C$ _2) $成立且$ 0\leq p(t)\leq p_0<+\infty $ ($ p_0 $为常数), $ \delta(t)\leq\tau(t), \delta'(t)>0 $,如果存在函数$ \varphi\in C^1([t_0+\infty), (0, +\infty)), $使得(2.1)式成立,且有

$ \begin{equation} \limsup\limits_{t\rightarrow+\infty}\int_T^t\Big\{L_0Q(s)\pi(s)\zeta^\lambda(s)-\Big(1+\frac{p_0^\beta}{\tau_0}\Big)\frac{(\frac{\lambda}{\lambda+1})^{\lambda+1}}{\zeta(s)\alpha^{\frac{1}{\lambda}}(s)}{\rm d}s\Big\} = +\infty, \end{equation} $

其中常数$ T\geq t_0 $足够大,函数

($ k>0 $为某常数), $ \zeta(t) = \int_t^{+\infty}\alpha^{\frac{-1}{\lambda}}(s){\rm d}s $则方程(1.1)是振荡的.

  反证法,设方程(1.1)存在一个非振荡解$ x(t) $,不妨设$ x(t) $为方程(1.1)的最终正解(当为$ x(t) $最终负解时类似可证),则$ \exists t_1\geq t_0 $,使得当$ t\geq t_1 $时,有$ x(t)>0, x(\tau(t))>0, $$ x(\delta(t))>0 $,由定理2.1的证明知函数$ \alpha(t)[z'(t)]^\gamma $严格单调减少且最终定号,从而$ z'(t) $最终为正或最终为负.所以我们只需考虑下列两种情形

(a)当$ t\geq t_1 $$ z'(t)>0 $; (b)当$ t\geq t_1 $$ z'(t)<0 $.

情形(a)  $ z'(t)>0(t\geq t_1) $.此时同定理2.1的证明,得与(2.1)式矛盾.

情形(b)  $ z'(t)<0(t\geq t_1) $.首先,定义函数$ v(t) $

$ \begin{equation} v(t) = \frac{\alpha(\tau(t))\phi_1(z'(\tau(t)))}{\phi_1(z(t))} = \frac{\alpha(\tau(t))(-z'(\tau(t)))^{\lambda-1}z'(\tau(t))}{z^\lambda(t)}, t\geq t_1, \end{equation} $

$ v(t)<0(t\geq t_1) $.由于$ \alpha(t)[-z'(t)]^{\lambda-1}z'(t) $是单调减少的,所以有

亦即$ z'(t)\leq\Big(\frac{\alpha(\tau(t))}{\alpha(t)}\Big)^{\frac{1}{\lambda}}z'(\tau(t)) $.注意到$ z'(t)<0 $,于是由(2.20)式可得

$ \begin{eqnarray} v'(t) & = &\frac{[\alpha(\tau(t))\phi_1(z'(\tau(t)))]'}{z^\lambda(t)}-\frac{\alpha(\tau(t))(-z'(\tau(t)))^{\lambda-1}z'(\tau(t))\lambda z^{\lambda-1}(t)z'(t)}{z^{2\lambda}(t)} \\ &\leq&\frac{[\alpha(\tau(t))\phi_1(z'(\tau(t)))]'}{z^\lambda(t)}-\frac{\lambda\alpha(\tau(t))(-z'(\tau(t)))^{\lambda-1}z'(\tau(t))}{z^{\lambda+1}(t)}\Big(\frac{\alpha(\tau(t))}{\alpha(t)}\Big)^{\frac{1}{\lambda}}z'(\tau(t)) \\ & = &\frac{[\alpha(\tau(t))\phi_1(z'(\tau(t)))]'}{z^\lambda(t)}-\frac{\lambda(-v(t))^{\frac{\lambda+1}{\lambda}}}{\alpha^{\frac{1}{\lambda}}(t)}. \end{eqnarray} $

再定义函数$ w(t) $

$ w(t)<0(t\geq t_1) $,按与上面同样类似的方法可得

$ \begin{equation} w'(t)\leq\frac{[\alpha(t)\phi_1(z'(t))]'}{z^\lambda(t)}-\frac{\lambda(-w(t))^{\frac{\lambda+1}{\lambda}}}{\alpha^{\frac{1}{\lambda}}(t)}. \end{equation} $

由于(2.5)式仍然成立,且$ z(\delta(t))\geq z(t) $,所以综合(2.21)和(2.22)两式,得

$ \begin{eqnarray} w'(t)+\frac{p_0^\beta}{\tau_0}v'(t) &\leq&\frac{1}{z^\lambda(t)}\Big\{[\alpha(t)\phi_1(z'(t))]'+\frac{p_0^\beta}{\tau_0}[\alpha(\tau(t))\phi_1(z'(\tau(t)))]'\Big\} \\ &&-\frac{\lambda}{\alpha^{\frac{1}{\lambda}}(t)}\Big[(-w(t))^{\frac{\lambda+1}{\lambda}}+\frac{p_0^\beta}{\tau_0}(-v(t))^{\frac{\lambda+1}{\lambda}}\Big] \\ &\leq&-\frac{L_0Q(t)z^\beta(\delta(t))}{z^\lambda(t)}-\frac{\lambda}{\alpha^{\frac{1}{\lambda}}(t)}\Big[(-w(t))^{\frac{\lambda+1}{\lambda}}+\frac{p_0^\beta}{\tau_0}(-v(t))^{\frac{\lambda+1}{\lambda}}\Big] \\ &\leq&-L_0Q(t)z^{\beta-\lambda}(t)-\frac{\lambda}{\alpha^{\frac{1}{\lambda}}(t)}\Big[(-w(t))^{\frac{\lambda+1}{\lambda}}+\frac{p_0^\beta}{\tau_0}(-v(t))^{\frac{\lambda+1}{\lambda}}\Big]. \end{eqnarray} $

$ \lambda>\beta $时,由$ z(t)>0, z'(t)<0(t\geq t_1) $$ z(t)\leq z(t_1) $,即$ z^{\beta-\lambda}(t)\geq z^{\beta-\lambda}(t_1) = k $.$ \lambda = \beta $时, $ z^{\beta-\lambda}(t) = 1 $.$ \lambda<\beta $时,再次利用$ \alpha(t)(-z'(t))^{\lambda-1}z'(t) $的单调减少性,得当$ s\geq t_1 $时,有

上式中$ M = -\alpha(t_1)(-z'(t_1))^{\lambda-1}z'(t_1)>0 $是常数,于是$ \alpha(s)(-z'(s))^\lambda\geq M $$ z'(s)\leq-M^{\frac{1}{\lambda}}\alpha^{\frac{-1}{\lambda}}(s) $,进一步就有$ z(u)-z(t)\leq-M^{\frac{1}{\lambda}}\int_t^u\alpha^{\frac{-1}{\lambda}}(s){\rm d}s $,即$ z(t)\geq z(u)+M^{\frac{1}{\lambda}}\int_t^u\alpha^{\frac{-1}{\lambda}}(s){\rm d}s\geq M^{\frac{1}{\lambda}}\int_t^u\alpha^{\frac{-1}{\lambda}}(s){\rm d}s $,令$ u\rightarrow+\infty $,得$ z(t)\geq M^{\frac{1}{\lambda}}\int_t^u\alpha^{\frac{-1}{\lambda}}(s){\rm d}s = M^{\frac{1}{\lambda}}\zeta(t) $,亦即$ z^{\beta-\lambda}(t)\geq k\zeta^{\beta-\lambda}(t) $,这里$ k = M^{\frac{\beta-\lambda}{\lambda}}>0 $是常数.

综合上述3种情形并注意到函数$ \pi(t) $的定义,根据(2.23)式,则有

$ \begin{equation} L_0Q(t)\pi(t)\leq-w'(t)-\frac{p_0^\beta}{\tau_0}v'(t)-\frac{\lambda}{\alpha^{\frac{1}{\lambda}}(t)}\Big[(-w(t))^{\frac{\lambda+1}{\lambda}}+\frac{p_0^\beta}{\tau_0}(-v(t))^{\frac{\lambda+1}{\lambda}}\Big]. \end{equation} $

将(2.24)式两边同乘以$ \zeta^\lambda(t) $并从$ t_1 $$ t(t\geq t_1) $积分,注意到$ \zeta'(t) = -\alpha^{\frac{-1}{\lambda}}(t) $以及引理2.3,得

$ \begin{eqnarray} &&\int_{t_1}^t\Big\{L_0Q(s)\pi(s)\zeta^\lambda(s)-\Big(1+\frac{p_0^\beta}{\tau_0}\Big)\frac{(\frac{\lambda}{\lambda+1})^{\lambda+1}}{\zeta(s)\alpha^{\frac{1}{\lambda}}(s)}\Big\}{\rm d}s \\ &\leq&\Big[-w(t)\zeta^\lambda(t)-\frac{p_0^\beta}{\tau_0}v(t)\zeta^\lambda(t)\Big]+w(t_1)\zeta^\lambda(t_1)+\frac{p_0^\beta}{\tau_0}v(t_1)\zeta^\lambda(t_1). \end{eqnarray} $

此外,再次利用$ \alpha(t)(-z'(t))^{\lambda-1}z'(t) $的单调减少性,对$ s\geq t\geq t_1 $,有$ \alpha(s)(-z'(s))^{\lambda-1}z'(s)\leq\alpha(t)(-z'(t))^{\lambda-1}z'(t) $,即$ z'(s)\leq\frac{\alpha^{\frac{1}{\lambda}}(t)z'(t)}{\alpha^{\frac{1}{\lambda}}(s)} $,两边对$ s $$ t $$ u(u\geq t) $积分,于是得$ z(u)-z(t)\leq\alpha^{\frac{1}{\lambda}}(t)z'(t)\int_t^u\alpha^{\frac{1}{\lambda}}(s){\rm d}s $,从而$ z(t)+\alpha^{\frac{1}{\lambda}}(t)z'(t)\int_t^u\alpha^{\frac{1}{\lambda}}(s){\rm d}s\geq0 $,令$ u\rightarrow+\infty $,则有

因此, $ -1\leq\frac{\alpha^{\frac{1}{\lambda}}(t)z'(t)}{z(t)}\zeta(t)\leq0 $,于是由函数$ w(t) $的定义知

$ \begin{equation} -1\leq w(t)\zeta^\lambda(t)\leq0, t\geq t_1. \end{equation} $

同理可得

$ \begin{equation} -1\leq v(t)\zeta^\lambda(t)\leq0, t\geq t_1. \end{equation} $

结合(2.26)和(2.27)两式,由(2.25)式就得到一个与(2.19)式矛盾的结果.定理证毕.

定理2.6  设条件(C$ _2) $成立,并且有$ 0\leq p(t)\leq p_0\leq+\infty $ ($ p_0 $为常数), $ \delta(t)\leq\tau(t) $, $ \delta'(t)>0 $且(2.1)式成立,如果存在常数$ \omega>0 $使得

$ \begin{equation} \limsup\limits_{t\rightarrow+\infty}\int_T^th^\omega(t, s)\Big[L_0Q(s)\pi(s)-\Big(1+\frac{p_0^\beta}{\tau_0}\Big)\frac{\omega^{\lambda+1}\xi^{\lambda+1}(s)\alpha(s)}{(\lambda+1)^{\lambda+1}h^{\lambda+1}(t, s)}\Big]{\rm d}s>0, \end{equation} $

其中常数$ T\geq t_0 $足够大,函数$ h(t, s) = \int_s^t\xi(\tau){\rm d}\tau $ (这里函数$ \xi(t) $$ [t_0, +\infty) $上非负的连续函数,且在其任一有限子区间内不恒为0),而函数$ \pi(t) $$ \zeta(t) $的定义如定理2.5,则方程(1.1)是振荡的.

  同定理2.5的证明,可得(2.24)式,现将(2.24)式两边同乘以$ h^\omega(t, s) $后,再从$ t_1 $$ t(t\geq t_1) $积分,并注意到$ [h^\omega(t, s)]'_s = -\omega h^{\omega-1}(t, s)\xi(s) $及引理2.3,则可得

整理得

这与条件(2.28)矛盾.定理证毕.

推论2.7  设条件(C$ _2) $成立且$ 0\leq p(t)\leq P_0<+\infty $ ($ p_0 $为常数), $ \delta(t)\leq\tau(t), \delta'(t)>0 $且(2.1)式成立,如果存在常数$ \omega>0 $使得

$ \begin{equation} \limsup\limits_{t\rightarrow+\infty}\int_T^t(t-s)^\omega\Big[L_0Q(s)\pi(s)-\Big(1+\frac{p_0^\beta}{\tau_0}\Big)\frac{\omega^{\lambda+1}\alpha(s)}{(\lambda+1)^{\lambda+1}(t-s)^{\lambda+1}}\Big]{\rm d}s>0, \end{equation} $

其中常数$ T\geq t_0 $足够大,函数$ \pi(t) $$ \zeta(t) $的定义如定理2.5,则方程(1.1)是振荡的.

  在定理2.6中取$ \xi(t)\equiv1 $即得.

类似地,可得

推论2.8  设条件(C$ _2) $成立且$ 0\leq p(t)\leq P_0<+\infty $($ p_0 $为常数), $ \beta = \lambda, \delta(t)\leq\tau(t) $,且$ \delta'(t)>0 $,如果(2.14)–(2.18)式之一成立,并且(2.19)、(2.28)和(2.29)式之一成立,则方程(1.1)是振荡的.

例2.1  对常数$ \alpha>0 $,考虑二阶时滞微分方程

$ \begin{equation} (x(t)+\frac{9}{10}x(\frac{t}{4}))''+\frac{\alpha}{t^2}x(\frac{t}{4}) = 0, t\geq1, \end{equation} $

这里$ \beta = \lambda = 1, \alpha(t)\equiv1, p(t) = \frac{9}{10}, q(t) = \frac{\alpha}{t^2}, \tau(t) = \delta(t) = \frac{t}{4}, f(u) = u $.显然,条件(H$ _1) $–(H$ _4) $及(C$ _1) $均满足.若取$ \varphi(t) = t $,由定理2.1(注意到此时$ L = 1, p_0 = \frac{9}{10}, \tau_0 = \frac{1}{4} $),则

所以由定理2.1知,当$ \alpha>\frac{23}{5} = 4.6 $时方程(2.30)是振荡的.

注2.2  若用文献[10]的定理2.1来判定,则由于

所以当$ \alpha>10 $时方程(2.30)是振荡的.因此,本文定理2.1改进了文献[10]中的定理2.1.

例2.2  考虑二阶泛函微分方程(E$ _1) $,即下列方程

这里$ t_0 = 1, \lambda = \frac{1}{3}, \beta = 1, \alpha(t) = \frac{1}{t^{\frac{5}{7}}}, p(t) = 5-\sin t^2, \tau(t) = \frac{t}{2}, \delta(t) = \frac{t}{2}, q(t) = \frac{1}{t^2}. $我们取$ f(u) = u[1+\ln(1+u^4)] $,由于

$ \int_{t_0}^{+\infty}\alpha^{\frac{-1}{\lambda}}(t){\rm d}t = \int_1^{+\infty}t^{\frac{15}{7}}{\rm d}t = +\infty $.显然条件(H$ _1) $–(H$ _4) $及(C$ _1) $全部满足.又因为$ \lambda\leq\beta, $$ Q(t) = \min{\{q(t), q(\tau(t))\}} = \frac{1}{t^2} $,取$ \varphi(t) = t $,则

所以定理2.1的条件均满足,故由定理2.1知,方程(E$ _1) $是振荡的.

注2.3  由于方程(E$ _1) $的中立项系数函数$ p(t)>1 $$ \lambda\neq\beta $,因此文献[1-6, 9-12]等中的定理都不能用于方程(E$ _1) $.

例2.3  考虑Euler方程(E$ _2) $,即下列方程

其中$ m>0 $是常数.取$ \varphi(t) = 1 $,注意到$ \pi(t) = 1, \zeta(t) = \frac{1}{t} $,则

且当$ m>\frac{1}{4} $

所以由定理2.5知当$ m>\frac{1}{4} $时方程(E$ _2) $是振荡的,这就是我们熟知的结果.

注2.4  显然,文献[1-12]等中的定理或者只能得到"方程(E$ _2) $的每一个解$ x(t) $或者振荡或者满足$ \lim\limits_{t\rightarrow+\infty}x(t) = 0 $",或者不能用于方程(E$ _2) $.

3 方程(1.1)振荡性的进一步说明

在上一节中的定理2.1中,由于有条件$ \delta(t)\leq\tau(t) $,因此当$ \delta(t)\geq\tau(t) $时上一节的结论就不一定成立.但我们可以修改定理2.1证明过程中的Riccati变换分别为

利用与上一节完全类似的分析方法,可得方程(1.1)的如下振荡准则(限于篇幅,不作证明,仅列出结果).

定理3.1  设条件(C$ _1) $成立且$ 0\leq p(t)\leq p_0<+\infty $ ($ p_0 $为常数), $ \delta(t)\geq\tau(t) $如果存在函数$ \varphi\in C^1([t_0, +\infty), (0+\infty)) $使得

$ \begin{equation} \limsup\limits_{t\rightarrow+\infty}\int_{t_0}^t\varphi(s)\Big[L_0Q(s)-\frac{k\alpha^{\omega_1}(\tau(s))}{\tau_0^{\omega_2}}\Big(\frac{\varphi'_+(s)}{\varphi(s)}\Big)^{\omega_2+1}\Big]{\rm d}s = +\infty, \end{equation} $

其中常数$ k, \omega_1, \omega_2 $的定义如定理2.1,则方程(1.1)是振荡的.

推论3.2  设条件(C$ _1) $成立且$ 0\leq p(t)\leq p_0<+\infty $ ($ p_0 $为常数), $ \beta = \lambda, \delta(t)\geq\tau(t) $,如果

$ \begin{equation} \limsup\limits_{t\rightarrow+\infty}\int_{t_0}^t\Big[L_0A(\tau(s))Q(s)-\frac{(1+\frac{p_0^\lambda}{\tau_0})\tau_0}{(\lambda+1)^{\lambda+1}A^\lambda(\tau(s))\alpha^{\frac{1}{\lambda}}(\tau(s))}\Big]{\rm d}s = +\infty, \end{equation} $

则方程(1.1)是振荡的.

推论3.3  设条件(C$ _1) $成立,且$ 0\leq p(t)\leq p_0<+\infty $ ($ p_0 $为常数), $ \beta = \lambda\leq1, \delta(t)\geq\tau(t) $,如果

$ \begin{equation} \liminf\limits_{t\rightarrow+\infty} \frac{1}{A^{1-\lambda}(\delta(t))}\int_{t_0}^tA(\tau(s))Q(s){\rm d}s>\frac{1+\frac{p_0^\lambda}{\tau_0}}{L_0(\lambda+1)^{\lambda+1}(1-\lambda)}, (\lambda<1 ). \end{equation} $

$ \begin{equation} \liminf\limits_{t\rightarrow+\infty}\frac{1}{\ln A(\delta(t))}\int_{t_0}^tA(\tau(s))Q(s){\rm d}s>\frac{1+\frac{p_0}{\tau_0}}{4L_0}, (\lambda = 1), \end{equation} $

则方程(1.1)是振荡的.

推论3.4  设条件(C$ _1) $成立,且$ 0\leq p(t)\leq p_0<+\infty $ ($ p_0 $为常数), $ \beta = \lambda\leq1, \delta(t)\geq\tau(t) $,如果

$ \begin{equation} \liminf\limits_{t\rightarrow+\infty}\frac{Q(t)A^{\lambda+1}(\tau(t))\alpha^{\frac{1}{\lambda}}(\tau(t))}{\tau_0}>\frac{(1+\frac{p_0^\lambda}{\tau_0})}{L_0(\lambda+1)^{\lambda+1}}, (\lambda<1), \end{equation} $

$ \begin{equation} \liminf\limits_{t\rightarrow+\infty}\frac{Q(t)A^2(\tau(t))\alpha(\tau(t))}{\tau_0}>\frac{(1+\frac{p_0}{\tau_0})}{4L_0}, (\lambda = 1), \end{equation} $

则方程(1.1)是振荡的.

定理3.5  设条件(C$ _2) $成立且$ 0\leq p(t)\leq p_0<+\infty $ ($ p_0 $为常数), $ \delta(t)\geq\tau(t) $,如果存在函数$ \varphi\in C^1([t_0, +\infty), (0+\infty)) $使得(3.1)式成立,并且(2.19)、(2.28)和(2.29)式之一成立,则方程(1.1)是振荡的.

推论3.6  设条件(C$ _2) $成立且$ 0\leq p(t)\leq p_0<+\infty $ ($ p_0 $为常数), $ \beta = \lambda, \delta(t)\geq\tau(t) $,如果(3.2)–(3.6)式之一成立,并且(2.19)、(2.28)和(2.29)式之一成立,则方程(1.1)是振荡的.

参考文献

Dzurina J , Stavrouakis I P .

Oscillation criteria for second order delay differential equations

Appl Math Comput, 2003, 14 (3): 445- 453

URL     [本文引用: 5]

Sun Y G , Meng F W .

Note on the paper of Dzurina and Stavroulakis

Appl Math Comput, 2006, 27 (4): 1634- 1641

URL     [本文引用: 3]

黄记洲, 符策红.

广义Emden-Fowler方程的振动性

应用数学学报, 2015, 38 (6): 1126- 1135

URL     [本文引用: 4]

Huang J Z , Fu C H .

Oscillation criteria of generalized Emden-Fowler equations

Acta Mathematicae Applicatae Sinica, 2015, 38 (6): 1126- 1135

URL     [本文引用: 4]

曾云辉, 罗李平, 俞元洪.

中立型Emden-Fowler时滞微分方程的振动性

数学物理学报, 2015, 35A (4): 803- 814

DOI:10.3969/j.issn.1003-3998.2015.04.016      [本文引用: 1]

Zeng Y H , Luo L P , Yu Y H .

Oscillation for Emden-Fowler delay differential equations of neutral type

Acta Mathematica Scientia, 2015, 35A (4): 803- 814

DOI:10.3969/j.issn.1003-3998.2015.04.016      [本文引用: 1]

李文娟, 汤获, 俞元洪.

中立型Emden-Fowler微分方程的振动性

数学物理学报, 2017, 37A (6): 1062- 1069

DOI:10.3969/j.issn.1003-3998.2017.06.006     

Li W J , Tang H , Yu Y H .

Oscillation of the neutral Emden-Fowler differential equation

Acta Mathematica Scientia, 2017, 37 (6): 1062- 1069

DOI:10.3969/j.issn.1003-3998.2017.06.006     

Xing G J , Li T X , Zhang C H .

Oscillation of higher-order quasi-linear neutral differential equations

Advances in Difference Equations, 2011, 2011: 45

DOI:10.1186/1687-1847-2011-45      [本文引用: 2]

杨甲山, 方彬.

二阶广义Emden-Fowler型微分方程的振荡性

华中师范大学学报(自然科学版), 2016, 50 (6): 799- 804

DOI:10.3969/j.issn.1000-1190.2016.06.001      [本文引用: 1]

Yang J S , Fang B .

Oscillation of certain second-order generalized Emden-Fowler-type differential equations

Journal of Central China Normal University (Natural Sciences), 2016, 50 (6): 799- 804

DOI:10.3969/j.issn.1000-1190.2016.06.001      [本文引用: 1]

杨甲山.

二阶Emden-Fowler型非线性变时滞微分方程的振荡准则

浙江大学学报(理学版), 2017, 44 (2): 144- 149

URL     [本文引用: 1]

Yang J S .

Oscillation criteria of second-order Emden-Fowler nonlinear variable delay differential equations

Journal of Zhejiang University (Science Edition), 2017, 44 (2): 144- 149

URL     [本文引用: 1]

Sun S R , Li T X , Han Z L , et al.

On oscillation of second-order nonlinear neutral functional differential equations

Bull Malays Math Sci Soc, 2013, 36 (3): 541- 554

URL     [本文引用: 2]

Ye L , Xu Z .

Oscillation criteria for second order quasilinear neutral delay differential equations

Applied Mathematics and Computation, 2009, 207 (2): 388- 396

DOI:10.1016/j.amc.2008.10.051      [本文引用: 2]

罗红英, 屈英, 俞元洪.

具有正负系数的二阶中立型时滞Emden-Fowler方程的振动准则

应用数学学报, 2017, 40 (5): 667- 675

URL    

Luo H Y , Qu Y , Yu Y H .

Oscillation criteria of second order neutral delay Emden-Fowler equations with positive and negative coefficients

Acta Mathematicae Applicatae Sinica, 2017, 40 (5): 667- 675

URL    

杨甲山.

一类具有非线性中立项的二阶微分方程振动性

东北师大学报(自然科学版), 2017, 49 (3): 13- 17

URL     [本文引用: 5]

Yang J S .

Oscillation of certain second-order differential equations with nonlinear neutral term

Journal of Northeast Normal University (Natural Science Edition), 2017, 49 (3): 13- 17

URL     [本文引用: 5]

/