Processing math: 17%

数学物理学报, 2019, 39(5): 1025-1032 doi:

论文

一类Hamiltonian系统的Abelian积分的零点

杨纪华,1, 张二丽2

Zeros of Abelian Integral for a Kind of Hamiltonian Systems

Yang Jihua,1, Zhang Erli2

通讯作者: 杨纪华, E-mail: jihua1113@163.com

收稿日期: 2018-08-5  

基金资助: 国家自然科学基金.  11701306
国家自然科学基金.  11601250
宁夏高等学校一流学科建设(教育学学科).  NXYLXK2017B11
宁夏青年拔尖人才和河南省高等学校青年骨干教师培养计划.  2017GGJS202
宁夏青年拔尖人才和河南省高等学校青年骨干教师培养计划.  2016GGJS190

Received: 2018-08-5  

Fund supported: the NSFC.  11701306
the NSFC.  11601250
the Construction of First-class Disciplines of Higher Education of Ningxia (pedagogy).  NXYLXK2017B11
the Young Top-Notch Talent of Ningxia and Training Plan of University Young Key Teacher of Henan Province.  2017GGJS202
the Young Top-Notch Talent of Ningxia and Training Plan of University Young Key Teacher of Henan Province.  2016GGJS190

摘要

该文得到了一类Hamiltonian系统的Abelian积分的零点的个数的上界.该Abelian积分有k+2个生成元,并且这些生成元满足两个不同的Picard-Fuchs方程.最后,用两个例子说明理论结果的应用.

关键词: Hamiltonian系统 ; Abelian积分 ; Picard-Fuchs方程 ; Chebyshev空间 ; Hilbert-Arnold问题

Abstract

In this paper, we obtain an upper bound of the number of zeros of Abelian integral for a kind of Hamiltonian systems. The Abelian integral has k + 2 generators which satisfy two different Picard-Fuchs equations. Finally, we present two examples to illustrate an application of the theoretical result.

Keywords: Hamiltonian system ; Abelian integral ; Picard-Fuchs equation ; Chebyshev space ; Hilbert-Arnold problem

PDF (289KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

杨纪华, 张二丽. 一类Hamiltonian系统的Abelian积分的零点. 数学物理学报[J], 2019, 39(5): 1025-1032 doi:

Yang Jihua, Zhang Erli. Zeros of Abelian Integral for a Kind of Hamiltonian Systems. Acta Mathematica Scientia[J], 2019, 39(5): 1025-1032 doi:

1 引言和主要结果

考虑近-Hamiltonian系统

dxdt=H(x,y)y+εf(x,y),  dydt=H(x,y)x+εg(x,y),
(1.1)

其中0<|ε|1, H(x,y)是关于xym+1次多项式, f(x,y)g(x,y)是关于xyn次多项式.假设Hamiltonian系统(1.1)|ε=0有连续闭轨线族{Γh}, Σh的最大存在开区间,即Γh={(x,y)R2|H(x,y)=h, hΣ}.确定Abelian积分

I(h)=Γhg(x,y)dxf(x,y)dy,hΣ

的孤立零点个数的最小上界Z(m,n)称为Hilbert-Arnold问题或弱Hilbert第16问题[1].

很多数学工作者都致力于研究Abelian积分I(h)的零点个数问题.当I(h)的生成元满足一个Picard-Fuchs方程时,有很多优秀的工作.例如,如果m=2且未扰动系统至少有一个中心,相应Hamiltonian函数H(x,y)的规范型为

H(x,y)=12(x2+y2)13x3+axy2+13by3.

Horozov和Iliev[2]证明Z(2,n)5n+15.如果H(x,y)=12y2+U(x),其中U(x)使得系统(1.1)|0有一个中心且degU(x)=4,赵育林和张芷芬[3]证明Z(3,n)7n+5.对于

H(x,y)=x2+y2+ax4+bx2y2+cy4,ac(4acb2)0,

周鑫和李翠萍得到相应I(h)的代数结构,并给出当a>0, b=0, c=1I(h)的零点个数的上界[4].对于

H(x,y)=x2+y2+ax2y2x4+y4,a>2,

吴娟娟等[5]证明Z(3,n)2[n14]+12[n34]+23.

如果I(h)的生成元满足两个不同的Picard-Fuchs方程时,相关的研究结果较少.对于

H(x,y)=12y2+a2x2+b4x4+c6x6,c0,

赵丽琴等[6]证明Z(5,n)54n13.杨纪华和赵丽琴得到Hamitonian函数

H(x,y)=x2+rx2y2+x4+y4,r0, r2

的Abelian积分的在不同周期环域上零点个数的上界[7].

受文献[6-7]的启发,本文研究一类Hamiltonian系统的Abelian积分的零点个数问题,该Abelian积分的生成元满足两个Picard-Fuchs方程.为此,我们对系统(1.1)作如下假设:

(H1)系统(1.1)的Abelian积分I(h)可表示为

I(h)=ki=1αi(h)Ii(h)+β1(h)J1(h)+β2(h)J2(h), hΣ,
(1.2)

其中αi(h) (i=1,2,,k)βj(h)(j=1,2)是关于h的多项式,且degαi(h)ni(i=1,2,,k), degβi(h)mj(j=1,2), n1n2nk, m1m2.

(H2)向量函数V1(h)=(I1(h),I2(h),,Ik(h))TV2(h)=(J1(h),J2(h))T满足Picard-Fuchs方程

V1(h)=(B1h+C1)V1(h)
(1.3)

其中 B_1 C_1 k\times k 阶常数矩阵, B_2 C_2 2\times2 阶常数矩阵.

(H3)存在 Z(h) = a_2I_2(h)+a_3I_3(h)+\cdots+a_kI_k(h) 使得

\begin{eqnarray} G_1(h)\left(\begin{array}{cc} I''_{1}(h)\\ I''_{2}(h)\\ \vdots\\ I''_{k-1}(h)\\ Z''(h) \end{array}\right) = \left(\begin{array}{cc} a_{11}(h) &a_{12}(h)\\ a_{21}(h) &a_{22}(h)\\ \vdots &\vdots\\ a_{k-11}(h) &a_{k-12}(h)\\ a_{k1}(h) &a_{k2}(h) \end{array}\right) \left(\begin{array}{cc} I'_{1}(h)\\ Z'(h) \end{array}\right), \end{eqnarray}
(1.4)

其中 a_i\ (i = 2, \cdots, k) 是常数, a_{ij}(h) 是多项式, G_1(h) = \det\big(A_1(h)\big) , \deg a_{ij}(h)\leq\deg G_1(h) (i = 1, 2, \cdots, k;j = 1, 2) .

本文的主要结果是如下定理.

定理1.1  假设(H1)–(H3)成立,且当 h\in\Sigma 时, I'_1(h)\neq0 , J_1(h)\neq0 ,则系统(1.1)的Abelian积分 I(h) 至多有 (3k+4)n_1+(6k+23)m_1+13k+30 个零点(计重数).

2 定理1.1的证明

本文中,我们用 \#\{\phi(h) = 0, h\in(a, b)\} 表示函数 \phi(h) 在区间 (a, b) 上的零点个数(计重数).设 V 是定义在开区间 {\Bbb I} 上的实解析函数组成的向量空间.

定义2.1[8]  如果 V 中任一非零函数至多有 \dim(V)-1 个零点(计重数),称 V 为Chebyshev空间.

S 是二阶线性解析微分方程

\begin{equation} x''(t)+a_1(t)x'(t)+a_2(t)x(t) = 0 \end{equation}
(2.1)

在开区间 {\Bbb I} 上的解空间.

命题2.1[8]  方程(2.1)的解空间 S 是区间 {\Bbb I} 上的Chebyshev空间当且仅当 S 中存在一个在 {\Bbb I} 上处处非零的元.

命题2.2[8]  假设齐次方程(2.1)的解空间是Chebyshev空间, R(t) 是解析函数并且在区间 {\Bbb I} 上有 l 个零点(计重数).则非齐次方程

x''(t)+a_1(t)x'(t)+a_2(t)x(t) = R(t)

的解 x(t) {\Bbb I} 上至多有 l+2 个零点(计重数).

引理2.1   (1)假设当 h\in\Sigma 时, I'_1(h)\neq0 ,令 \omega_1(h) = \frac{Z'(h)}{I'_1(h)} ,则 \omega_1(h) 满足Riccati方程

\begin{equation} G_1(h)\omega'_1(h) = -a_{12}(h)\omega_1^2(h)+\big[a_{k2}(h)-a_{11}(h)\big]\omega_1(h)+a_{k1}(h). \end{equation}
(2.2)

(2)假设当 h\in\Sigma 时, J_1(h)\neq0 ,令 \omega_2(h) = \frac{J_2(h)}{J_1(h)} ,则 \omega_2(h) 满足Riccati方程

\begin{equation} G_2(h)\omega'_2(h) = -b^*_{12}(h)\omega_2^2(h)+\big[b^*_{22}(h)-b^*_{11}(h)\big]\omega_2(h)+b^*_{21}(h), \end{equation}
(2.3)

其中 G_2(h) = \det\big(A_2(h)\big), \ (B_2h+C_2)^* = \left(\begin{array}{cc}b^*_{11}(h) &b^*_{12}(h)\\ b^*_{21}(h) &b^*_{22}(h) \end{array}\right) B_2h+C_2 的伴随矩阵.

   (2.2)式可由(1.4)式得到. (2.3)式可由(1.3)式得到.证毕.

引理2.2  假设当 h\in\Sigma 时, J_1(h)\neq0 .

\begin{eqnarray} \Psi(h) = \big(\beta_1(h), \beta_2(h)\big)\left(\begin{array}{cc} J_1(h)\\ J_2(h) \end{array}\right)\triangleq\tau_2(h)V_2(h), \ h\in\Sigma, \end{eqnarray}
(2.4)

\Psi(h) \Sigma 上至多有 3m_1+2 个零点(计重数).

  令 \chi_2(h) = \frac{\Psi(h)}{J_1(h)} ,所以 \chi_2(h) = \beta_1(h)+\beta_2(h)\omega_2(h) .由(2.3)式可得 \chi_2(h) 满足

G_2(h)\beta_2(h)\chi'_2(h) = -b^*_{12}(h)\chi_2^2(h)+F_1(h)\chi_2(h)+F_0(h),

其中

\begin{eqnarray*} F_1(h)& = &G_2(h)\beta'_2(h)+2b^*_{12}(h)\beta_1(h)+\big(b^*_{22}(h)- b^*_{11}(h)\big)\beta_2(h), \\ F_0(h)& = &G_2(h)\big(\beta'_1(h)\beta_2(h)-\beta_1(h)\beta'_2(h)\big)- b^*_{12}(h)\beta_1^2(h)\\ &&+b^*_{21}(h)\beta_2^2(h)-\beta_1(h)\beta_2(h)\big( b^*_{22}(h)-b^*_{11}(h)\big) \end{eqnarray*}

\deg F_0(h)\leq2m_1+1 .由文献[3]中引理4.4可得

\#\{\chi_2(h) = 0\}\leq\#\{F_0(h) = 0\}+\#\{\beta_2(h) = 0\}+1.

因此,当 h\in \Sigma

\begin{eqnarray} \#\{\Psi(h) = 0\} = \#\{\chi_2(h) = 0\}\leq3m_1+2. \end{eqnarray}
(2.5)

证毕.

引理2.3  如果 K = m_1+m_2+3 ,则当 h\in\Sigma 时,存在 K , K-1 K-2 次多项式 P_2(h) , P_1(h) P_0(h) 使得 L(h)\Psi(h) = 0 ,其中

\begin{eqnarray} L(h) = P_2(h)\frac{{\rm d}^2}{{\rm d}h^2}+P_1(h)\frac{\rm d}{{\rm d}h}+P_0(h). \end{eqnarray}
(2.6)

  由(1.3)式可得

V'_2(h) = (I-B_2)^{-1}(B_2h+C_2)V''_2(h),

其中 I 2\times2 阶单位矩阵.所以

\begin{eqnarray*} \Psi(h)& = &\tau_2(h) V_2(h) = \tau_2(h)(B_2h+C_2)V'_2(h)\\ & = &\tau_2(h)(B_2h+C_2)(I-B_2)^{-1}(B_2h+C_2) V''_2(h)\\ &\triangleq&M_{m_1+2}(h)J''_1(h)+M_{m_2+2}(h)J''_2(h), \end{eqnarray*}

其中 M_{m_1+2}(h) 表示 h 的至多 m_1+2 多项式,等等.对于 \Psi'(h) ,我们得到

\begin{eqnarray*} \Psi'(h)& = &\tau'_2(h)V_2(h)+\tau_2(h)V'_2(h)\\ & = &\Big(\tau'_2(h)(B_2h+C_2)+\tau_2(h)\Big)(I-B_2)^{-1}(B_2h+C_2) V''_2(h)\\ &\triangleq&M_{m_1+1}(h)J''_1(h)+M_{m_2+1}(h)J''_2(h). \end{eqnarray*}

同样的可得

\begin{eqnarray*} \Psi''(h) = M_{m_1}(h)J''_1(h)+M_{m_2}(h)J''_2(h). \end{eqnarray*}

假设

\begin{eqnarray} P_2(h) = \sum\limits_{k = 0}^{K}p_{2, k}h^k, \ \ P_1(h) = \sum\limits_{m = 0}^{K-1}p_{1, m}h^m, \ \ P_0(h) = \sum\limits_{l = 0}^{K-2}p_{0, l}h^l \end{eqnarray}
(2.7)

h 的多项式,并且系数 p_{2, k}, \ p_{1, m} p_{0, l} 待定使得 L(h)\Psi(h) = 0 ,

\begin{eqnarray} 0\leq k\leq K, \ \ 0\leq m\leq K-1, \ \ 0\leq l\leq K-2. \end{eqnarray}
(2.8)

直接计算可得

\begin{eqnarray*} L(h)\Psi(h)& = &P_2(h)\Psi''(h)+P_1(h)\Psi'(h)+P_0(h)\Psi(h)\\[0.2cm] & = &P_2(h)\Big[M_{m_1}(h)J''_1(h)+M_{m_2}(h)J''_2(h)\Big]\\ &&+P_1(h)\Big[M_{m_1+1}(h)J''_1(h)+M_{m_2+1}(h)J''_2(h)\Big]\\ &&+P_0(h)\Big[M_{m_1+2}(h)J''_1(h)+M_{m_2+2}(h)J''_2(h)\Big]\\[0.3cm] & = &\Big[P_2(h)M_{m_1}(h)+P_1(h)M_{m_1+1}(h)+P_0(h)M_{m_1+2}(h)\Big]J''_1(h)\\ &&+\Big[P_2(h)M_{m_1}(h)+P_1(h)M_{m_1+1}(h)+P_0(h)M_{m_1+1}(h)\Big]J''_2(h)\\ &\triangleq&S(h)J''_1(h)+T(h)J''_2(h), \end{eqnarray*}

其中 S(h) T(h) h 的多项式且 \deg S(h)\leq K+m_1 , \deg T(h)\leq K+m_2 .

S(h) = \sum\limits_{i = 0}^{K+m_1}x_ih^i, \ \ T(h) = \sum\limits_{j = 0}^{K+m_2}y_jh^j,

其中 x_i y_j 可以由 p_{2, k} , p_{1, m} p_{0, l} 线性表示, k , m l 满足(2.8)式.令

\begin{eqnarray} x_i = 0, \ \ y_j = 0, \ \ 0\leq i\leq K+m_1, \ \ 0\leq j\leq K+m_2, \end{eqnarray}
(2.9)

则系统(2.9)是一个齐次线性方程组,该方程组有 2K+m_1+m_2+2 个方程, 3K+3 个变量.因为 3K-(2K+m_1+m_2+2)\geq1 ,所以存在 p_{2, k} , p_{1, m} p_{0, l} 使(2.9)式成立,即可得 L(h)\Psi(h) = 0 .证毕.

引理2.4  如果当 h\in\Sigma 时, G_1(h)\neq0 ,则 L(h)I(h) = R(h) ,其中 L(h) 由(2.6)式给出,

\begin{eqnarray} R(h) = \frac{1}{G_1(h)}\Big[Q_0(h)I'_{1}(h)+Q_1(h)Z'(h)\Big]+Q_2(h)I'_{2}(h)+\cdots+Q_{k-1}(h)I'_{k-1}(h), \end{eqnarray}
(2.10)

Q_i(h)\ (i = 0, 1, \cdots, k-1) h 的多项式,且 \deg Q_0(h), \deg Q_1(h)\leq K+n_1+k , \deg Q_i(h)\leq K+n_i-1, i = 2, 3, \cdots, k-1 .

  记

\Phi(h) = \big(\alpha_1(h), \alpha_2(h), \cdots, \alpha_k(h)\big) \big(I_1(h), I_2(h), \cdots, I_k(h)\big)^T \triangleq\tau_1(h)V_1(h).

由(1.3)和(1.4)式可得

\begin{eqnarray*} \Phi(h)& = &\tau_1(h)V_1(h) = \tau_1(h)(B_1h+C_1)V'_1(h)\\ & = &\rho_{n_1+1}(h)I'_{1}(h) +\cdots+\rho_{n_{k-1}+1}(h)I'_{k-1}(h)+\rho_{n_k+1}(h)I'_{k}(h)\\ & = &\rho_{n_1+1}(h)I'_{1}(h) +\cdots+\rho_{n_{k-1}+1}(h)I'_{k-1}(h)\\ &&+\rho_{n_k+1}(h)\Big[Z'(h)-a_2I'_{2}(h)-\cdots-a_{k-1}I'_{k-1}(h)\Big]\\ & = &\rho_{n_1+1}(h)I'_{1}(h) +\cdots+\rho_{n_{k-1}+1}(h)I'_{k-1}(h)+\rho_{n_k+1}(h)Z'(h), \\ \Phi'(h)& = &\tau'_1(h)V_1(h)+\tau_1(h)V'_1(h) = [\tau'_1(h)(B_1h+C_1)+\tau_1(h)]V'_1(h)\\ & = &\rho_{n_1}(h)I'_{1}(h) +\cdots+\rho_{n_{k-1}}(h)I'_{k-1}(h)+\rho_{n_k}(h)I'_{k}(h)\\ & = &\rho_{n_1}(h)I'_{1}(h) +\cdots+\rho_{n_{k-1}}(h)I'_{k-1}(h)\\ &&+\rho_{n_k}(h)\Big[Z'(h)-a_2I'_{2}(h)-\cdots-a_{k-1}I'_{k-1}(h)\Big]\\ & = &\rho_{n_1}(h)I'_{1}(h) +\cdots+\rho_{n_{k-1}}(h)I'_{k-1}(h)+\rho_{n_k}(h)Z'(h), \\ \Phi''(h)& = &\rho'_{n_1}(h)I'_{1}(h)+\rho'_{n_2}(h)I'_{2}(h)+\cdots+ \rho'_{n_k}(h)Z'(h)\\ &&+\rho_{n_1}(h)I''_{1}(h)+\rho_{n_2}(h)I''_{2}(h)+\cdots+ \rho_{n_k}(h)Z''(h)\\ & = &\frac{1}{G_1(h)}\Big[\rho_{n_1+k}(h)I'_{1}(h)+\rho_{n_1+k}(h)Z'(h)\Big]\\ & &+\rho_{n_2-1}(h)I'_{2}(h)+\cdots+\rho_{n_{k-1}-1}(h)I'_{k-1}(h). \end{eqnarray*}

由引理2.3可得

\begin{eqnarray} L(h)I(h)& = &L(h)\big(\Phi(h)+\Psi(h)\big) = L(h)\Phi(h) \\ & = &P_2(h)\Phi''(h)+P_1(h)\Phi'(h)+P_0(h)\Phi(h). \end{eqnarray}
(2.11)

\Phi(h) , \Phi'(h) \Phi''(h) 代入(2.11)式即可得证.证毕.

引理2.5  如果当 h\in\Sigma 时, G_1(h)\neq0 , I'_1(h)\neq0 ,则 R(h) 至多有 (3k+4)K+(3k+4)n_1+4k+1 个零点(计重数).

  由(1.4)和(2.10)式可得

\begin{eqnarray} R^{(i)}(h)& = &\frac{1}{G^{i+1}_1(h)}\Big[X_{K+n_1+k+ki}(h)I'_{1}(h)+Y_{K+n_1+k+ki}(h)Z'(h)\Big] \\ & = &\frac{I'_{1}(h)}{G^{i+1}_1(h)}\Big[X_{K+n_1+k+ki}(h)+Y_{K+n_1+k+ki}(h)\omega_1(h)\Big], \end{eqnarray}
(2.12)

其中 i = K+n_2 , X_{K+n_1+k+ki}(h) Y_{K+n_1+k+ki}(h) 是关于 h 的二次数不超过 K+n_1+k+ki 的多项式.所以 R^{(i)}(h) X_{K+n_1+k+ki}(h)+Y_{K+n_1+k+ki}(h)\omega_1(h) \Sigma 上有相同的零点.

假设 X_{K+n_1+k+ki}(h) Y_{K+n_1+k+ki}(h) 有公因子 \theta_l(h) ,其中 \theta_l(h) h 的多项式且 \deg \theta_l(h)\leq K+n_1+k+ki .

X_{K+n_1+k+ki}(h) = \theta_l(h)\bar{X}(h), \ \ Y_{K+n_1+k+ki}(h) = \theta_l(h)\bar{Y}(h),

\bar{X}(h) \bar{Y}(h) h 的次数不超过 K+n_1+k+ki-l 多项式.所以

X_{K+n_1+k+ki}(h)+Y_{K+n_1+k+ki}(h)\omega_1(h) = \theta_l(h)[\bar{X}(h)+\bar{Y}(h)\omega_1(h)],

\#\{X_{K+n_1+k+ki}(h)+Y_{K+n_1+k+ki}(h)\omega_1(h) = 0\} = l+\#\{\bar{X}(h)+\bar{Y}(h)\omega_1(h) = 0\}.

\chi_1(h) = \bar{X}(h)+\bar{Y}(h)\omega_1(h) ,由(2.2)式可得

\begin{eqnarray} G_1(h)\bar{Y}(h)\chi'_1(h) = -a_{12}\chi_1^2(h)+\bar{F}_1(h)\chi_1(h)+\bar{F}_0(h), \end{eqnarray}
(2.13)

其中

\begin{eqnarray*} \bar{F}_1(h)& = &G_1(h)\bar{Y}'(h)+2a_{12}(h)\bar{X}(h) +\big(a_{k2}(h)-a_{11}(h)\big)\bar{Y}(h), \\ \bar{F}_0(h)& = &G_1(h)(\bar{X}'(h)\bar{Y}(h) -\bar{X}(h)\bar{Y}'(h))- a_{12}(h)\bar{X}^2(h)\\ & &+a_{k1}(h)\bar{Y}^2(h)-\big( a_{k2}(h)-a_{11}(h)\big)\bar{X}(h)\bar{Y}(h), \end{eqnarray*}

\deg \bar{F}_0(h)\leq2K+2n_1+(2i+3)k-2l .由文献[3,引理4.4]可得

\#\{\chi_1(h) = 0\}\leq\#\{\bar{F}_0(h) = 0\}+\#\{\bar{Y}(h) = 0\}+1.

因此,当 h\in \Sigma

\begin{eqnarray} \#\{R(h) = 0\}\leq \#\{\chi_1(h) = 0\}+i \leq (3k+4)K+(3k+4)n_1+4k+1. \end{eqnarray}
(2.14)

证毕.

定理1.1的证明  由引理2.2可得, \Psi(h) 至多有 3m_1+2 个零点.假设

P_2(\tilde{h}_i) = 0, \ \Psi(\bar{h}_j) = 0, \ \tilde{h}_i, \bar{h}_j\in\Sigma, \ 1\leq i\leq K, \ 1\leq j\leq3m_1+2.

\tilde{h}_i \bar{h}_j h_m^* ,并重排它们使得 h_m^* < h_{m+1}^* , m = 1, 2, \cdots, K+3m_1+2 .

\Delta_s = (h_s^*, h_{s+1}^*), \ s = 0, 1, \cdots, K+3m_1+2,

其中 h_0^* h_{K+3m_1+3}^* 表示区间 \Sigma 的左右端点.则 P_2(h)\neq0 , \Psi(h)\neq0 , h\in\Delta_s .由引理2.3可得 L(h)\Psi(h) = 0 .所以,由命题2.1,方程

L(h) = P_2(h)\Big(\frac{{\rm d}^2}{{\rm d}h^2}+\frac{P_1(h)}{P_2(h)}\frac{\rm d}{{\rm d}h}+\frac{P_0(h)}{P_2(h)}\Big)

的解空间是区间 \Delta_s 上的Chebyshev空间.由命题2.2知, I(h) \Delta_s 上至多有 2+l_s 个零点,其中 l_s R(h) \Delta_s 上的零点个数.综上可得

\begin{eqnarray*} \#\{I(h) = 0\}&\leq&\#\{R(h) = 0\}+2\times {\rm区间} \Delta_s {\rm的个数} + {\rm区间} \Delta_s {\rm的端点的个数} \\ &\leq&(3k+7)K+(3k+4)n_1+9m_1+4k+9\\ & \leq&(3k+4)n_1+(6k+23)m_1+13k+30. \end{eqnarray*}

证毕.

3 应用

例3.1  在文献[7]中,作者研究了如下近-Hamiltonian系统

\begin{eqnarray} \left\{\begin{array}{ll} \dot{x} = 2y(rx^2+2y^2)+\varepsilon f(x, y), \\ \dot{y} = 2x(1-2x^2-ry^2)+\varepsilon g(x, y), \\ \end{array}\right.\ r\geq0, \ r\neq2, \end{eqnarray}
(3.1)

其中 f(x, y) g(x, y) 是关于 x y n 次多项式.系统(3.1)的Abelian积分如下

\begin{eqnarray} I(h) = \big[\alpha(h)I_{01}+\beta(h)I_{03}+\gamma(h)I_{21}+\delta(h)I_{23}\big]+\big[\xi(h)I_{11}+\eta(h)I_{13}\big], h\in(-\frac{1}{4}, 0), \end{eqnarray}
(3.2)

其中 \alpha(h), \ \beta(h), \ \gamma(h), \ \delta(h), \ \xi(h) \eta(h) h 的多项式,且 \deg \alpha(h)\leq[\frac{n-1}{4}] , \deg \beta(h), \deg \gamma(h)\leq[\frac{n-3}{4}] , \deg \delta(h)\leq[\frac{n-1}{4}]-1 , \deg \xi(h)\leq[\frac{n-2}{4}] , \deg \eta(h)\leq[\frac{n}{4}]-1 .作者证明 I(h) 至多有 40n+6[\frac{n-1}{4}]+6[\frac{n-2}{4}]+11 个零点(计重数).

容易验证, (H1)–(H3)满足,且 I'_{01}(h)\neq0 , I_{11}(h)\neq0 , h\in(-\frac{1}{4}, 0) .比较(3.2)式和条件(H1)得

k = 4, \ n_1 = [\frac{n-1}{4}], \ m_1 = [\frac{n-2}{4}].

所以,由定理1.1得 I(h) 至多有 16[\frac{n-1}{4}]+47[\frac{n-2}{4}]+82 个零点(计重数).

例3.2  在文献[6]中,作者研究了如下系统

\begin{eqnarray} \left\{\begin{array}{ll} \dot{x} = y+\varepsilon f(x, y), \\ \dot{y} = -(ax+bx^3+cx^5)+\varepsilon g(x, y), \\ \end{array}\right.\ a, b, c\in\mathbb{R} , \ c\neq0. \end{eqnarray}
(3.3)

系统(3.3)的Abelian积分 I(h) 可表示为

\begin{eqnarray*} I(h) = &\big[{\alpha}(h)I_{01}+{\beta}(h)I_{21}+{\gamma}(h)I_{41}\big] +\big[{\xi}(h)I_{11}+{\eta}(h)I_{31}\big], \end{eqnarray*}

其中 {\alpha}(h), \ {\beta}(h), \ {\gamma}(h), \ {\xi}(h) {\eta}(h) h 的多项式,且 \deg {\alpha}(h)\leq[\frac{n-1}{2}] , \deg {\beta}(h), \deg {\gamma}(h)\leq[\frac{n-3}{2}] , \deg {\xi}(h)\leq[\frac{n-2}{2}] , \deg {\eta}(h)\leq[\frac{n-4}{2}] .作者得到 I(h) 至多有 54n-13 个零点(计重数).

容易验证,定理1.1的条件成立,且 k = 3, \ n_1 = [\frac{n-1}{2}], \ m_1 = [\frac{n-2}{2}] .所以, I(h) 至多有 13[\frac{n-1}{2}]+41[\frac{n-2}{2}]+69 个零点(计重数).

注3.1  由上面对例3.1和例3.2的讨论可知,应用本文定理1.1得到的 I(h) 的零点个数的上界比原来文献得到的小,这主要是因为我们改善了引理2.3的结果.

参考文献

Arnold V .

Ten problems in:Theory of singularities and its applications

Adv Soviet Math, 1990, 1: 1- 8

[本文引用: 1]

Horozov E , Iliev I .

Linear estimate for the number of zeros of Abelian integrals with cubic Hamiltonians

Nonlinearity, 1998, 11: 1521- 1537

DOI:10.1088/0951-7715/11/6/006      [本文引用: 1]

Zhao Y , Zhang Z .

Linear estimate of the number of zeros of Abelian integrals for a kind of quartic Hamiltonians

J Differential Equations, 1999, 155: 73- 88

DOI:10.1006/jdeq.1998.3581      [本文引用: 3]

Zhou X , Li C .

On the algebraic structure of Abelian integrals for a kind of pertubed cubic Hamiltonian systems

J Math Anal Appl, 2009, 359: 209- 215

DOI:10.1016/j.jmaa.2009.05.034      [本文引用: 1]

Wu J , Zhang Y , Li C .

On the number of zeros of Abelian integrals for a kind of quartic Hamiltonians

Appl Math Comput, 2014, 228: 329- 335

URL     [本文引用: 1]

Zhao L , Qi M , Liu C .

The cylicity of period annuli of a class of quintic Hamiltonian systems

J Math Anal Appl, 2013, 403: 391- 407

DOI:10.1016/j.jmaa.2013.02.016      [本文引用: 3]

Yang J , Zhao L .

Zeros of Abelian integrals for a quartic Hamiltonian with figure-of-eight loop through a nilpotent saddle

Nonlinear Anal RWA, 2016, 27: 350- 365

DOI:10.1016/j.nonrwa.2015.08.005      [本文引用: 3]

Gavrilov L , Iliev I .

Quadratic perturbations of quadratic codimension-four centers

J Math Anal Appl, 2009, 357: 69- 76

DOI:10.1016/j.jmaa.2009.04.004      [本文引用: 3]

/