数学物理学报, 2019, 39(5): 1025-1032 doi:

论文

一类Hamiltonian系统的Abelian积分的零点

杨纪华,1, 张二丽2

Zeros of Abelian Integral for a Kind of Hamiltonian Systems

Yang Jihua,1, Zhang Erli2

通讯作者: 杨纪华, E-mail: jihua1113@163.com

收稿日期: 2018-08-5  

基金资助: 国家自然科学基金.  11701306
国家自然科学基金.  11601250
宁夏高等学校一流学科建设(教育学学科).  NXYLXK2017B11
宁夏青年拔尖人才和河南省高等学校青年骨干教师培养计划.  2017GGJS202
宁夏青年拔尖人才和河南省高等学校青年骨干教师培养计划.  2016GGJS190

Received: 2018-08-5  

Fund supported: the NSFC.  11701306
the NSFC.  11601250
the Construction of First-class Disciplines of Higher Education of Ningxia (pedagogy).  NXYLXK2017B11
the Young Top-Notch Talent of Ningxia and Training Plan of University Young Key Teacher of Henan Province.  2017GGJS202
the Young Top-Notch Talent of Ningxia and Training Plan of University Young Key Teacher of Henan Province.  2016GGJS190

摘要

该文得到了一类Hamiltonian系统的Abelian积分的零点的个数的上界.该Abelian积分有k+2个生成元,并且这些生成元满足两个不同的Picard-Fuchs方程.最后,用两个例子说明理论结果的应用.

关键词: Hamiltonian系统 ; Abelian积分 ; Picard-Fuchs方程 ; Chebyshev空间 ; Hilbert-Arnold问题

Abstract

In this paper, we obtain an upper bound of the number of zeros of Abelian integral for a kind of Hamiltonian systems. The Abelian integral has k + 2 generators which satisfy two different Picard-Fuchs equations. Finally, we present two examples to illustrate an application of the theoretical result.

Keywords: Hamiltonian system ; Abelian integral ; Picard-Fuchs equation ; Chebyshev space ; Hilbert-Arnold problem

PDF (289KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

杨纪华, 张二丽. 一类Hamiltonian系统的Abelian积分的零点. 数学物理学报[J], 2019, 39(5): 1025-1032 doi:

Yang Jihua, Zhang Erli. Zeros of Abelian Integral for a Kind of Hamiltonian Systems. Acta Mathematica Scientia[J], 2019, 39(5): 1025-1032 doi:

1 引言和主要结果

考虑近-Hamiltonian系统

$ \begin{eqnarray} \frac{{\rm d}x}{{\rm d}t} = \frac{\partial H(x, y)}{\partial y}+\varepsilon f(x, y), \ \ \frac{{\rm d}y}{{\rm d}t} = -\frac{\partial H(x, y)}{\partial x}+\varepsilon g(x, y), \end{eqnarray} $

其中$ 0 < |\varepsilon|\ll1 $, $ H(x, y) $是关于$ x $$ y $$ m+1 $次多项式, $ f(x, y) $$ g(x, y) $是关于$ x $$ y $$ n $次多项式.假设Hamiltonian系统$ (1.1)|_{\varepsilon = 0} $有连续闭轨线族$ \{\Gamma_h\} $, $ \Sigma $$ h $的最大存在开区间,即$ \Gamma_h = \{(x, y)\in\mathbb{R} ^2|H(x, y) = h, \ h\in\Sigma\} $.确定Abelian积分

的孤立零点个数的最小上界$ Z(m, n) $称为Hilbert-Arnold问题或弱Hilbert第16问题[1].

很多数学工作者都致力于研究Abelian积分$ I(h) $的零点个数问题.当$ I(h) $的生成元满足一个Picard-Fuchs方程时,有很多优秀的工作.例如,如果$ m = 2 $且未扰动系统至少有一个中心,相应Hamiltonian函数$ H(x, y) $的规范型为

Horozov和Iliev[2]证明$ Z(2, n)\leq5n+15 $.如果$ H(x, y) = \frac{1}{2}y^2+U(x) $,其中$ U(x) $使得系统$ (1.1)|_0 $有一个中心且$ \deg U(x) = 4 $,赵育林和张芷芬[3]证明$ Z(3, n)\leq7n+5 $.对于

周鑫和李翠萍得到相应$ I(h) $的代数结构,并给出当$ a > 0 $, $ b = 0 $, $ c = 1 $$ I(h) $的零点个数的上界[4].对于

吴娟娟等[5]证明$ Z(3, n)\leq2[\frac{n-1}{4}]+12[\frac{n-3}{4}]+23 $.

如果$ I(h) $的生成元满足两个不同的Picard-Fuchs方程时,相关的研究结果较少.对于

赵丽琴等[6]证明$ Z(5, n)\leq54n-13 $.杨纪华和赵丽琴得到Hamitonian函数

的Abelian积分的在不同周期环域上零点个数的上界[7].

受文献[6-7]的启发,本文研究一类Hamiltonian系统的Abelian积分的零点个数问题,该Abelian积分的生成元满足两个Picard-Fuchs方程.为此,我们对系统(1.1)作如下假设:

(H1)系统(1.1)的Abelian积分$ I(h) $可表示为

$ \begin{eqnarray} I(h) = \sum\limits_{i = 1}^k\alpha_i(h)I_i(h)+\beta_1(h)J_1(h)+\beta_2(h)J_2(h), \ h\in \Sigma, \end{eqnarray} $

其中$ \alpha_i(h)\ (i = 1, 2, \cdots, k) $$ \beta_j(h) $$ (j = 1, 2) $是关于$ h $的多项式,且$ \deg\alpha_i(h)\leq n_i $$ (i = 1, 2, \cdots, k) $, $ \deg\beta_i(h)\leq m_j $$ (j = 1, 2) $, $ n_1\geq n_2\geq\cdots\geq n_k $, $ m_1\geq m_2 $.

(H2)向量函数$ V_1(h) = \big(I_1(h), I_2(h), \cdots, I_k(h)\big)^T $$ V_2(h) = \big(J_1(h), J_2(h)\big)^T $满足Picard-Fuchs方程

$ \begin{equation} \begin{array}{ll} V_1(h) = (B_1h+C_1)V'_1(h)\triangleq A_1(h)V'_1(h), \\ V_2(h) = (B_2h+C_2)V'_2(h)\triangleq A_2(h)V'_2(h), \end{array} \end{equation} $

其中$ B_1 $$ C_1 $$ k\times k $阶常数矩阵, $ B_2 $$ C_2 $$ 2\times2 $阶常数矩阵.

(H3)存在$ Z(h) = a_2I_2(h)+a_3I_3(h)+\cdots+a_kI_k(h) $使得

$ \begin{eqnarray} G_1(h)\left(\begin{array}{cc} I''_{1}(h)\\ I''_{2}(h)\\ \vdots\\ I''_{k-1}(h)\\ Z''(h) \end{array}\right) = \left(\begin{array}{cc} a_{11}(h) &a_{12}(h)\\ a_{21}(h) &a_{22}(h)\\ \vdots &\vdots\\ a_{k-11}(h) &a_{k-12}(h)\\ a_{k1}(h) &a_{k2}(h) \end{array}\right) \left(\begin{array}{cc} I'_{1}(h)\\ Z'(h) \end{array}\right), \end{eqnarray} $

其中$ a_i\ (i = 2, \cdots, k) $是常数, $ a_{ij}(h) $是多项式, $ G_1(h) = \det\big(A_1(h)\big) $, $ \deg a_{ij}(h)\leq\deg G_1(h) $$ (i = 1, 2, \cdots, k;j = 1, 2) $.

本文的主要结果是如下定理.

定理1.1  假设(H1)–(H3)成立,且当$ h\in\Sigma $时, $ I'_1(h)\neq0 $, $ J_1(h)\neq0 $,则系统(1.1)的Abelian积分$ I(h) $至多有$ (3k+4)n_1+(6k+23)m_1+13k+30 $个零点(计重数).

2 定理1.1的证明

本文中,我们用$ \#\{\phi(h) = 0, h\in(a, b)\} $表示函数$ \phi(h) $在区间$ (a, b) $上的零点个数(计重数).设$ V $是定义在开区间$ {\Bbb I} $上的实解析函数组成的向量空间.

定义2.1[8]  如果$ V $中任一非零函数至多有$ \dim(V)-1 $个零点(计重数),称$ V $为Chebyshev空间.

$ S $是二阶线性解析微分方程

$ \begin{equation} x''(t)+a_1(t)x'(t)+a_2(t)x(t) = 0 \end{equation} $

在开区间$ {\Bbb I} $上的解空间.

命题2.1[8]  方程(2.1)的解空间$ S $是区间$ {\Bbb I} $上的Chebyshev空间当且仅当$ S $中存在一个在$ {\Bbb I} $上处处非零的元.

命题2.2[8]  假设齐次方程(2.1)的解空间是Chebyshev空间, $ R(t) $是解析函数并且在区间$ {\Bbb I} $上有$ l $个零点(计重数).则非齐次方程

的解$ x(t) $$ {\Bbb I} $上至多有$ l+2 $个零点(计重数).

引理2.1   (1)假设当$ h\in\Sigma $时, $ I'_1(h)\neq0 $,令$ \omega_1(h) = \frac{Z'(h)}{I'_1(h)} $,则$ \omega_1(h) $满足Riccati方程

$ \begin{equation} G_1(h)\omega'_1(h) = -a_{12}(h)\omega_1^2(h)+\big[a_{k2}(h)-a_{11}(h)\big]\omega_1(h)+a_{k1}(h). \end{equation} $

(2)假设当$ h\in\Sigma $时, $ J_1(h)\neq0 $,令$ \omega_2(h) = \frac{J_2(h)}{J_1(h)} $,则$ \omega_2(h) $满足Riccati方程

$ \begin{equation} G_2(h)\omega'_2(h) = -b^*_{12}(h)\omega_2^2(h)+\big[b^*_{22}(h)-b^*_{11}(h)\big]\omega_2(h)+b^*_{21}(h), \end{equation} $

其中$ G_2(h) = \det\big(A_2(h)\big), \ (B_2h+C_2)^* = \left(\begin{array}{cc}b^*_{11}(h) &b^*_{12}(h)\\ b^*_{21}(h) &b^*_{22}(h) \end{array}\right) $$ B_2h+C_2 $的伴随矩阵.

   (2.2)式可由(1.4)式得到. (2.3)式可由(1.3)式得到.证毕.

引理2.2  假设当$ h\in\Sigma $时, $ J_1(h)\neq0 $.

$ \begin{eqnarray} \Psi(h) = \big(\beta_1(h), \beta_2(h)\big)\left(\begin{array}{cc} J_1(h)\\ J_2(h) \end{array}\right)\triangleq\tau_2(h)V_2(h), \ h\in\Sigma, \end{eqnarray} $

$ \Psi(h) $$ \Sigma $上至多有$ 3m_1+2 $个零点(计重数).

  令$ \chi_2(h) = \frac{\Psi(h)}{J_1(h)} $,所以$ \chi_2(h) = \beta_1(h)+\beta_2(h)\omega_2(h) $.由(2.3)式可得$ \chi_2(h) $满足

其中

$ \deg F_0(h)\leq2m_1+1 $.由文献[3]中引理4.4可得

因此,当$ h\in \Sigma $

$ \begin{eqnarray} \#\{\Psi(h) = 0\} = \#\{\chi_2(h) = 0\}\leq3m_1+2. \end{eqnarray} $

证毕.

引理2.3  如果$ K = m_1+m_2+3 $,则当$ h\in\Sigma $时,存在$ K $, $ K-1 $$ K-2 $次多项式$ P_2(h) $, $ P_1(h) $$ P_0(h) $使得$ L(h)\Psi(h) = 0 $,其中

$ \begin{eqnarray} L(h) = P_2(h)\frac{{\rm d}^2}{{\rm d}h^2}+P_1(h)\frac{\rm d}{{\rm d}h}+P_0(h). \end{eqnarray} $

  由(1.3)式可得

其中$ I $$ 2\times2 $阶单位矩阵.所以

其中$ M_{m_1+2}(h) $表示$ h $的至多$ m_1+2 $多项式,等等.对于$ \Psi'(h) $,我们得到

同样的可得

假设

$ \begin{eqnarray} P_2(h) = \sum\limits_{k = 0}^{K}p_{2, k}h^k, \ \ P_1(h) = \sum\limits_{m = 0}^{K-1}p_{1, m}h^m, \ \ P_0(h) = \sum\limits_{l = 0}^{K-2}p_{0, l}h^l \end{eqnarray} $

$ h $的多项式,并且系数$ p_{2, k}, \ p_{1, m} $$ p_{0, l} $待定使得$ L(h)\Psi(h) = 0 $,

$ \begin{eqnarray} 0\leq k\leq K, \ \ 0\leq m\leq K-1, \ \ 0\leq l\leq K-2. \end{eqnarray} $

直接计算可得

其中$ S(h) $$ T(h) $$ h $的多项式且$ \deg S(h)\leq K+m_1 $, $ \deg T(h)\leq K+m_2 $.

其中$ x_i $$ y_j $可以由$ p_{2, k} $, $ p_{1, m} $$ p_{0, l} $线性表示, $ k $, $ m $$ l $满足(2.8)式.令

$ \begin{eqnarray} x_i = 0, \ \ y_j = 0, \ \ 0\leq i\leq K+m_1, \ \ 0\leq j\leq K+m_2, \end{eqnarray} $

则系统(2.9)是一个齐次线性方程组,该方程组有$ 2K+m_1+m_2+2 $个方程, $ 3K+3 $个变量.因为$ 3K-(2K+m_1+m_2+2)\geq1 $,所以存在$ p_{2, k} $, $ p_{1, m} $$ p_{0, l} $使(2.9)式成立,即可得$ L(h)\Psi(h) = 0 $.证毕.

引理2.4  如果当$ h\in\Sigma $时, $ G_1(h)\neq0 $,则$ L(h)I(h) = R(h) $,其中$ L(h) $由(2.6)式给出,

$ \begin{eqnarray} R(h) = \frac{1}{G_1(h)}\Big[Q_0(h)I'_{1}(h)+Q_1(h)Z'(h)\Big]+Q_2(h)I'_{2}(h)+\cdots+Q_{k-1}(h)I'_{k-1}(h), \end{eqnarray} $

$ Q_i(h)\ (i = 0, 1, \cdots, k-1) $$ h $的多项式,且$ \deg Q_0(h), \deg Q_1(h)\leq K+n_1+k $, $ \deg Q_i(h)\leq K+n_i-1, i = 2, 3, \cdots, k-1 $.

  记

由(1.3)和(1.4)式可得

由引理2.3可得

$ \begin{eqnarray} L(h)I(h)& = &L(h)\big(\Phi(h)+\Psi(h)\big) = L(h)\Phi(h) \\ & = &P_2(h)\Phi''(h)+P_1(h)\Phi'(h)+P_0(h)\Phi(h). \end{eqnarray} $

$ \Phi(h) $, $ \Phi'(h) $$ \Phi''(h) $代入(2.11)式即可得证.证毕.

引理2.5  如果当$ h\in\Sigma $时, $ G_1(h)\neq0 $, $ I'_1(h)\neq0 $,则$ R(h) $至多有$ (3k+4)K+(3k+4)n_1+4k+1 $个零点(计重数).

  由(1.4)和(2.10)式可得

$ \begin{eqnarray} R^{(i)}(h)& = &\frac{1}{G^{i+1}_1(h)}\Big[X_{K+n_1+k+ki}(h)I'_{1}(h)+Y_{K+n_1+k+ki}(h)Z'(h)\Big] \\ & = &\frac{I'_{1}(h)}{G^{i+1}_1(h)}\Big[X_{K+n_1+k+ki}(h)+Y_{K+n_1+k+ki}(h)\omega_1(h)\Big], \end{eqnarray} $

其中$ i = K+n_2 $, $ X_{K+n_1+k+ki}(h) $$ Y_{K+n_1+k+ki}(h) $是关于$ h $的二次数不超过$ K+n_1+k+ki $的多项式.所以$ R^{(i)}(h) $$ X_{K+n_1+k+ki}(h)+Y_{K+n_1+k+ki}(h)\omega_1(h) $$ \Sigma $上有相同的零点.

假设$ X_{K+n_1+k+ki}(h) $$ Y_{K+n_1+k+ki}(h) $有公因子$ \theta_l(h) $,其中$ \theta_l(h) $$ h $的多项式且$ \deg \theta_l(h)\leq K+n_1+k+ki $.

$ \bar{X}(h) $$ \bar{Y}(h) $$ h $的次数不超过$ K+n_1+k+ki-l $多项式.所以

$ \chi_1(h) = \bar{X}(h)+\bar{Y}(h)\omega_1(h) $,由(2.2)式可得

$ \begin{eqnarray} G_1(h)\bar{Y}(h)\chi'_1(h) = -a_{12}\chi_1^2(h)+\bar{F}_1(h)\chi_1(h)+\bar{F}_0(h), \end{eqnarray} $

其中

$ \deg \bar{F}_0(h)\leq2K+2n_1+(2i+3)k-2l $.由文献[3,引理4.4]可得

因此,当$ h\in \Sigma $

$ \begin{eqnarray} \#\{R(h) = 0\}\leq \#\{\chi_1(h) = 0\}+i \leq (3k+4)K+(3k+4)n_1+4k+1. \end{eqnarray} $

证毕.

定理1.1的证明  由引理2.2可得, $ \Psi(h) $至多有$ 3m_1+2 $个零点.假设

$ \tilde{h}_i $$ \bar{h}_j $$ h_m^* $,并重排它们使得$ h_m^* < h_{m+1}^* $, $ m = 1, 2, \cdots, K+3m_1+2 $.

其中$ h_0^* $$ h_{K+3m_1+3}^* $表示区间$ \Sigma $的左右端点.则$ P_2(h)\neq0 $, $ \Psi(h)\neq0 $, $ h\in\Delta_s $.由引理2.3可得$ L(h)\Psi(h) = 0 $.所以,由命题2.1,方程

的解空间是区间$ \Delta_s $上的Chebyshev空间.由命题2.2知, $ I(h) $$ \Delta_s $上至多有$ 2+l_s $个零点,其中$ l_s $$ R(h) $$ \Delta_s $上的零点个数.综上可得

证毕.

3 应用

例3.1  在文献[7]中,作者研究了如下近-Hamiltonian系统

$ \begin{eqnarray} \left\{\begin{array}{ll} \dot{x} = 2y(rx^2+2y^2)+\varepsilon f(x, y), \\ \dot{y} = 2x(1-2x^2-ry^2)+\varepsilon g(x, y), \\ \end{array}\right.\ r\geq0, \ r\neq2, \end{eqnarray} $

其中$ f(x, y) $$ g(x, y) $是关于$ x $$ y $$ n $次多项式.系统(3.1)的Abelian积分如下

$ \begin{eqnarray} I(h) = \big[\alpha(h)I_{01}+\beta(h)I_{03}+\gamma(h)I_{21}+\delta(h)I_{23}\big]+\big[\xi(h)I_{11}+\eta(h)I_{13}\big], h\in(-\frac{1}{4}, 0), \end{eqnarray} $

其中$ \alpha(h), \ \beta(h), \ \gamma(h), \ \delta(h), \ \xi(h) $$ \eta(h) $$ h $的多项式,且$ \deg \alpha(h)\leq[\frac{n-1}{4}] $, $ \deg \beta(h), $$ \deg \gamma(h)\leq[\frac{n-3}{4}] $, $ \deg \delta(h)\leq[\frac{n-1}{4}]-1 $, $ \deg \xi(h)\leq[\frac{n-2}{4}] $, $ \deg \eta(h)\leq[\frac{n}{4}]-1 $.作者证明$ I(h) $至多有$ 40n+6[\frac{n-1}{4}]+6[\frac{n-2}{4}]+11 $个零点(计重数).

容易验证, (H1)–(H3)满足,且$ I'_{01}(h)\neq0 $, $ I_{11}(h)\neq0 $, $ h\in(-\frac{1}{4}, 0) $.比较(3.2)式和条件(H1)得

所以,由定理1.1得$ I(h) $至多有$ 16[\frac{n-1}{4}]+47[\frac{n-2}{4}]+82 $个零点(计重数).

例3.2  在文献[6]中,作者研究了如下系统

$ \begin{eqnarray} \left\{\begin{array}{ll} \dot{x} = y+\varepsilon f(x, y), \\ \dot{y} = -(ax+bx^3+cx^5)+\varepsilon g(x, y), \\ \end{array}\right.\ a, b, c\in\mathbb{R} , \ c\neq0. \end{eqnarray} $

系统(3.3)的Abelian积分$ I(h) $可表示为

其中$ {\alpha}(h), \ {\beta}(h), \ {\gamma}(h), \ {\xi}(h) $$ {\eta}(h) $$ h $的多项式,且$ \deg {\alpha}(h)\leq[\frac{n-1}{2}] $, $ \deg {\beta}(h), $$ \deg {\gamma}(h)\leq[\frac{n-3}{2}] $, $ \deg {\xi}(h)\leq[\frac{n-2}{2}] $, $ \deg {\eta}(h)\leq[\frac{n-4}{2}] $.作者得到$ I(h) $至多有$ 54n-13 $个零点(计重数).

容易验证,定理1.1的条件成立,且$ k = 3, \ n_1 = [\frac{n-1}{2}], \ m_1 = [\frac{n-2}{2}] $.所以, $ I(h) $至多有$ 13[\frac{n-1}{2}]+41[\frac{n-2}{2}]+69 $个零点(计重数).

注3.1  由上面对例3.1和例3.2的讨论可知,应用本文定理1.1得到的$ I(h) $的零点个数的上界比原来文献得到的小,这主要是因为我们改善了引理2.3的结果.

参考文献

Arnold V .

Ten problems in:Theory of singularities and its applications

Adv Soviet Math, 1990, 1: 1- 8

[本文引用: 1]

Horozov E , Iliev I .

Linear estimate for the number of zeros of Abelian integrals with cubic Hamiltonians

Nonlinearity, 1998, 11: 1521- 1537

DOI:10.1088/0951-7715/11/6/006      [本文引用: 1]

Zhao Y , Zhang Z .

Linear estimate of the number of zeros of Abelian integrals for a kind of quartic Hamiltonians

J Differential Equations, 1999, 155: 73- 88

DOI:10.1006/jdeq.1998.3581      [本文引用: 3]

Zhou X , Li C .

On the algebraic structure of Abelian integrals for a kind of pertubed cubic Hamiltonian systems

J Math Anal Appl, 2009, 359: 209- 215

DOI:10.1016/j.jmaa.2009.05.034      [本文引用: 1]

Wu J , Zhang Y , Li C .

On the number of zeros of Abelian integrals for a kind of quartic Hamiltonians

Appl Math Comput, 2014, 228: 329- 335

URL     [本文引用: 1]

Zhao L , Qi M , Liu C .

The cylicity of period annuli of a class of quintic Hamiltonian systems

J Math Anal Appl, 2013, 403: 391- 407

DOI:10.1016/j.jmaa.2013.02.016      [本文引用: 3]

Yang J , Zhao L .

Zeros of Abelian integrals for a quartic Hamiltonian with figure-of-eight loop through a nilpotent saddle

Nonlinear Anal RWA, 2016, 27: 350- 365

DOI:10.1016/j.nonrwa.2015.08.005      [本文引用: 3]

Gavrilov L , Iliev I .

Quadratic perturbations of quadratic codimension-four centers

J Math Anal Appl, 2009, 357: 69- 76

DOI:10.1016/j.jmaa.2009.04.004      [本文引用: 3]

/