数学物理学报, 2019, 39(4): 812-822 doi:

论文

非线性二阶中立型分布时滞微分方程的振动性

李文娟,1,2, 李书海1,2, 俞元洪3

Oscillation of Second Order Nonlinear Neutral Differential Equations with Distributed Delay

Li Wenjuan,1,2, Li Shuhai1,2, Yu Yuanhong3

收稿日期: 2017-08-27  

基金资助: 国家自然科学基金.  11761006
国家自然科学基金.  11762001
内蒙古自然科学基金.  2017MS0113
内蒙古高等学校科研基金.  NJZY17300
内蒙古高等学校科研基金.  NJZY17301

Received: 2017-08-27  

Fund supported: the NSFC.  11761006
the NSFC.  11762001
the Natural Science Foundation of Inner Mongolia.  2017MS0113
the Higher School Foundation of Inner Mongolia.  NJZY17300
the Higher School Foundation of Inner Mongolia.  NJZY17301

作者简介 About authors

李文娟,E-mail:liwenjuan19821015@163.com , E-mail:liwenjuan19821015@163.com

摘要

该文主要研究了非线性二阶中立型分布时滞微分方程

(其中$t\geq t_{0}, ~z(t)=x(t)+\int^{b}_{a}p(t, \xi)x\left(\tau(t, \xi)\right){\rm d}\xi $)的振动性.该文建立了上述方程的若干新的振动准则,所得结果推广和改进了最近一些文献中某些熟知的振动结果,此外,该文给出每个定理所相对应的例子,用来说明其相对于已有文献中的定理具有一定的优越性.

关键词: 分布时滞 ; 半线性 ; 振动准则 ; 广义Riccati不等式

Abstract

In this work, we study the oscillation of the second order Nonlinear Neutral Differential Equations with Distributed Delay

where $t\geq t_{0}, ~z(t)=x(t)+\int^{b}_{a}p(t, \xi)x(\tau(t, \xi)){\rm d}\xi $. we establish some new oscillation criteria for the above equation. These results extend and improve some known results in the cited literature. Also, our results are illustrated with some examples. It is shown that the theorem has some advantages over the existing literature.

Keywords: Distributed delay ; Half-linear ; Oscillation criterion ; Generalized Riccati inequality

PDF (343KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

李文娟, 李书海, 俞元洪. 非线性二阶中立型分布时滞微分方程的振动性. 数学物理学报[J], 2019, 39(4): 812-822 doi:

Li Wenjuan, Li Shuhai, Yu Yuanhong. Oscillation of Second Order Nonlinear Neutral Differential Equations with Distributed Delay. Acta Mathematica Scientia[J], 2019, 39(4): 812-822 doi:

1 引言

本文考虑非线性二阶中立型分布时滞微分方程

$\left(r(t)|z'(t)|^{\alpha-1}z'(t)\right)'+\int^{d}_{c}f\left(t, x\left(\sigma(t, \xi)\right)\right){\rm d}\xi=0$

(其中$z(t)=x(t)+\int^{b}_{a}p(t, \xi)x\left(\tau(t, \xi)\right){\rm d}\xi, ~t\geq t_{0}>0, ~\alpha>0, ~0\leq a<b, ~0\leq c<d $).在本文中,我们总假设下列条件成立

(H$_{1})~~~\tau(t, \xi)\in C\left([t_{0}, \infty)\times[a, b], (0, \infty)\right), ~\tau(t, \xi)\leq t, ~\xi\in[a, b], $$t\rightarrow\infty$$\tau(t, \xi)\rightarrow\infty$;

(H$_{2})~~\sigma(t, \xi)\in C\left([t_{0}, \infty)\times[c, d], (0, \infty)\right), ~\sigma(t, \xi)$$\xi$的减函数, $\sigma(t, \xi)\leq t, ~\xi\in[c, d], $$t\rightarrow\infty$$\sigma(t, \xi)\rightarrow\infty, ~g(t)=\sigma(t, d)$$g'(t)>0;$

(H$_{3})~~p(t, \xi)\geq0, ~0\leq p(t)=\int^{b}_{a}p(t, \xi){\rm d}\xi<1; $

(H$_{4})~~r(t)>0, ~r'(t)\geq 0, \int^{\infty}_{t_{0}}\left(\frac{1}{r(t)}\right)^{\frac{1}{\alpha}}{\rm d}t=\infty;$

(H$_{5})~~f(t, u)\in C\left([t_{0}, \infty)\times{\Bbb R}, {\Bbb R}\right), ~uf(t, u)>0, ~u\neq0.$存在函数$q(t, \xi)\in C\big([t_{0}, \infty)\times[c, d], $$ [0, \infty)\big)$使得

方程(1.1)有如下重要的特例

(ⅰ)在相应的离散情况下,方程(1.1)成为

$\left(r(t)|z'(t)|^{\alpha-1}z'(t)\right)'+f\left(t, x\left(\sigma(t)\right)\right)=0, $

其中$z(t)=x(t)+p(t)x\left(\tau(t)\right), ~f(t, x)sgn x\geq q(t)|x|^{\beta} , ~x\neq0, ~\beta>0.$

(ⅱ)方程(1.2)中当$\alpha=\beta$时有特例

$\left(r(t)|z'(t)|^{\alpha-1}z'(t)\right)'+q(t)|x\left(\sigma(t)\right)|^{\alpha-1}x\left(\sigma(t)\right)=0, $

(ⅲ)方程(1.2)中当$\alpha=1$时有特例

$\left(r(t)\left(x(t)+p(t)x\left(\tau(t)\right)\right)'\right)'+q(t)|x\left(\sigma(t)\right)|^{\beta}sgnx\left(\sigma(t)\right)=0.$

方程(1.3)和(1.4)分别称为半线性中立型微分方程和中立型Emden-Fowler微分方程.我们看到两者是互不包含的,但是,它们都是方程(1.1)和(1.2)的特例.

近年来,随着二阶中立型微分方程在自然科学和工程技术中的应用日益广泛,许多学者对其振动性的充分条件的研究有着浓厚的兴趣.我们推荐文献[1-13]及其引文.其中Candan在文献[1]中建立了方程(1.1)在$\alpha=\beta$的条件下的若干振动准则. Dong在文献[2]中给出了当$\alpha=\beta$时方程(1.2)的某些振动结果.此后,文献[3]和[8]进一步研究了方程(1.2)当$~f(t, x)= q(t)|x|^{\beta}sgn x$时的振动性,分别给出了$\alpha\geq\beta$$\alpha\leq\beta$时方程(1.2)的振动准则.此外,文献[4-6]给出了半线性微分方程(1.3)振动的若干充分条件.而Erbe等在文献[7]中证明了中立型Emden-Fowler微分方程(1.4)当$\beta>1$时的Philos型振动准则.

本文的目的是研究方程(1.1)在一般情况下的振动准则.利用广义Riccati变换和分析技巧,建立了一个新的对任意$\alpha>0$$\beta>0$均成立的广义Riccati不等式.亦由此证明了方程(1.1)的四个新的振动定理.所得结果推广改进并统一了文献[1-8]中相应的振动结果.它们既适用于连续分布时滞方程(1.1),也适用于离散时滞方程(1.2).而且,也同样适用于半线性中立型微分方程(1.3)和中立型Emden-Fowler微分方程(1.4).

函数$x(t)$称为方程(1.1)的一个解,如果函数$z(t)$$r(t)|z'(t)|^{\alpha-1}z'(t)$是连续可微且在区间$[t_{0}, \infty)$$x(t)$满足方程(1.1).方程(1.1)的一个非平凡解称为振动的,如果它有任意大的零点,否则,称它为非振动的.方程(1.1)的一切解均振动,则称方程(1.1)为振动的.

2 主要结果及证明

定理2.1  设

$\begin{equation}\int^{\infty}_{t_{0}}Q(t){\rm d}t=\infty, \end{equation}$

其中

$\begin{equation}Q(t)=\int^{d}_{c}\left[1-p\left(\sigma(t, \xi)\right)\right]^{\beta}q(t, \xi){\rm d}\xi, \end{equation}$

则方程(1.1)振动.

  设$x(t)$为方程(1.1)的一个非振动解.不失一般性,不妨设$x(t)$为最终正解.则存在$t_{1}\geq t_{0}, $使得当$t\geq t_{1}$时有$x(t)>0, ~x\left(\tau(t, \xi)\right)>0~(\xi\in[a, b]), ~x\left(\sigma(t, \xi)\right)>0~(\xi\in[c, d])$.如果$x(t)$为最终负解,可用同样的方法来讨论.由条件(H$_{5})$我们得到

$\begin{eqnarray}\left(r(t)|z'(t)|^{\alpha-1}z'(t)\right)'&=&-\int^{d}_{c}f\left(t, x\left(\sigma(t, \xi)\right)\right){\rm d}\xi\\&\leq&-\int^{d}_{c}q(t, \xi)x^{\beta}\left(\sigma(t, \xi)\right){\rm d}\xi\leq0. \end{eqnarray}$

因此, $r(t)|z'(t)|^{\alpha-1}z'(t)$是非增函数且$z'(t)$最终保号,于是$z'(t)$仅有两种可能.最终有$z'(t)<0$$z'(t)>0.$

(ⅰ)假设$z'(t)<0, ~ t\geq t_{1}.$则由(2.3)式我们有

利用函数$r(t)(-z'(t))^{\alpha}$是非减函数,可知存在常数$C>0$使得

$r(t)(-z'(t))^{\alpha}\geq r(t_{2})(-z'(t_{2}))^{\alpha}\equiv C>0, ~t\geq t_{2}\geq t_{1}. $

$r(t)$除(2.4)式两边,从$t_{2}$$t$积分得

上式中令$t\rightarrow\infty$,由条件(H$_{4})$$z(t)\rightarrow-\infty$.此式与$z(t)>0$矛盾,故假设不成立.

(ⅱ)假设$z'(t)>0, ~t\geq t_{1}$.$z(t)\geq x(t)$$z(t)$是增的,则有

由上式,我们有

或者

$\left[\left(1-p\left(\sigma(t, \xi)\right)\right)z\left(\sigma(t, \xi)\right)\right]^{\beta}\leq x^{\beta}\left(\sigma(t, \xi)\right), t\geq t_{3}\geq t_{2}^{\ast}, ~\xi\in[c, d]. $

将(2.5)式带入(2.3)式,注意到$\sigma(t, \xi)$$\xi$的减函数,我们得到

或者

$\left(r(t)\left(z'(t)\right)^{\alpha}\right)'\leq-Q(t)z^{\beta}\left(g(t)\right).$

另一方面,因$r(t)\left(z'(t)\right)^{\alpha}$是减函数,我们有

或者

$\left(\frac{r(t)}{r\left(g(t)\right)}\right)^{\frac{1}{\alpha}}\leq\frac{z'\left(g(t)\right)}{z'(t)}.$

定义函数

$W(t)=\frac{r(t)\left(z'(t)\right)^{\alpha}}{z^{\beta}\left(g(t)\right)}, ~t\geq t_{3}.$

显然, $W(t)>0.$利用(2.6)-(2.8)式,求导产生

$\begin{eqnarray}W'(t)&=&\frac{\left(r(t)\left(z'(t)\right)^{\alpha}\right)'}{z^{\beta}\left(g(t)\right)}-\frac{\beta r(t)\left(z'(t)\right)^{\alpha}z'\left(g(t)\right)g'(t)}{z^{\beta+1}\left(g(t)\right)}\\&\leq&-Q(t)-\frac{\beta g'(t) \left(r^{\frac{1}{\alpha}}(t)z'(t)\right)^{\alpha+1}}{r^{\frac{1}{\alpha}}\left(g(t)\right)z^{\beta+1}\left(g(t)\right)}.\end{eqnarray}$

因为$z(t)$$z'(t)$均为正.我们有

$\begin{eqnarray}W'(t)+Q(t)\leq0.\end{eqnarray}$

对(2.10)式从$t_{3}$$t$积分,利用(2.2)式可得

此与$W(t)>0$矛盾.定理2.1证毕.

注2.1  定理2.1将对二阶线性微分方程

的Leighton-Wintner振动定理推广到非线性中立型微分方程(1.1),而且使其成为特例.其次,最近Candan在文献[2]中建立的定理2.1仅对方程(1.1)中当$\alpha=\beta$时才成立,而本文中定理2.1则对任意的$\alpha>0, ~\beta>0$都成立.

下面的引理给出方程(1.1)的一个新的Riccati不等式.

引理2.1  设$x(t)$是方程(1.1)的最终正解, $W(t)$由(2.8)式定义.则下面的不等式成立

$\begin{eqnarray}W'(t)\leq-Q(t)-\frac{\rho kg'(t)}{r^{\frac{1}{\rho}}\left(\theta(t)\right)}W^{\frac{\rho+1}{\rho}}(t), \end{eqnarray}$

其中$\rho=\min\{\alpha, \beta\}, $$k= \left \{\begin{array}{ll}1, & \alpha=\beta, \\ \mbox{正常数, }&\alpha\neq\beta, \end{array}\right.$$\theta(t)= \left \{\begin{array}{ll}t, & \alpha>\beta, \\ g(t) , & \alpha\leq\beta. \end{array}\right.$

  如同定理2.1的证明,我们得到(2.9)式成立,即

$\begin{eqnarray}W'(t)&\leq&-Q(t)-\frac{\beta g'(t) \left(r^{\frac{1}{\alpha}}(t)z'(t)\right)^{\alpha+1}}{r^{\frac{1}{\alpha}}\left(g(t)\right)z^{\beta+1}\left(g(t)\right)} \\&\leq&-Q(t)-\frac{\beta g'(t)}{r^{\frac{1}{\alpha}}\left(g(t)\right)}\left[z\left(g(t)\right)\right]^{\frac{\beta-\alpha}{\alpha}}W^{\frac{\alpha+1}{\alpha}}(t) .\end{eqnarray}$

注意到$z\left(g(t)\right)$是增函数,当$\beta\geq\alpha$时,存在常数$k_{1}>0$$t_{4}\geq t_{3}$使得当$t\geq t_{4}$时, $\left[z\left(g(t)\right)\right]^{\frac{\beta-\alpha}{\alpha}}\geq k_{1}, $故(2.12)式成为

$\begin{eqnarray}W'(t)\leq-Q(t)-\frac{\alpha k_{1} g'(t)}{r^{\frac{1}{\alpha}}(g(t))}W^{\frac{\alpha+1}{\alpha}}(t), ~t\geq t_{4}, ~\beta\geq\alpha .\end{eqnarray}$

易知,当$\beta=\alpha$时, $k_{1}$可为1.

其次,因为$\left(r(t)(z'(t))^{\alpha}\right)'\leq0$$r'(t)\geq0$固有$z''(t)\leq0$$z'(t)$是减函数.则当$\alpha>\beta$$\left[z'(t)\right]^{\frac{\beta-\alpha}{\beta}}$是增函数,于是存在常数$k_{2}>0$$t_{5}\geq t_{4}$使得$\left[z'(t)\right]^{\frac{\beta-\alpha}{\beta}}\geq k_{2}, ~t\geq t_{5}$因此,不等式(2.9)也可产生

$\begin{eqnarray}W'(t)&\leq&-Q(t)-\frac{\beta g'(t)}{r^{\frac{1}{\beta}}(t)}\left[z'(t)\right]^{\frac{\beta-\alpha}{\beta}}W^{\frac{\beta+1}{\beta}}(t) \\&\leq&-Q(t)-\frac{\beta k_{2} g'(t)}{r^{\frac{1}{\beta}}(t)}W^{\frac{\beta+1}{\beta}}(t), ~t\geq t_{5}, ~\alpha>\beta .\end{eqnarray}$

$k=\min\{k_{1}, k_{2}\}, $联合(2.13)和(2.14)式,我们得到不等式(2.11)对一切$\alpha>0, ~\beta>0$成立.引理2.1证毕.

定义函数序列$\left\{Q_{n}\right\}$如下

$Q_{1}(t)=\int^{\infty}_{t}Q(s){\rm d}s, $

$Q_{n}(t)=\int^{\infty}_{t}Q_{n-1}^{\frac{\rho+1}{\rho}}(s)R(s){\rm d}s+Q_{1}(t), ~t\geq t_{0}, n=2, ~3, ~4, ~\cdots.$

利用归纳法,我们有$Q_{n}(t)\leq Q_{n+1}(t), ~t\geq t_{0}, n=1, ~2, ~3, ~\cdots.$

为简单计算,在不等式(2.11)中,记

$R(t)=\frac{\rho kg'(t)}{r^{\frac{1}{\rho}}(\theta(t))}.$

则(2.11)式成为

$W'(t)+Q(t)+R(t)W^{\frac{\rho+1}{\rho}}(t)\leq0.$

引理2.2  设$x(t)$是方程(1.1)的最终正解,则

(ⅰ) $Q_{n}(t)\leq W(t), $其中$W(t)$$Q_{n}(t)$分别由(2.8)、(2.15)和$(2.15')$式定义.

(ⅱ)存在正函数$\overline{Q}(t)$使得$\lim\limits_{ t\rightarrow\infty}Q_{n}(t)=\overline{Q}(t), ~t\geq T\geq t_{0}$

$\overline{Q}(t)=\int^{\infty}_{t}R(s)\left[\overline{Q}(s)\right]^{\frac{\rho+1}{\rho}}{\rm d}s+Q_{1}(t), ~t\geq T .$

  在引理2.1的证明中,我们得到(2.11)式成立,即(2.17)式成立.对(2.17)积分可得

$W(t')-W(t)+\int^{t'}_{t}Q(s){\rm d}s+\int^{t'}_{t}R(s)W^{\frac{\rho+1}{\rho}}(s){\rm d}s\leq0.$

易知

$W(t')-W(t)+\int^{t'}_{t}R(s)W^{\frac{\rho+1}{\rho}}(s){\rm d}s\leq0.$

(2.20)式给出

$\int^{\infty}_{t}R(s)W^{\frac{\rho+1}{\rho}}(s){\rm d}s<\infty, ~t\geq T.$

否则,若(2.21)式发散,则对固定的$t\geq T$,我们有

此与$W(t)>0$矛盾.又由(2.17)式知$W'(t)\leq0$,因此, $\lim\limits_{n\rightarrow\infty}W(t)=l\geq0.$注意到(2.21)式和条件(H$_{4}$),我们有$l=0.$因此,由(2.19)式我们得到

$W(t)\geq\int^{\infty}_{t}Q(s){\rm d}s+\int^{\infty}_{t}R(s)W^{\frac{\rho+1}{\rho}}(s){\rm d}s=Q_{1}(t)+\int^{\infty}_{t}R(s)W^{\frac{\rho+1}{\rho}}(s){\rm d}s .$

$W(t)\geq Q_{1}(t).$

假设$W(t)\geq Q_{n-1}(t)$成立.由上式和不等式(2.22)得

由归纳法,可以得到$W(t)\geq Q_{n}(t), ~t\geq t_{0}, ~(n=2, ~3, ~4, ~\cdots).$注意到$W(t)$有上界且由引理2.1证明过程得$Q_{n}(t)\leq Q_{n+1}(t), ~t\geq t_{0}, n=1, ~2, ~3, ~\cdots$故函数序列$\left\{Q_{n}\right\}$单调增加有上界. $\left\{Q_{n}\right\}$收敛到$\overline{Q}(t).$$(2.15')$式中令$n\rightarrow\infty, $利用勒贝格单调收敛定理,我们得到(2.18)式.引理2.2证毕.

定理2.2  设

$\liminf\limits_{t\rightarrow\infty}\frac{1}{Q_{1}(t)}\int^{\infty}_{t}\left[Q_{1}(s)\right]^{\frac{\rho+1}{\rho}}R(s){\rm d}s>\frac{\rho}{(\rho+1)^{\frac{\rho+1}{\rho}}} , $

其中$\rho, ~Q_{1}(t)$$R(t)$分别由(2.11)、(2.15)和(2.16)式定义,则方程(1.1)振动.

  设$x(t)$是方程(1.1)的非振动解.如同引理2.1和引理2.2的证明,我们得到(2.22)式.由此可得

$\frac{W(t)}{Q_{1}(t)} \geq1+\frac{1}{Q_{1}(t)}\int^{\infty}_{t}R(s)\left[Q_{1}(s)\right]^{\frac{\rho+1}{\rho}} \left[\frac{W(s)}{Q_{1}(s)}\right]^{\frac{\rho+1}{\rho}}{\rm d}s , ~~t\geq T.$

$\inf\limits_{t\geq T}\frac{W(t)}{Q_{1}(t)}=\lambda.$

则可知$\lambda\geq1.$另一方面,由(2.23)式知存在常数$c>0$使得

$\liminf\limits_{t\rightarrow\infty}\frac{1}{Q_{1}(t)}\int^{\infty}_{t}\left[Q_{1}(s)\right]^{\frac{\rho+1}{\rho}}R(s){\rm d}s>c> \frac{\rho}{(\rho+1)^{\frac{\rho+1}{\rho}}}.$

联合(2.24)-(2.26)式,我们有

$\lambda\geq1+\lambda^{\frac{\rho+1}{\rho}}c.$

利用不等式

$Bu-Au^{\frac{\rho+1}{\rho}}\leq\frac{\rho^{\rho}}{(\rho+1)^{\rho+1}}\frac{B^{\rho+1}}{A^{\rho}}, ~A>0, ~B\geq0, , ~\rho>0.$

我们得到

$\lambda-c\lambda^{\frac{\rho+1}{\rho}}\leq\frac{\rho^{\rho}}{(\rho+1)^{\rho+1}}\frac{1}{c^{\rho}}.$

注意到(2.26)式的后部分,由不等式(2.29)可得

$\lambda<1+c\lambda^{\frac{\rho+1}{\rho}}.$

我们看到(2.27)与(2.30)式矛盾.假设不成立.定理2.2证毕.

注2.2  注意到,方程(1.1)中当$\alpha=\beta$时, (2.16)中$\rho=\alpha, ~k=1, ~\theta(t)=g(t)=\sigma_{1}(t).$因此文献[1]中的定理2.3是本文定理2.2的特例.即定理2.2将文献[1]中的$\alpha=\beta$时的结果推广到对任意$\alpha>0, ~\beta>0$都成立.此外,也推广和改进了文献[2]的结果.

定理2.3  设存在函数$\varphi (t)\in C^{1}([t_{0}, \infty), {\Bbb R}^{+})$使得条件

$\int^{\infty}_{t_{0}}\left[\varphi(t)Q(t)-\frac{r(\theta(t))(\varphi'(t))^{\rho+1}}{(\rho+1)^{\rho+1}(k\varphi(t)g'(t))^{\rho}}\right]{\rm d}t=\infty$

成立,其中常数$\rho, ~k$函数$Q(t), ~\theta(t)$$g(t)$的定义同上文,则方程(1.1)振动.

  设$x(t)$是方程(1.1)的非振动解.不失一般性,设$x(t)$为最终正解($x(t)<0$的情况类似的分析成立).如同引理2.1的证明,利用定义(2.16)可得(2.17)式成立,即

上式乘以$\varphi(t)$再积分可得

$\int^{t}_{T}\varphi(s)Q(s){\rm d}s\leq -\int^{t}_{T}\varphi(s)W'(s){\rm d}s-\int^{t}_{T}\varphi(s)R(s)W^{\frac{\rho+1}{\rho}}(s){\rm d}s .$

利用分部积分和(2.16)式中$R(t)$的定义,我们有

$\int^{t}_{T}\varphi(s)Q(s){\rm d}s\leq\varphi(T)W(T)+ \int^{t}_{T}\left(\varphi'(s)W(s)-\frac{\rho k\varphi(s)g'(s)}{r^{\frac{1}{\rho}}(\theta(s))} W^{\frac{\rho+1}{\rho}}(s)\right){\rm d}s.$

在(2.33)式右端积分中利用不等式(2.28)可得

$\int^{t}_{T}\left(\varphi(s)Q(s)-\frac{r\left(\theta(s)\right)\left(\varphi'(s)\right)^{\rho+1}}{(\rho+1)^{\rho+1}\left(k\varphi (s) g'(s)\right)^{\rho}}\right){\rm d}s\leq\varphi(T)W(T).$

我们得到(2.34)与(2.31)式矛盾.假设不成立.定理2.3证毕.

注2.3  定理2.3推广和改进了文献[3]中的定理2.1,由于文献[3]的证明中使用了普通的Riccati不等式.本文使用了我们证明的推广了的广义Riccati不等式(2.11).而且文献[3]的振动定理只适用于$\alpha\geq\beta>0$和离散时滞的情况.而本文结果适用于任意$\alpha>0, ~\beta>0$和连续分布时滞方程.此外,本文定理2.3还推广和改进了文献[8]的定理2.1和定理3.1,以及文献[4-6]中相应的振动结果.

下面我们给出方程(1.1)的Philos型振动定理.

定义集合

函数$H\in C^{1}(D, {\Bbb R})$称为属于$\Delta$类,如果它满足

(ⅰ) $H(t, t)=0, ~t\geq t_{0};~H(t, s)>0, ~(t, s)\in~D_{0};$

(ⅱ) $\frac{\partial H(t, s)}{\partial s}\leq0.$存在$\psi\in C^{1}\left([t_{0}, \infty), {\Bbb R}^{+}\right)$$h\in C(D_{0}, {\Bbb R})$使得

$\frac{\partial H(t, s)}{\partial s}+\frac{\psi'(s)}{\psi(s)}H(t, s)=-h(t, s)H^{^{\frac{\rho}{\rho+1}}}(t, s),$

其中$\rho=\min\{\alpha, \beta\}.$

定理2.4  设存在函数$\psi\in C^{1}\left([t_{0}, \infty), {\Bbb R}^{+}), ~h\in C(D_{0}, {\Bbb R}\right)$$ H\in\Delta, ~T\geq t_{0}$使得

$\limsup\limits_{t\rightarrow\infty}\frac{1}{H(t, T)}\int^{t}_{T}\left[H(t, s)\psi(s)Q(s)- \frac{\psi(s)r\left(\theta(s)\right)}{(\rho+1)^{\rho+1}\left(kg'(s)\right)^{\rho}}|h(t, s)|^{\rho+1}\right]{\rm d}s=\infty $

成立,其中其中常数$\rho, ~k$函数$Q(t), ~\theta(t)$$g(t)$的定义如上文,则方程(1.1)振动.

  设$x(t)$是方程(1.1)的非振动解.不失一般性,设$x(t)$为最终正解($x(t)<0$的情况类似的分析成立).如同引理2.1的证明,利用定义(2.16)可得(2.17)式

$t>s$,上式乘以$H(t, s)\psi(s)$再从$T$$t$积分可得

$\int^{t}_{T}H(t, s)\psi(s)Q(s){\rm d}s\leq -\int^{t}_{T}H(t, s)\psi(s)W'(s){\rm d}s-\int^{t}_{T}H(t, s)\psi(s)R(s)W^{\frac{\rho+1}{\rho}}(s){\rm d}s. $

对(2.37)式分部积分和利用(2.35)式我们有

$\begin{eqnarray}&&\int^{t}_{T}H(t, s)\psi(s)Q(s){\rm d}s\\&\leq &H(t, T)\psi(T)W(T) + \int^{t}_{T}\psi(s)\left[|h(t, s)|H^{\frac{\rho}{\rho+1}}(t, s)W(s)- H(t, s)R(s)W^{\frac{\rho+1}{\rho}}(s)\right]{\rm d}s.\end{eqnarray}$

在(2.38)式右端积分中利用不等式(2.28)和(2.16)式可得

$\int^{t}_{T}H(t, s)\psi(s)Q(s){\rm d}s\leq H(t, T)\psi(T)W(T) + \int^{t}_{T}\frac{\psi(s)r\left(\theta(s)\right)|h(t, s)|^{\rho+1}}{(\rho+1)^{\rho+1}\left(kg'(s)\right)^{\rho}}] {\rm d}s .$

由不等式(2.39)可知

$\limsup\limits_{t\rightarrow\infty}\frac{1}{H(t, T)}\int^{t}_{T}\left[H(t, s)\psi(s)Q(s)- \frac{\psi(s)r\left(\theta(s)\right)|h(t, s)|^{\rho+1}}{(\rho+1)^{\rho+1}\left(kg'(s)\right)^{\rho}}\right]{\rm d}s\leq\psi(T)W(T).$

我们得到(2.40)与(2.36)式矛盾.假设不成立.定理2.4证毕.

推论2.1  若(2.36)式由下列两条件代替

$\limsup\limits_{t\rightarrow\infty}\frac{1}{H(t, T)}\int^{t}_{T}H(t, s)\psi(s)Q(s){\rm d}s=\infty$

$\limsup\limits_{t\rightarrow\infty}\frac{1}{H(t, T)}\int^{t}_{T} \frac{\psi(s)r\left(\theta(s)\right)}{\left(g'(s)\right)^{\rho}}|h(t, s)|^{\rho+1}{\rm d}s<\infty, $

则定理2.4的结论仍然成立.

注2.4  定理2.4在三方面改进了文献[3]的定理2.2: (ⅰ)不要求$\alpha\geq\beta$; (ⅱ)简化了文献[3]中(2.14)式的计算; (iii)可适用于方程(1.1).它在三方面改进了文献[6]的定理5: (1)不要求$\alpha\leq\beta;$ (2)不要求$p(t)\equiv0$; (3)可适用于连续分布时滞方程(1.1).定理2.4也将文献[7]的定理2.1对方程(1.4)的振动结果推广且改进为方程(1.1)的结果.

3 结果的应用

本节给出四个例子说明主要结果的应用.

例3.1  考虑下面的二阶中立型泛函微分方程

其中$z(t)=x(t)+\int^{\frac{5\pi}{2}}_{\frac{3\pi}{2}}\frac{1}{4}x(t-\xi){\rm d}\xi, ~\alpha>0, ~\beta>0.$

比较方程(E$_{1})$和(1.1),我们看到$r(t)=1, ~a=\frac{3\pi}{2}, ~b=\frac{5\pi}{2}, ~c=3\pi, ~d=5\pi, $$p(t, \xi)=\frac{1}{4}, $$f(t, x)=\frac{3}{8} |x(t)|^{\beta-1}x(t).$显然,定理2.1的条件都满足,故方程(E$_{1})$振动.事实上,当$\alpha=\beta=1$时, $x(t)=\cos t$是方程(E$_{1})$的一个解.

例3.2  考虑下面的二阶中立型泛函微分方程

其中$z(t)=x(t)+\int^{1}_{0}\frac{1}{2}x(t-\frac{\xi}{2}-1){\rm d}\xi, ~\alpha>0, ~\beta>0, ~\rho=\min\{\alpha, \beta\}.$

比较方程(E$_{2})$和(1.1),我们可知$r(t)=1, ~p(t, \xi)=\frac{1}{2}, ~f(t, u)=q(t, \xi) |u|^{\beta-1}u, ~q(t, \xi)=\frac{\xi}{t^{1+\frac{\rho}{2}}}, ~\sigma(t, \xi)=t-\xi-1, ~g(t)=t-2.$因此, $R(t)=\frac{\rho kg'(t)}{r^{\frac{1}{\rho}}(\theta(t))}=\rho k.~Q(t)=\int^{d}_{c}[1-p(\sigma(t, \xi))]^{\beta}q(t, \xi){\rm d}\xi= \int^{1}_{0}(\frac{1}{2})^{\beta}\frac{\xi}{t^{1+\frac{\rho}{2}}}{\rm d}\xi=\frac{(\frac{1}{2})^{\beta+1}}{t^{1+\frac{\rho}{2}}} , ~Q_{1}(t)=\int^{\infty}_{t}Q(s){\rm d}s=\frac{1}{\rho}(\frac{1}{2})^{\beta}\frac{1}{t^{\frac{\rho}{2}}}.$下面验证(2.23)式成立

故(2.23)式成立.由定理2.2知,方程(E$_{2})$振动.

例3.3  考虑下面的二阶中立型泛函微分方程

其中$z(t)=x(t)+\int^{1}_{0}\frac{2}{3}x(t+\xi-1){\rm d}\xi, ~\alpha>0, ~\beta>0, ~\rho=\min\{\alpha, \beta\}.$

比较方程(E$_{3})$和(1.1),易得$r(t)=1, ~p(t, \xi)=\frac{2}{3}, ~f(t, u)=q(t, \xi) |u|^{\beta-1}u, ~q(t, \xi)=\frac{\xi}{t(\ln t)^{1+\rho}}, ~\sigma(t, \xi)=t-2\xi-4, ~g(t)=t-8.$因此

下面验证(2.31)式是否成立,我们取$\varphi(t)=(\ln t)^{\rho}$$\varphi'(t)=\frac{\rho}{t}(\ln t)^{\rho-1}.$欲证下式成立

只需证明

事实上,我们有

故(2.31)式成立.利用定理2.3知,方程(E$_{3})$振动.

例3.4  考虑下面的二阶中立型泛函微分方程

其中$z(t)=x(t)+\int^{\frac{\pi}{2}}_{0}\frac{1}{2}x(t-\xi-\frac{\pi}{2}){\rm d}\xi, ~\alpha>0, ~\beta>0.$

比较方程(E$_{4})$和(1.1),易得$r(t)=1, ~p(t, \xi)=\frac{1}{2}, ~f(t, u)=q(t, \xi) |u|^{\beta-1}u, $$q(t, \xi)=2t\xi, $$\sigma(t, \xi)=t-\xi-1, ~g(t)=t-2.$因此, $Q(t)=\int^{1}_{0}[1-p(\sigma(t, \xi))]^{\beta}q(t, \xi){\rm d}\xi= (\frac{1}{2})^{\beta}t.$

下面验证(2.41)式和(2.42)式是否成立,我们取$\psi(t)=1, ~H(t, s)=(t-s)^{1+\rho}, $$\rho=\min\{\alpha, \beta\}.$故有

利用(2.35)式知$h(t, s)=1+\rho$,我们有

由推论2.1知方程(E$_{4})$振动.

注3.1  本文中定理对任意的$\alpha>0, ~\beta>0$都适用.文献[1-13]中的定理均不能适用于本文的例子.

参考文献

Candan T .

Oscillatory behavior of second order nonlinear neutral differential equations with distributed deviating arguments

Appl Math Comput, 2015, 262: 199- 203

URL     [本文引用: 6]

Dong J G .

Oscillation behavior of second order nonlinear neutral differential equations with deviating arguments

Comput Math Appl, 2010, 59: 3710- 3717

DOI:10.1016/j.camwa.2010.04.004      [本文引用: 3]

Liu H D , Meng F W , Liu P C .

Oscillation and asymptotic analysis on a new generalized Emden-Fowler equation

Appl Math Comput, 2012, 219: 2739- 2748

URL     [本文引用: 6]

Dzurina J , Stavroulakis I P .

Oscillation criteria for second order delay differential equations

Appl Math Comput, 2003, 140: 445- 453

URL     [本文引用: 2]

Sun Y G , Meng F W .

Note on the paper of Dzurina and Stavroulakis

Appl Math Comput, 2006, 174: 1634- 1641

URL    

Tiryaki A .

Oscillation criteria for a certain second order nonlinear differential equations with deviating arguments

Electron J Qual Theory Differ Equ, 2009, 61: 1- 11

URL     [本文引用: 3]

Erbe L , Hassan T S , Peterson A .

Oscillation of second-order neutral differential equations

Adv Dynam Syst Appl, 2008, 3 (1): 53- 71

URL     [本文引用: 2]

曾云辉, 罗李平, 俞元洪.

中立型Emden-Fowler时滞微分方程的振动性

数学物理学报, 2015, 35A (4): 803- 814

DOI:10.3969/j.issn.1003-3998.2015.04.016      [本文引用: 3]

Zeng Y H , Lou L P , Yu Y H .

Oscillation for Emden-Fowler delay differential equations of neutral type

Acta Mathematica Scientia, 2015, 35A (4): 803- 814

DOI:10.3969/j.issn.1003-3998.2015.04.016      [本文引用: 3]

Li T , Rogovchenko Y V , Zhang C .

Oscillation of second order neutral differential equations

Funkc Ekvacioj, 2013, 56: 111- 120

DOI:10.1619/fesi.56.111     

Qin H , Shang N , Lu Y .

A note on oscillation criteria of second order nonlinear neutral delay differential equations

Comput Math Appl, 2008, 56: 2987- 2992

DOI:10.1016/j.camwa.2008.09.004     

Agarwal R P , Bohner M , Li T X , Zhang C .

Oscillation of second order Emden-Fowler neutral delay differential equations

Annali di Matematica, 2014, 193: 1861- 1875

DOI:10.1007/s10231-013-0361-7     

Baculikova B , Li T , Dzurina J .

Oscillation theorems for second order super-linear neutral differential equations

Mathematica Slovaca, 2013, 63: 123- 134

URL    

Sallam R A .

New oscillation criteria for second order nonlinear delay differential equations

Int J Nonlinear Science, 2011, 12: 3- 11

[本文引用: 2]

/