数学物理学报, 2019, 39(4): 797-811 doi:

论文

二阶非线性中立型时滞微分方程的振动性

仉志余,1, 俞元洪2, 李淑萍3, 乔士柱1

Oscillation of Second Order Nonlinear Differential Equations with Neutral Delay

Zhang Zhiyu,1, Yu Yuanhong2, Li Shuping3, Qiao Shizhu1

收稿日期: 2017-08-15  

基金资助: 国家自然科学基金.  11701528
国家自然科学基金.  11647034
山西省自然科学基金.  2011011002-3

Received: 2017-08-15  

Fund supported: the NSFC.  11701528
the NSFC.  11647034
the Natural Science Foundation of Shanxi Province.  2011011002-3

作者简介 About authors

仉志余,E-mail:zhangzhiyu008@aliyun.com , E-mail:zhangzhiyu008@aliyun.com

摘要

该文研究一类二阶非线性中立型时滞微分方程的振动性,利用双Riccati变换和不等式技巧,得到了所研究方程一切解振动的若干新的充分条件.所得结果推广、改进和统一了最近文献中关于半线性、非线性泛函微分方程和广义Emden-Fowler方程的振动定理.同时也给出了主要定理的相应示例.

关键词: 二阶非线性微分方程 ; 半线性微分方程 ; Emden-Fowler方程 ; 中立型 ; Riccati变换 ; 振动准则

Abstract

In this paper, the oscillatory behavior of solutions to a nonlinear second-order neutral differential equation is to study. Using double Riccati transformation and the technique of inequations, some new sufficient conditions are obtained for the solutions of all oscillations and the results generalize, improve and unify the oscillation theorems of half linear functional differential equations, nonlinear equations and generalized Emden-Fowler type equations in the literature recently. At last, some examples are given to illustrate the effectiveness of our results.

Keywords: Second order nonlinear differential equation ; Half linear differential equation ; Emden-Fowler equation ; Neutral ; Riccati transformation ; Oscillation criterion

PDF (389KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

仉志余, 俞元洪, 李淑萍, 乔士柱. 二阶非线性中立型时滞微分方程的振动性. 数学物理学报[J], 2019, 39(4): 797-811 doi:

Zhang Zhiyu, Yu Yuanhong, Li Shuping, Qiao Shizhu. Oscillation of Second Order Nonlinear Differential Equations with Neutral Delay. Acta Mathematica Scientia[J], 2019, 39(4): 797-811 doi:

1 引言

本文研究二阶非线性中立型时滞微分方程

$ \begin{equation} (g(t, z(t), z'(t)))'+f(t, y(\sigma(t))) = 0, \quad t\geq t_0, \end{equation} $

其中$ z(t) = x(t)+p(t)x(\tau(t)), y(t) = \left|x(t)\right|^{\beta} {\rm sgn}x(t), $$ \tau (t), \sigma (t)\in {C^1([t_0, \infty), (0, \infty))}, $$ p(t)\in{C^1([t_0, \infty), [0, 1])}, $$ f(t, u)\in{C([t_{0}, \infty)\times {\Bbb R} , {\Bbb R} )}, $$ g(t, u, v), \frac{\partial g(t, u, v)}{\partial t}, \frac{\partial g(t, u, v)}{\partial u} \in C([t_{0}, \infty)\times {\Bbb R} \times {\Bbb R} , {\Bbb R} ), $$ \frac{\partial g(t, u, v)}{\partial v} \in{C([t_{0}, \infty)\times {\Bbb R} \times \{{\Bbb R} \backslash\{ 0\}\}, {\Bbb R} )}, \; \beta>0. $

本文将用到下列条件

(A$ _1)\; \tau(t)\leq t, \sigma(t)\leq t, \sigma'(t)> 0, $$ \lim\limits_{t\to\infty}\tau(t) = \lim\limits_{t\to\infty}\sigma(t) = \infty. $

(A$ _2)\; \frac{f(t, u)}{u}\geq q(t)\; (u\neq0), $其中$ q(t)\in{C([t_0, \infty), [0, \infty))}. $

(A$ _3)\; vg(t, u, v)\geq 0, v\frac{\partial g(t, u, v)}{\partial t}\geq 0, v\frac{\partial g(t, u, v)}{\partial u}\geq 0, \frac{\partial g(t, u, v)}{\partial v}>0\; (v\neq 0), t\geq t_{0}, $且存在常数$ L_{2}\geq L_{1}>0, $使得

其中$ r(t)\in C^{1}([t_{0}, \infty), (0, \infty)), \; r'(t)\geq 0, \; t\geq t_{0}, \alpha >0. $

(A$ _4)\; g(t, u, v) = a(t, u)r(t)|v|^{\alpha-1}v, \; $其中$ a(t, u)\in C^{1}([t_{0}, \infty)\times {\Bbb R} , (0, \infty)), $$ r(t)\in C^{1}([t_{0}, \infty), $$ (0, \infty)), $$ r'(t)\geq 0, \alpha >0, $且存在常数$ L_{2}\geq L_{1}>0, $使得

函数$ x(t)\in{C^1([T_x, \infty), {\Bbb R} )}, $$ T_x\geq t_0 $称为方程(1.1)的解,若它满足:$ g(t, z(t), z'(t))\in C^1([T_x, \infty), {\Bbb R} ) $且在$ [T_x, \infty) $上满足方程(1.1).本文仅考虑方程(1.1)的非平凡解,即对一切$ T\geq T_x $使得$ \sup\{\left|x(t)\right|: t\geq T\}>0 $的解.称方程(1.1)的解是非振动的,如果它在$ [T_x, \infty) $上最终为正或最终为负,否则称之为振动的.方程(1.1)称为振动的,如果它的每一个解都是振动的.

本文在条件(A$ _{3}) $或(A$ _{4}) $成立时考虑以下两种情况

$ \begin{equation} \int_{t_0}^{\infty} r^{-1/{\alpha}}(s) {\rm d}s = \infty \end{equation} $

$ \begin{equation} \int_{t_0}^{\infty} r^{-1/{\alpha}}(s) {\rm d}s < \infty. \end{equation} $

近年来,二阶半线性泛函微分方程和Emden-Fowler型微分方程的振动性问题受到很大关注,例如可参见文献[1-25]及其引文.

Dzurina和Stavroulakis[1], Sun和Meng[2]研究了二阶半线性时滞微分方程

$ \begin{equation} (r(t)\left|u'(t)\right|^{\alpha-1}u'(t))'+q(t)\left|u(\sigma(t))\right|^{\alpha-1}u(\sigma(t)) = 0, \quad \alpha>0 \end{equation} $

的振动性,文献[2]证明了如下结果.

定理1.1  设条件(A$ _{1}) $$ (1.2) $式成立, $ r'(t)\geq 0, \alpha >0, $

其中$ R(t) = \int_{t_0}^{t} r^{-1/\alpha}(s){\rm d}s $,则方程$ (1.4) $振动.

对二阶半线性中立型方程

$ \begin{equation} (r(t)\left|z'(t)\right|^{\alpha-1}z'(t))'+f(t, x(\sigma(t))) = 0, \quad \alpha>0, \end{equation} $

其中$ z(t) = x(t)+p(t)x(\tau(t)), $$ f(t, u)\geq q(t)\left|u\right|^{\beta-1}u, u\neq 0, $文献[3]建立了当$ \beta = \alpha $时的Hill-Nehari型振动准则,文献[23]给出了更广泛的振动定理.

Erbe等[4]和Li等[5]研究了Emden-Fowler中立型方程

$ \begin{equation} (r(t)[x(t)+p(t)x(\tau(t))]')'+q(t)\left|x(\sigma(t))\right|^{\beta} {\rm sgn} x(\sigma(t)) = 0. \end{equation} $

文献[4]给出了当$ \beta>1 $$ (1.2) $式成立时的Philos型振动定理.文献[5]证明了当$ (1.3) $式成立时该方程振动的若干充分条件(相对于方程$ (1.1) $,这时都有$ \alpha = 1 $).

文献[6]研究了广义Emden-Fowler中立型方程

$ \begin{equation} (r(t)\left|z'(t)\right|^{\alpha-1}z'(t))'+q(t)\left|x(\sigma(t))\right|^{\beta-1} x(\sigma(t)) = 0, \end{equation} $

其中$ z(t) = x(t)+p(t)x(\tau(t)), $并利用$ \mathrm {Riccati} $方法和积分平均技巧建立了方程$ (1.7) $$ \alpha\geq\beta>0 $时的若干振动准则,推广和改进了所列文献中的相关结果.

近来,文献[7]在$ \alpha\geq \beta $的条件下给出了方程$ (1.7) $不同于文献[6]的新振动条件,同时也证明了当$ \alpha\leq \beta $时方程$ (1.7) $的若干振动定理.

显然,方程(1.4)–(1.7)是方程$ (1.1) $的特殊情况.它们均源于二阶Emden-Fowler型线性方程,并逐步发展为半线性、超线性、次线性方程或非导数项抽象化的方程.但对导数项抽象化的研究仍未见到有本质性突破的成果,其原因显然在于此项非线性化拓展的难度.最近文献[24-25]在研究导数项的非线性化方面做了有益的尝试,该文分别研究了以下广义中立型Emden-Fowler方程的振动性.

$ \begin{equation} (a(t)[x(t)+p(t)f(x(\delta(t)))]')'+q(t)g(\varphi(x(\sigma(t))))-r(t)h(\varphi(x(t-\tau))) = 0, \; \; t\geq t_{0}, \end{equation} $

其中$ \varphi(s) = |s|^{\alpha} {\rm sgn} s, \alpha>0, f\in C({\Bbb R} , {\Bbb R} ), \frac{u}{f(u)}\geq k>0, u\neq 0, $以及

$ \begin{equation} (r(t)\left|z'(t)\right|^{\alpha-1}z'(t))'+p(t)\left|z'(t)\right|^{\alpha-1}z'(t)+q(t)\left|x(\sigma(t))\right|^{\beta-1} x(\sigma(t)) = 0, \; t\geq t_{0}, \end{equation} $

其中$ z(t) = x(t)+g(t)x(\tau(t)), r(t)\in C^{1}([t_{0}, \infty), {\Bbb R} ), p(t), q(t)\in C([t_{0}, \infty), [0, \infty)), \alpha>0, \beta>0. $

在保留Emden-Fowler型方程本质属性的前提下,本文将利用双Riccati变换法建立含一般非线性导数项方程的振动准则.所得结果与文献[24-25]的互不包含,同时推广、改进和统一了文献[1-7, 23]中的相关结果.本文所得结果既适合于线性方程$ (f(t, u) = q(t)u, g(t, u, v) = r(t)v^{\alpha}, \alpha = \beta = k = 1) $、半线性方程$ (f(t, u) = q(t)u, g(t, u, v) = r(t)|v|^{\alpha-1}v, \alpha = \beta) $,也适合于超线性方程$ (f(t, u) = q(t)u, g(t, u, v) = r(t)|v|^{\alpha-1}v, \beta>\alpha = 1) $和次线性方程$ (f(t, u) = q(t)u, g(t, u, v) = r(t)|v|^{\alpha-1}v, 0<\beta<\alpha = 1) $.随后,本文对每一个抽象定理给出具体的例子以示所得结果的意义.

2 主要结果

定理2.1  设条件(A$ _1) $, (A$ _{2}) $$ (1.2) $式成立, (A$ _3) $或(A$ _{4}) $成立,且存在$ \rho(t)\in C^1([t_0, \infty), $$ (0, \infty)) $$ (\rho'(t)\geq0) $和某个常数$ M>0 $,使得对任意常数$ m\in (0, M] $,有

$ \begin{equation} \int_{t_0}^{\infty} \bigg[\rho(t)Q_1(t)-\frac{r(\theta(t))(\rho'(t))^{\lambda+1}}{(\lambda+1)^{\lambda+1}(m\rho(t)\sigma'(t))^{\lambda}}\bigg] {\rm d}t = \infty, \end{equation} $

其中

$ \begin{equation} Q_1(t) = (1-p(\sigma(t)))^{\beta}q(t), \; \; \theta(t) = \left\{\begin{array}{ll} \sigma(t), \; &\alpha \leq \beta, \\ t, \; \; \; \; \; &\alpha > \beta, \end{array}\right. \quad \lambda = \min\{\alpha, \beta\}, \end{equation} $

则方程$ (1.1) $振动.

  假设$ x(t) $是方程(1.1)的非振动解.不失一般性,存在$ t_1\geq t_0 $,使得

(对$ x(t)<0 $的情况可作类似分析).于是,有

因此, $ g(t, z(t), z'(t)) $非增,且由条件(A$ _{3}) $或(A$ _{4}) $,可以断言存在$ t_{2}\geq t_{1}, $使得$ z'(t)\geq 0, t\geq t_{2}. $若不然,则存在$ t_{3}\geq t_{2}, $使得$ z'(t)<0, t\geq t_{3}. $于是,存在常数$ k>0 $,使得$ g(t, z(t), z'(t))\leq -k, $$ t\geq t_{3}, $进而有$ -L_{2}r(t)(-z'(t)) ^{\alpha}\leq -k, \; t\geq t_{3}. $即有

积分上式,并由$ (1.2) $式,得

这与$ z(t)>0, t\geq t_{1} $矛盾.因此,存在$ T\geq t_2 $,使得$ x(t)\geq(1-p(t))z(t), \quad t\geq T. $故由方程(1.1)可得

$ \begin{equation} (g(t, z(t), z'(t)))'+Q_1(t)z^\beta(\sigma(t))\leq 0, \; \; t\geq T, \end{equation} $

其中$ Q_1(t) $由(2.2)式定义.

此时,定义双Riccati变换函数

$ \begin{equation} w(t) = \frac{g(t, z(t), z'(t))}{z^{\beta}(\sigma(t))}, \; \; v(t) = \frac{r(t)(z'(t))^\alpha}{z^\beta(\sigma(t))}, \quad t\geq T. \end{equation} $

则易知, $ w(t)\geq0, v(t)\geq0 $,且有$ L_{2}^{-1}w(t)\leq v(t)\leq L_{1}^{-1}w(t), \; t\geq T, $

$ \begin{equation} w'(t)\leq -Q_1(t)-\beta L_{1}\sigma '(t)z'(\sigma(t))\frac{r(t)(z'(t))^\alpha}{z^{\beta+1}(\sigma(t))}. \end{equation} $

又由$ (2.3) $式知$ g(t, z(t), z'(t)) $关于$ t\geq t_{1} $非增,从$ \sigma(t)\leq t, t\geq t_{1} $和条件(A$ _{3}) $ (或(A$ _{4}) $)

从而又有

$ \begin{equation} r^{1/\alpha}(\sigma(t))z'(\sigma(t)\geq (\frac{L_{1}}{L_{2}})^{1/\alpha}r^{1/\alpha}(t)z'(t), \; t\geq T. \end{equation} $

下面分三种情况讨论(2.5)式.

(ⅰ) $ \alpha = \beta. $$ (2.6) $式代入(2.5)式得到

$ \begin{equation} w'(t)\leq -Q_1(t)-\alpha \bigg (\frac{L_{1}^{\alpha+1}}{L_{2}^{\alpha+2}}\bigg)^{\frac{1}{\alpha}}\frac{\sigma'(t)}{r^{1/\alpha}(\sigma(t))} w^{\frac{\alpha+1}{\alpha}}(t), \quad t\geq T. \end{equation} $

(ⅱ) $ \alpha<\beta. $因为$ z(\sigma(t)) $是增函数,故存在常数$ M_1>0 $,使得当$ t\geq T $时,有

$ (2.5) $式并注意到$ (2.6) $式,得

$ \begin{eqnarray} w'(t)&\leq& -Q_1(t)-\beta L_{1}\bigg(\frac{L_{1}}{L_{2}}\bigg)^{\frac{1}{\alpha}}\frac{\sigma'(t)}{r^{1/\alpha}(\sigma(t))}[z(\sigma(t))]^\frac{\beta-\alpha}{\alpha} \bigg[\frac{r(t)(z'(t))^{\alpha}}{z^{\beta}(\sigma(t))}\bigg]^{\frac{\alpha+1}{\alpha}}\\ &\leq & -Q_1(t)-\bigg(\frac{L_{1}^{\alpha+1}}{L_{2}^{\alpha+2}}\bigg)^{\frac{1}{\alpha}}\frac{\alpha\sigma'(t)M_1}{r^{1/\alpha}(\sigma(t))}w^\frac{\alpha+1}{\alpha}(t).\; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \end{eqnarray} $

(ⅲ) $ \alpha>\beta. $若条件(A$ _{3}) $成立,由$ (2.3) $式知$ (g(t, z(t), z'(t)))' = \frac{\partial g}{\partial t}+\frac{\partial g}{\partial u}v+\frac{\partial g}{\partial v}z''(t)\leq 0 $,以及当$ v>0 $时, $ \frac{\partial g}{\partial t}\geq 0, \frac{\partial g}{\partial u}v\geq 0 $$ \frac{\partial g}{\partial v}>0, $$ z''(t)\leq 0 $,即$ z'(t) $非增.若条件(A$ _{4}) $成立,又由$ (2.3) $式和$ (g(t, z(t), z'(t)))' = (a(t, z(t)))'r(t)(z'(t))^{\alpha}+a(t, z(t))(r(t)(z'(t))^{\alpha})'\leq 0 $$ (a(t, z(t)))'\geq 0, $$ (r(t)(z'(t))^{\alpha})'\leq 0 $.所以, $ r(t)(z'(t))^{\alpha} $$ r^{1/\alpha}(t)z'(t) $非增,又$ r^{1/\alpha}(t) $非减,所以仍得$ z'(t) $非增.则$ z'(\sigma(t))\geq z'(t) $且存在常数$ M_2>0 $,使得

代入$ (2.5) $式,得

$ \begin{eqnarray} w'(t)&\leq& -Q_1(t)-\frac{\beta L_{1}\sigma'(t)}{r^{1/\beta}(t)}[z'(t)]^\frac{\beta-\alpha}{\beta} \bigg(\frac{r(t)(z'(t))^{\alpha}}{z^{\beta}(\sigma(t))}\bigg)^{\frac{\beta+1}{\beta}} \\ &\leq & -Q_1(t)-\bigg(\frac{L_{1}^{\beta}}{L_{2}^{\beta+1}}\bigg)^{\frac{1}{\beta}}\frac{\beta\sigma'(t)M_2}{r^{1/\beta}(t)}w^\frac{\beta+1}{\beta}(t), \; \; t\geq T. \end{eqnarray} $

联合(2.7)–(2.9)式,对任意$ \alpha>0 $$ \beta>0 $,有

$ \begin{equation} w'(t)\leq -Q_1(t)-\frac{\lambda M_{0}\sigma'(t)}{r^{1/\lambda}(\theta(t))}w^{(\lambda+1)/\lambda}(t), \quad t\geq T, \end{equation} $

其中$ \lambda, \theta(t) $$ Q_1(t) $由(2.2)式定义,

由(2.1)式确定.

对(2.10)式乘以(2.1)式中的$ \rho(t) $,在$ [T, t] $上分部积分,产生

注意到上式右端积分中$ \rho'(s)\geq 0, s\geq T $并利用不等式

$ \begin{equation} Bu-Au^{(\lambda+1)/\lambda} \leq \frac{\lambda^{\lambda}}{(\lambda+1)^{\lambda+1}}\frac{B^{\lambda+1}}{A^\lambda}, \lambda>0, A>0, B\geq 0, \end{equation} $

容易得到

$ \begin{equation} \int_{T}^{t} \bigg[\rho(s)Q_1(s)-\frac{r(\theta(s))(\rho'(s))^{\lambda+1}}{(\lambda+1)^{\lambda+1}(M_{0}\rho(s)\sigma'(s))^\lambda} \bigg] {\rm d}s \leq\rho(T)w(T), \end{equation} $

其中$ M_{0}\in (0, M]. $在(2.12)式中令$ t\to\infty $,立即看到这与(2.1)式成立矛盾.定理2.1证毕.

在定理2.1中取$ \rho(t)\equiv 1 $,则方程(1.1)有如下的Leighton型振动准则.

推论2.1  设$ \alpha>0, \beta>0 $,条件(A$ _{1} $), (A$ _{2}) $$ (1.2) $式成立,又条件(A$ _{3}) $ (或(A$ _{4})) $

$ \begin{equation} \int_{t_0}^{\infty} [1-p(\sigma(t))]^\beta q(t){\rm d}t = \infty \end{equation} $

成立,则方程$ (1.1) $振动.

显然,关于线性方程

的Leighton振动定理[21]是推论$ 2.1 $的特例.

易见,当$ \alpha = \beta >0, p(t)\equiv 0, f(t, u) = q(t)u, g(t, u, v) = r(t)|v|^{\alpha-1}v, r'(t)\geq 0 $时方程$ (1.1) $退化为半线性方程$ (1.4) $.于是,便得如下推论.

推论2.2  设条件(A$ _{1}) $$ (1.2) $式成立, $ r'(t)\geq 0, \alpha>0, $且存在$ \rho(t)\in {C^1([t_0, \infty), (0, \infty))} $$ (\rho'(t)\geq0), $使得

则方程$ (1.4) $振动.

不难看出,定理$ 1.1 $是推论$ 2.2 $$ \rho(t) = R^\alpha(\sigma(t)), $其中$ R(t) = \int_{t_0}^{t} r^{-1/\alpha}(s){\rm d}s $时的特例.

对方程$ (1.1) $,若取$ \alpha = 1, f(t, u) = q(t)u, g(t, u, v) = r(t)v, $则成为Emden-Fowler中立型微分方程$ (1.6) $,于是又得如下推论.

推论2.3  设(A$ _{1}) $$ (1.2) $式成立, $ r'(t)\geq 0, $且存在$ \rho(t)\in {C^1([t_0, \infty), (0, \infty))}\; (\rho'(t)\geq0) $和某个常数$ M>0 $,使得对任意常数$ m\in (0, M], $

成立,其中$ Q_{1}(t) $$ (2.2) $式定义,则方程$ (1.6) $振动.

$ g(t, u, v) = r(t)|v|^{\alpha-1}v $$ a(t, u)\equiv 1 $时,方程$ (1.1) $成为方程$ (1.5), $且显然(A$ _{3}) $和(A$ _{4}) $均成立,其中$ r'(t)\geq 0, \alpha>0, \beta>0, L_{1} = L_{2} = 1. $于是有如下推论.

推论2.4  设(A$ _{1} $), (A$ _{2}) $$ (1.2) $式成立, $ \alpha>0, \beta>0, r'(t)\geq 0 $且存在$ \rho(t)\in $$ C^{1}([t_{0}, \infty), $$ (0, \infty)) $$ (\rho'(t)\geq0) $和某个常数$ M>0 $,使得对任意常数$ m\in (0, M] $$ (2.1) $$ (2.2) $式成立,则方程$ (1.5) $振动.

显然,由推论2.4知,本文定理2.1已包含并改进了文献[23]的定理2.2,因为那里要求相当于$ m>0 $为任意常数.

注2.1  综上所述,本文定理$ 2.1 $适应于上述线性方程、半线性方程、超线性方程、次线性方程和非线性方程,推广和改进了文献[6]的定理$ 2.1 $和文献[23]的定理$ 2.2 $,因为文献[6]仅考虑了$ \alpha \geq \beta $的情况,而且不能包含经典的振动结果.同时也统一了文献[7]的定理$ 2.1 $和定理$ 3.1 $,因为它们都是本文定理$ 2.1 $$ f(t, u) = q(t)u $$ g(t, u, v) = r(t)|v|^{\alpha-1}v $时的特例.需要指出的是,文献[7]定理$ 2.1 $的充分条件$ (2.2) $式中取“$ K = (z'(t_{1}))^{(\beta-\alpha)/\beta} $”是不妥的,因为$ z(t) $是方程中含未知解$ x(t) $的中立项,所以应用时无法验证该条件$ (2.2) $是否成立.此外,这里不得不指出,现有文献[7, 24-27]中较普遍存在的问题是,关于振动定理充分条件中涉及的常数$ M, K, c $等往往未说明具有一定的“任意性”.因为用反证法证明定理时,推得存在某个常数$ M_0>0 $,使得与已知条件矛盾,则该条件中对应的常数$ M>0 $就必须是任意的,否则,就会出现逻辑错误.

例2.1  考虑方程

$ \bigg[t^{\lambda/4}(\pi+\arctan z(t))\frac{2+|z'(t)|^{\alpha}}{1+|z'(t)|^{\alpha}}\left|z'(t)\right|^{\alpha-1}z'(t) \bigg]'+t^{-(1+\lambda /2)}[ky(\mu t)+ly^3(\mu t)] = 0, $

其中$ z(t) = x(t)+\frac{1}{2}x(t-1), y(t) = {\left|x(t)\right|}^\beta {\rm sgn} x(t), $$ \alpha>0, \; \beta>0, \; \lambda = \min\{\alpha, \beta\}, k>0, $$ l\geq 0, $$ 0<\mu<1 $为常数, $ t\geq t_0\geq 1. $

对应于方程$ (1.1) $和定理$ 2.1 $,此时$ g(t, u, v) = r(t)(\pi+\arctan u)\frac{2+|v|^{\alpha}}{1+|v|^{\alpha}}|v|^{\alpha-1}v, r(t) = t^{\lambda/4}. $于是,取$ L_{1} = \pi/2, L_{2} = 3\pi $,则有

$ g(t, u, v) $满足条件(A$ _{3}) $.又知

满足条件(A$ _{2}) $.再取$ m>0 $为任意常数且由

易得

故由定理$ 2.1 $知方程(E$ _1) $振动.

注2.2  易见方程(E$ _{1}) $不满足条件(A$ _{4}), $但去掉因式$ (2+|z'(t)|^{\alpha}) /(1+|z'(t)|^{\alpha}) $后便满足条件(A$ _{4}), $故方程仍振动,而这时不满足条件(A$ _{3}), $因此条件(A$ _{3}) $与条件(A$ _{4}) $互不包含.又易知去掉两个因式$ \pi +\arctan z(t) $$ (2+|z'(t)|^{\alpha})/(1+|z'(t)|^{\alpha}) $后方程(E$ _{1}) $均满足条件(A$ _{3}) $和(A$ _{4}), $故由定理$ 2.1 $知方程(E$ _{1}) $仍振动,但不难知道文献[1-25]中的振动定理均不能判定在这两种情况下方程(E$ _1) $的振动性.

下面再给出当$ (2.13) $式不成立时方程$ (1.1) $的另一个振动准则.此时,对应于$ (2.2) $式和$ (2.10) $式,下设

$ \begin{equation} \overline{Q}_1(t) = \int_{t}^{\infty} Q_1(s){\rm d}s, \quad A_{0}(t) = \frac{\lambda M_{0}\sigma'(t)}{r^{1/\lambda}(\theta(t))}, \quad t\geq T, \end{equation} $

立即可得如下振动准则.

定理2.2  设条件(A$ _1 $), (A$ _{2}) $$ (1.2) $式成立,且(A$ _3) $或(A$ _{4}) $成立.若存在某个常数$ M>0 $,使得对任意常数$ m\in (0, M] $,有

$ \begin{equation} \liminf\limits_{t\to\infty} \frac{1}{\overline{Q}_1(t)}\int_{t}^{\infty} \overline{Q}_1^{{(\lambda+1)}/\lambda}(s)\frac{\sigma'(s)}{r^{1/\lambda}(\theta(s))}{\rm d}s>\frac{1}{m(\lambda+1)^{(\lambda+1)/\lambda}}, \end{equation} $

其中$ \overline{Q}_1(t) $$ (2.14) $式定义, $ \lambda $$ (2.2) $式定义,则方程$ (1.1) $振动.

  假设$ x(t) $是方程(1.1)的非振动解.不妨假设$ x(t) $最终为正,类似于定理2.1的证明,定义函数$ w(t) $同(2.4)式,则存在某个正数$ M_{0}\in (0, M] $使得$ (2.10) $式成立,即

$ \begin{equation} w'(t)\leq -Q_1(t)-A_{0}(t)w^{(\lambda+1)/\lambda}(t), \quad t\geq T, \end{equation} $

其中$ A_{0}(t) $$ (2.14) $式定义.积分上式可得

$ \begin{equation} w(t)\geq \overline{Q}_1(t)+ \int_{t}^{\infty} A_{0}(s)w^{(\lambda+1)/\lambda}(s){\rm d}s. \end{equation} $

其中$ \overline{Q}_1(t) $由(2.14)式定义.由(2.16)式知$ w(t) $非增,故有界.因此,上式右端积分收敛,用$ \overline{Q}_1(t) $除(2.17)式产生

$ \begin{equation} \frac{w(t)}{\overline{Q}_1(t)}\geq 1+\frac{1}{\overline{Q}_1(t)}\int_{t}^{\infty} \frac{\lambda M_0\sigma '(s)}{r^{1/\lambda}(\theta(s))}\overline{Q}_1^{(\lambda+1)/\lambda}(s) \bigg[\frac{w(s)}{\overline{Q}_1(s)}\bigg]^{(\lambda+1)/\lambda} {\rm d}s, \quad t\geq T. \end{equation} $

另一方面,对于这个$ M_0\in (0, M] $,由(2.15)式知,存在常数$ \xi>0 $,使得

$ \begin{equation} \liminf\limits_{t\to\infty} \frac{1}{\overline{Q}_1(t)} \int_{t}^{\infty} [\overline{Q}_1(s)]^{(\lambda+1)/\lambda}\frac{\lambda M_0\sigma '(s)}{r^{1/\lambda}(\theta(s))}{\rm d}s >\lambda M_0\xi >\frac{\lambda }{(\lambda+1)^{(\lambda+1)/\lambda}}. \end{equation} $

$ \eta = \inf_{t \geq T}\{w(t)/\overline{Q}_1(t)\}, $$ \eta \geq 1 $.由(2.18)式,有

$ \begin{equation} \eta \geq 1+ \lambda M_0\xi\eta^{(\lambda+1)/\lambda}. \end{equation} $

但是,利用不等式(2.11),其中令$ B = 1 $, $ A = \lambda M_0\xi, u = \eta $及(2.19)式,可得

$ \begin{equation} \eta- \lambda M_0\xi\eta^{(\lambda+1)/\lambda} \leq \frac{\lambda^\lambda}{(\lambda+1)^{\lambda+1}} \frac{1}{(\lambda M_0\xi)^\lambda} < 1. \end{equation} $

显然, (2.21)式与(2.20)式矛盾.故方程(1.1)无非振动解.定理2.2证毕.

例2.2  考虑带超线性或次线性项的中立型广义Emden-Fowler方程

$ [(\pi+\arctan z^{3}(t))t^{1/4}z'(t)]' +t^{-3/2}\left|x(\mu t)\right|^\beta {\rm sgn} x(\mu t) = 0, \quad t\geq t_0, $

其中$ z(t) = x(t)+\frac{1}{2}x(t/2), \beta>0 $, $ 0<\mu<1 $.

这里有$ \; \; a(t, u) = \pi+\arctan z^{3}, $$ \beta \geq 1 $ (即超线性)时显然有

于是条件(A$ _{1} $), (A$ _{2}) $, (A$ _{4}) $$ (1.2) $式成立,对任意常数$ m>0 $, (2.15)式右边的$ 1/m(\lambda+1)^{(\lambda+1)/\lambda} = 1/4m. $现有$ 1/\overline{Q}_1(t) = 2^{\beta-1}t^{1/2} $,从而$ (2.15) $式的左边为

因此$ (2.15) $式成立(当$ 0<\beta<1 $ (即次线性)时, $ \lambda = \beta $,也可得(2.15)式成立).故由定理$ 2.2 $知方程(E$ _2) $振动.

注2.3  文献[3]研究了方程$ (1.1) $$ g(t, u, v) = r^{\alpha}(t)|v|^{\alpha-1}v, \alpha = \beta $的情况,文献[7]讨论了方程$ (1.1) $$ g(t, u, v) = r^{\alpha}(t)|v|^{\alpha-1}v, f(t, u) = q(t)u, \beta \geq\alpha $的情况.本文定理$ 2.2 $适用于方程$ (1.1) $中含中立项$ g(t, z(t), z'(t)) $具有更一般非线性性态和任意$ \alpha >0 $$ \beta>0 $的情况.

下面建立方程$ (1.1) $的Philos[22]型振动准则.

$ D = \{(t, s): t\geq s\geq t_0\}, D_0 = \{(t, s): t > s\geq t_0\}, $$ H(t, s)\in C(D, {\Bbb R} ) $满足:$ H(t, t) = 0, t\geq t_0, H(t, s)>0, (t, s)\in D_0 $.又设$ h(t, s)\in C(D_0, {\Bbb R} ), \rho(t) \in C^1([t_0, \infty), (0, \infty)) $\\ $ (\rho'(t)\geq0), $使得

$ \begin{equation} \frac{\partial H(t, s)}{\partial s}+\frac{\rho'(s)}{\rho(s)}H(t, s) = -h(t, s)H^{\lambda/(\lambda+1)}(t, s), \end{equation} $

其中$ \lambda = \min\{\alpha, \beta\}. $$ H(t, s) $具有上述性质,则称$ H\in X. $

  定理2.3  设(A$ _1 $), (A$ _2) $$ (1.2) $式成立, (A$ _{3}) $或(A$ _{4}) $成立,且$ H\in X $.若存在某个常数$ M>0 $$ T\geq t_{0} $,使得对于任意常数$ m\in (0, M] $,有

$ \begin{equation} \limsup\limits_{t\to\infty} \frac{1}{H(t, T)} \int_{T}^{t} \bigg[H(t, s)\rho(s)Q_1(s)-\frac{\rho(s)r(\theta(s))\left|h(t, s)\right|^{\lambda+1}}{(\lambda+1)^{\lambda+1}(m\sigma'(s))^\lambda}\bigg] {\rm d}s = \infty, \end{equation} $

其中$ Q_1(t), \theta(t), \lambda $的定义同$ (2.2) $式,则方程$ (1.1) $振动.

  假若方程(1.1)存在非振动解$ x(t) $.不失一般性,可设$ x(t) $最终为正(对最终为负的情况可作类似的分析).定义函数$ w(t) $同(2.4)式,利用定理2.1证明中的方法,可以得到不等式(2.10).用$ H(t, s)\rho(s) $乘(2.10)式,并从$ T $$ t $积分,立即可得

$ \begin{eqnarray} \int_{T}^{t} H(t, s)\rho(s)Q_1(s){\rm d}s & \leq& -\int_{T}^{t} H(t, s)\rho(s) w'(s){\rm d}s - \int_{T}^{t} H(t, s)\rho(s)A_{0}(s)w^{(\lambda+1)/\lambda}(s){\rm d}s \\ & = &B(t)+\int_{T}^{t}\bigg[\frac{\partial H(t, s)}{\partial s}+\frac{\rho'(s)}{\rho(s)}H(t, s) \bigg]\rho(s)w(s){\rm d}s\\ &&-\int_{T}^{t} H(t, s)\rho(s)A_{0}(s)w^{(\lambda+1)/\lambda}(s){\rm d}s, \end{eqnarray} $

其中$ B(t) = H(t, T)\rho(T)w(T) $, $ A_{0}(t) $由(2.14)式定义.利用(2.22)和(2.24)式,产生

$ \begin{eqnarray} & &\int_{T}^{t} H(t, s)\rho(s)Q_1(s){\rm d}s \\ &\leq & B(t)+\int_{T}^{t} [\left|h(t, s)\right|H^{\lambda/(\lambda+1)}(t, s)\rho(s)w(s)- H(t, s)\rho(s)A_{0}(s)w^{(\lambda+1)/\lambda}(s) ]{\rm d}s. \end{eqnarray} $

在(2.25)式右端积分中代入(2.14)式并利用(2.11)式,可以得到

$ \begin{equation} \frac{1}{H(t, T)} \int_{T}^{t} \bigg [H(t, s)\rho(s)Q_1(s)-\frac{r(\theta(s))\rho(s)}{(\lambda+1)^{\lambda+1}(M_{0} \sigma'(s))^\lambda} \left|h(t, s)\right|^{\lambda+1} \bigg]{\rm d}s \leq \rho(T)w(T), \end{equation} $

其中$ M_{0}\in (0, M] $.在上式中令$ t \to \infty $取上极限,立即看到与(2.23)式矛盾.定理2.3证毕.

推论2.5  设条件(A$ _1 $), (A$ _2) $$ (1.2) $式成立,条件(A$ _{3}) $或(A$ _{4}) $成立,且$ H\in X $.若存在某个$ T\geq t_{0} $,使得

$ \begin{equation} \limsup\limits_{t\to\infty} \frac{1}{H(t, T)} \int_{T}^{t} H(t, s)\rho(s)Q_1(s){\rm d}s = \infty, \end{equation} $

$ \begin{equation} \limsup\limits_{t\to\infty} \frac{1}{H(t, T)} \int_{T}^{t} \frac{r(\theta(s))\rho(s)}{(\sigma'(s))^\lambda} \left|h(t, s)\right|^{\lambda+1} {\rm d}s<\infty, \end{equation} $

则方程$ (1.1) $振动.

注2.4  本文定理$ 2.3 $推广和改进了文献[6]的定理$ 2.2 $,文献[4]的定理$ 2.1 $,文献[13]的定理$ 5 $和文献[22]的定理$ 1 $.

例2.3  考虑超线性中立型方程

$ \bigg[t(1+\frac{1}{1+\sqrt{1+(z'(t))^{2}}})z'(t)\bigg]' +t^\xi\bigg [\xi \frac{(2-\cos t)}{t}+\sin t\bigg]\bigg[y(\frac{t}{2})+2y^3(\frac{t}{2})\bigg] = 0, $

其中$ z(t) = x(t)+\frac{1}{2}x(t-1), y(t) = \left|x(t)\right|^\beta {\rm sgn}x(t), \beta>1, \xi>0 $为常数, $ t\geq 1. $

对应于方程$ (1.1) $和推论$ 2.5 $,这里有

从而条件(A$ _{1} $)–(A$ _{3}) $$ (1.2) $式均成立.取$ \rho(t)\equiv 1, H(t, s) = (t-s)^2, $则有$ h(t, s) = 2, $以及

$ \begin{eqnarray} \int_{1}^{t} Q_1(s){\rm d}s & = &(\frac{1}{2})^\beta \int_{1}^{t} {\rm d}[s^\xi (2-\cos s)] \\ & = & (\frac{1}{2})^\beta [t^\xi (2-\cos t)-(2-\cos 1)] \geq (\frac{1}{2})^\beta (t^\xi-2). \end{eqnarray} $

$ (2.29) $式不难得到,当$ t>1 $时有

于是知$ (2.27) $式成立.另一方面,又有

因此知$ (2.28) $式成立.由推论$ 2.5 $知方程(E$ _3) $振动.

称方程$ (1.1) $为非正则的,若$ (1.3) $式成立.现在考虑非正则条件下方程$ (1.1) $的振动性.

定理2.4  设条件(A$ _1 $), (A$ _{2} $), (A$ _4 $), (1.3)式和$ (2.1) $式成立,又设

$ \begin{equation} p'(t)\geq 0, \quad \tau'(t)\geq 0, \quad \sigma(t) \leq \tau(t). \end{equation} $

若存在某个常数$ M>0 $,使得对于任意常数$ m\geq M $,有

$ \begin{equation} \int_{t_0}^{\infty} [\underline{R}^\mu(t)Q_2(t)-\frac{m}{\underline{R}(t)r^{1/\alpha}(t)}] {\rm d}t = \infty, \end{equation} $

其中$ \mu = \max\{\alpha, \beta\}, \underline{R}(t) = \int_{t}^{\infty} r^{-1/\alpha}(s){\rm d}s, Q_2(t) = q(t)(1-p(t))^\beta $,则方程$ (1.1) $振动.

  假若方程(1.1)存在非振动解$ x(t) $.不失一般性,可设$ x(t) $最终为正.于是最终有$ [a(t, z(t))r(t)\left|z'(t)\right|^{\alpha-1}z'(t)]'\leq 0 $.因此, $ z'(t) $最终为正或最终为负.若前者成立,则与条件(2.1)式矛盾.于是可设存在$ t_1 \geq t_0 $,使得$ z'(t)<0, $$ t\geq t_1. $类似于文献[5]定理2.1或文献[6]定理2.5的证明,知$ x'(t) $的符号最终非正,即存在$ t_{2}\geq t_{1} $使得$ x'(t)\leq0\; (t\geq t_{2}). $若不然, $ x'(t) $的符号最终为正,则必存在$ t_{3}\geq t_{1} $,使得当$ t\geq t_{3} $时,有$ x'(t)> 0, x'(\tau(t))> 0, $从而有

这与$ z'(t)<0, \; (t\geq t_{1}) $矛盾.所以有

因为$ x'(t)\leq0 , t\geq t_{2} $,于是有

将上式代入方程(1.1),得

注意到$ Q_{2}(t) $的定义,上式又成为

$ \begin{equation} [a(t, z(t))r(t)(-z'(t))^\alpha]'- Q_2(t)z^\beta(t)\geq 0, \; \; t\geq t_2. \end{equation} $

再定义双Riccati变换函数

$ \begin{equation} \overline{w}(t) = \frac{a(t, z(t))r(t)(-z'(t))^\alpha}{z^\beta(t)}, \; \; \overline{v}(t) = \frac{r(t)(-z'(t))^\alpha}{z^\beta(t)}, \quad t\geq t_2. \end{equation} $

则有$ \overline{w}(t)>0, \overline{v}(t)>0 $,且由条件(A$ _{4}) $$ (2.32) $式有

$ \begin{equation} \; \overline{w}'(t) \geq Q_2(t)+\frac{\beta L_{1}r(t)(-z'(t))^{\alpha+1}}{z^{\beta+1}(t)}, \quad t\geq t_2. \end{equation} $

下面分三种情况讨论(2.34)式.

(ⅰ) $ \alpha = \beta $.则(2.34)式成为

$ \begin{equation} \overline{w}'(t) \geq Q_2(t)+\alpha (L_{1}^{\alpha}/L_{2}^{\alpha+1})^{1/\alpha}r^{-1/\alpha}(t)\overline{w}^{\frac{\alpha+1}{\alpha}}(t), \quad t\geq t_2. \end{equation} $

(ⅱ) $ \alpha > \beta $.$ z(t) $是减函数,故$ [z(t)]^{(\beta-\alpha)/\alpha}(t\geq t_{2}) $是增函数.记$ \overline{M}_{1} = (z(t_{2}))^{(\beta-\alpha)/\alpha} $,于是由(2.34)式得

$ \begin{eqnarray} \overline{w}'(t)&\geq& Q_2(t)+ \beta (\frac{L_{1}^{\alpha}}{L_{2}^{\alpha+1}})^{1/\alpha}r^{\frac{-1}{\alpha}}(t)[z(t)]^{\frac{\beta-\alpha}{\alpha}}\overline{w}^{\frac{\alpha+1}{\alpha}}(t) \\ & \geq& Q_{2}(t)+\beta \overline{M}_{1} (\frac{L_{1}^{\alpha}}{L_{2}^{\alpha+1}})^{1/\alpha}r^{\frac{-1}{\alpha}}(t)\overline{w}^{\frac{\alpha+1}{\alpha}}(t), \; \; t\geq t_2. \end{eqnarray} $

(ⅲ) $ \alpha < \beta $.由(2.33)和(2.34)式知,当$ t\geq t_{2} $时,有

又由(2.32)式知,当$ t\geq t_{2} $时,有

由条件(A$ _{4}) $$ [a(t, z(t))]'\leq 0, $又因$ r(t)(-z'(t))^{\alpha}\geq 0, a(t, z(t))>0, $$ [r(t)(-z'(t))^{\alpha}]'\geq 0, $从而$ r^{1/\alpha}(t)(-z'(t)) $是增函数,记$ \overline{M}_{2} = [r^{1/\alpha}(t_{2})(-z'(t_{2})]^{(\beta-\alpha)/\beta}, $则有

$ \begin{equation} \overline{w}'(t) \geq Q_2(t)+ \beta \overline{M}_2 (\frac{L_{1}^{\beta}}{L_{2}^{\beta+1}})^{\frac{1}{\beta}}r^{\frac{-1}{\alpha}}(t) \overline{w}^{\frac{\beta+1}{\beta}}(t), \; \; t\geq t_{2}. \end{equation} $

联合(2.35)–(2.37)式,对任意的$ \alpha>0, \beta>0 $,有

$ \begin{equation} \overline{w}'(t) \geq Q_2(t)+\overline{M}_{0}r^{-1/\alpha}(t)\overline{w}^{(\mu+1)/\mu}(t), \quad t\geq t_2, \end{equation} $

其中$ \mu = \max \{\alpha, \beta\}, \overline{M}_{0} = \min \{\alpha (\frac{L_{1}^{\alpha}}{L_{2}^{\alpha+1}})^{\frac{1}{\alpha}}, \beta \overline {M}_{1}(\frac{L_{1}^{\alpha}}{L_{2}^{\alpha+1}})^{\frac{1}{\alpha}}, \beta \overline{M}_{2}(\frac{L_{1}^{\beta}}{L_{2}^{\beta+1}})^{\frac{1}{\beta}}, (\frac{\mu^{2\mu+1}}{(\mu+1)^{\mu+1}M})^{\frac{1}{\mu}}\} $, $ M $由(2.31)式确定.

$ \underline{R}^\mu(s) $乘(2.38)式,从$ t_2 $$ t $分部积分可得

$ \begin{eqnarray} \int_{t_2}^{t} \underline{R}^\mu(s)Q_2(s){\rm d}s &\leq& \int_{t_2}^{t} \underline{R}^\mu(s)\overline{w}'(s){\rm d}s- \overline{M}_{0} \int_{t_2}^{t} \underline{R}^\mu(s)r^{-1/\alpha}(s)\overline{w}^{(\mu+1)/\mu}(s){\rm d}s \\ & = &\underline{R}^\mu(t)\overline{w}(t)- \underline{R}^\mu(t_2)\overline{w}(t_2) \\ &&+ \int_{t_2}^{t} \underline{R}^\mu(s) \bigg[\frac{\mu \overline{w}(s)}{\underline{R}(s)r^{1/\alpha}(s)}-\frac{\overline{M}_{0}\overline{w}^{(\mu+1)/\mu}(s)}{r^{1/\alpha}(s)}\bigg]{\rm d}s. \end{eqnarray} $

利用不等式(2.11)和(2.39)式,则有

$ \begin{equation} \int_{t_2}^{t} [\underline{R}^\mu(s)Q_2(s)-\overline{M}\underline{R}^{-1}(s)r^{-1/\alpha}(s)]{\rm d}s \leq \underline{R}^\mu(t)\overline{w}(t)- \underline{R}^\mu(t_2)\overline{w}(t_2), \end{equation} $

其中$ \overline{M} = \mu^{2\mu+1}/((\mu+1)^{\mu+1}\overline{M}_{0}^{\mu})\geq M. $

下面证明(2.40)式右端有界.事实上,在上述(iii)中已证$ r^{1/\alpha}(t)(-z'(t)) $是增函数,从而有

上式对$ s $积分,可得

$ \begin{equation} z(t) \geq r^{1/\alpha}(t)(-z'(t))\underline{R}(t)\; \; \mbox {或}\; \; z^\alpha(t) \geq [ r^{1/\alpha}(t)(-z'(t))]^{\alpha} \underline{R}^{\alpha}(t). \end{equation} $

$ \alpha \geq \beta $时,因$ z'(t)<0 $,故存在常数$ l_1>0 $,使得$ l_1 \geq z^{\alpha-\beta}(t) \geq L_{2}^{-1}\underline{R}^{\alpha}(t)\overline{w}(t)>0, \; t\geq t_2. $因此, (2.40)式右端有界.

另一方面,当$ \beta > \alpha $时,由(2.41)式得到

注意到$ r^{1/\alpha}(t)(-z'(t)) $是增函数,故存在$ l_2>0 $,使得

因此, (2.40)式右端同样有界.

故对任意$ \alpha>0, \beta>0 $, (2.40)式右端有界,此与(2.31)式矛盾.定理2.4证毕.

注2.5  文献[2, 5, 6, 23]仅对方程$ (1.1) $的特殊情况给出了相应方程一切解振动或渐近于零的类似充分条件,因此,本文定理$ 2.4 $推广和改进了这些结果.还需要指出的是,文献[23]定理$ 2.3 $的证明中当$ \beta>\alpha, $$ (2.36) $式成立时用到了$ (-y'(t)) $ (对应于本文的$ (-z'(t))) $为增函数是错误的.事实上“$ (-y'(t))'\geq 0, t\geq T $”不成立.否则,存在$ k>0 $使得$ -y'(t)\geq k>0, t\geq T, $积分之,得$ y(t)-y(T)\leq -k(t-T)\rightarrow -\infty\ (t\rightarrow\infty) $$ y(t)>0, t\geq T $矛盾.

例2.4  考虑中立型方程

$ [t^{2\alpha}(\pi+\arctan z(t))\left|z'(t)\right|^{\alpha-1}z'(t)]'+ t^{2\alpha+\beta} \left|x(t-2)\right|^{\beta-1} x(t-2) = 0, \quad t \geq t_0 \geq 2, $

其中$ z(t) = x(t)+\frac{1}{2}x(t-1), \alpha>0, \beta>0. $

这里有$ a(t, z(t)) = \pi +\arctan z(t), \ r(t) = t^{2\alpha}, \ p(t) = 1/2, \ q(t) = t^{2\alpha+\beta}; $$ \sigma(t) = t-2<t-1 = \tau(t); $$ z'(t)(a(t, z(t)))' = \frac{(z'(t))^{2}}{1+z^{2}(t)}\geq 0. $故满足条件(A$ _{1} $), (A$ _{2}) $和(A$ _{4}). $$ Q_1(t) = Q_2(t) = \frac{1}{2^{\beta}}t^{2\alpha+\beta}. $显然$ (1.3) $式和$ (2.30) $式均成立.若取$ \rho(t)\equiv 1 $,则$ (2.1) $式成立.再证$ (2.31) $式也成立.

事实上,此时有$ \underline{R}(t) = 1/t $,所以对任意的常数$ m>0, $

因此, $ (2.31) $式成立,由定理$ 2.4 $知方程(E$ _4) $振动.

注2.6  不难看出文献[1-25]及其引文中的定理均不能判定方程(E$ _4) $的振动性.

参考文献

Dzurina J , Stavroulakis I P .

Oscillation criteria for second order delay differentional equations

Appl Math Comput, 2003, 140: 445- 453

DOI:10.1016/S0096-3003(02)00243-6      [本文引用: 5]

Sun Y G , Meng F W .

Note on the paper of Dzurina and Stavroulakis

Appl Math Comput, 2006, 174: 1634- 1641

URL     [本文引用: 3]

Dong J G .

Oscillation behavior of second-order nonlinear neutral differential equtions with deviating arguments

Comput Math Appl, 2010, 59: 3710- 3717

DOI:10.1016/j.camwa.2010.04.004      [本文引用: 2]

Erbe L , Hassan T S , Peterson A .

Oscillation of second-order neutral differential equations

Adv Dynam Syst Appl, 2008, 3: 53- 71

URL     [本文引用: 3]

Li T , Han Z , Zhang C , Sun S .

On the oscillation of second order Emden-Fowler neutral differential equations

J Appl Math Comput, 2011, 37: 601- 610

DOI:10.1007/s12190-010-0453-0      [本文引用: 4]

Liu H D , Meng F W , Liu P H .

Oscillation and asymptotic analysis on a new generalized Emden-Fowler equation

Appl Math Comput, 2012, 219: 2739- 2748

URL     [本文引用: 7]

曾云辉, 罗李平, 俞元洪.

中立型Emden-Fowler时滞微分方程的振动性

数学物理学报, 2015, 35A (4): 803- 814

DOI:10.3969/j.issn.1003-3998.2015.04.016      [本文引用: 6]

Zeng Y H , Luo L P , Yu Y H .

Oscillation for Emden-Fowler Delay differential equations of neutral type

Acta Math Sci, 2015, 35A (4): 803- 814

DOI:10.3969/j.issn.1003-3998.2015.04.016      [本文引用: 6]

Agarwal R P , Shieh S L , Yeh C C .

Oscillation criteria for second order retarded differential equations

Math Comput Modelling, 1997, 26: 1- 11

DOI:10.1016/S0895-7177(97)00141-6     

Baculikova B , Li T , Dzurina J .

Oscillation theorems for second order supper-linear neutral differential equations

Math Slovaca, 2013, 63: 123- 134

DOI:10.2478/s12175-012-0087-9     

Liu L , Bai Y .

New oscillation criteria for second order nonlinear delay neutral differential equations

J Comput Appl Math, 2009, 231: 657- 663

DOI:10.1016/j.cam.2009.04.009     

Wang X L , Meng F W .

Oscillation criteria of second order quasi-linear neutral delay differential equations

Math Comput Modelling, 2007, 46: 415- 421

DOI:10.1016/j.mcm.2006.11.014     

Xu R , Meng F W .

Oscillation criteria for second order quasi-linear neutral delay differential equations

Appl Math Comput, 2007, 192: 216- 222

Tiryaki A .

Oscillation criteria for a certain second order nonlinear differential equations with deviating arguments

Electron J Qual Theory Differ Equa, 2009, 61: 1- 11

URL     [本文引用: 1]

Hasanbulli M , Rogovchenko Yu V .

Oscillation criteria for second order nonlinear neutral differential equations

Appl Math Comput, 2010, 215: 4392- 4399

URL    

Li T , Rogovchenko Yu V , Zhang C .

Oscillation of second order nonlinear neutral differential equations

Funkc Ekvacioj, 2013, 56: 111- 120

DOI:10.1619/fesi.56.111     

Ye L , Xu Z .

Oscillation criteria for second order quasi-linear neutral delay differential equations

Appl Math Comput, 2009, 207: 388- 396

Qin H , Shang N , Lu Y .

A note on oscillation criteria of second order nonlinear neutral delay differential equations

Comput Math Appl, 2008, 56: 2987- 2992

DOI:10.1016/j.camwa.2008.09.004     

Lin X .

Oscillation of second order nonlinear neutral differential equations

J Math Anal Appl, 2005, 309: 442- 452

DOI:10.1016/j.jmaa.2004.08.023     

Karpuz B , Manojlovic J V , Ocalan O , Shoukaku Y .

Oscillation criteria for a class of second order neutral delay differential equations

Appl Math Comput, 2009, 210: 303- 312

URL    

Baculikova B , Dzurina J .

Oscillation theorems for second order nonlinear neutral differential equations

Comput Math Appl, 2011, 62: 4472- 4478

DOI:10.1016/j.camwa.2011.10.024     

Leighton W .

The detection of the oscillation of solutions of a second order linear differential equation

Duke Math J, 1950, 17: 57- 62

DOI:10.1215/S0012-7094-50-01707-8      [本文引用: 1]

Philos C G .

Oscillation theorems for linear differential equations of second order

Arch Math, 1989, 53: 482- 492

DOI:10.1007/BF01324723      [本文引用: 2]

曾云辉, 罗李平, 俞元洪.

广义中立型Emden-Fowler方程的振动准则

数学物理学报, 2016, 36A (6): 1067- 1081

DOI:10.3969/j.issn.1003-3998.2016.06.006      [本文引用: 6]

Zeng Y H , Luo L P , Yu Y H .

Oscillation criteria for generalized neutral Emden-Fowler equations

Acta Math Sci, 2016, 36A (6): 1067- 1081

DOI:10.3969/j.issn.1003-3998.2016.06.006      [本文引用: 6]

罗红英, 屈英, 俞元洪.

具有正负系数的二阶中立型时滞Emden-Fowler方程的振动准则

应用数学学报, 2017, 40A (5): 667- 675

URL     [本文引用: 3]

Luo H Y , Qu Y , Yu Y H .

Oscillation criteria of second order neutral delay Emden-Fowler equations with positive and negative coefficients

Acta Math Appl Sinica, 2017, 40A (5): 667- 675

URL     [本文引用: 3]

李文娟, 汤获, 俞元洪.

中立型Emden-Fowler微分方程的振动性

数学物理学报, 2017, 37A (6): 1062- 1069

DOI:10.3969/j.issn.1003-3998.2017.06.006      [本文引用: 5]

Li W J , Tang H , Yu Y H .

Osillation of the Emden-Fowler differential equations

Acta Math Sci, 2017, 37A (6): 1062- 1069

DOI:10.3969/j.issn.1003-3998.2017.06.006      [本文引用: 5]

杨甲山, 李同兴.

时间模上一类二阶阻尼Emden-Fowler型动态方程的振荡性

数学物理学报, 2018, 38A (1): 134- 155

DOI:10.3969/j.issn.1003-3998.2018.01.013     

Yang J S , Li T X .

Osillation for a class of second-order damped Emden-Fowler dynamic equations on time scalas

Acta Math Sci, 2018, 38A (1): 134- 155

DOI:10.3969/j.issn.1003-3998.2018.01.013     

张晓建.

具有非线性中立项的广义Emden-Fowler微分方程的振动性

数学物理学报, 2018, 38A (4): 728- 739

DOI:10.3969/j.issn.1003-3998.2018.04.011      [本文引用: 1]

Zhang X J .

Osillation of generalized Emden-Fowler differential equations with nonlinear neutral term

Acta Math Sci, 2018, 38A (4): 728- 739

DOI:10.3969/j.issn.1003-3998.2018.04.011      [本文引用: 1]

/