数学物理学报, 2019, 39(3): 674-688 doi:

论文

污染环境下具有脉冲输入的随机捕食-食饵模型的动力学研究

付盈洁, 蓝桂杰, 张树文, 魏春金,

Dynamics of a Stochastic Predator-Prey Model with Pulse Input in a Polluted Environment

Fu Yingjie, Lan Guijie, Zhang Shuwen, Wei Chunjin,

通讯作者: 魏春金, E-mail: chunjinwei92@163.com

收稿日期: 2018-03-13  

基金资助: 福建省自然科学基金.  2016J01667
福建省自然科学基金.  2016J05012
福建省自然科学基金.  2018J01418

Received: 2018-03-13  

Fund supported: the Fujian Provincial Natural Science Foundation.  2016J01667
the Fujian Provincial Natural Science Foundation.  2016J05012
the Fujian Provincial Natural Science Foundation.  2018J01418

摘要

该文研究了污染环境下具有脉冲输入的随机捕食-食饵模型,证明了系统的全局正解的存在唯一性,均值有界性,给出了系统边界周期解以概率1全局吸引的存在条件,并得到了种群灭绝与持续生存的阈值.最后用数值模拟进一步验证了理论结果的正确性.

关键词: 捕食-食饵模型 ; 毒素脉冲 ; 随机扰动 ; 均值有界 ; 全局吸引

Abstract

In this paper, we show a stochastic predator-prey model with pulse input in a polluted environment, the existence and uniqueness of the positive global solution and the boundedness of expectation of the system are all proved, the sufficient conditions for the existence and boundedness of periodical solution are obtained, and it is globally attractive with probability 1, and the threshold of population extinction and persistence in the mean are obtained too. Finally, some numerical simulations are carried out to illustrate the main results.

Keywords: Predator-prey system ; Pulse toxicant ; Random disturbance ; Mean boundedness ; Globally attractivity

PDF (512KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

付盈洁, 蓝桂杰, 张树文, 魏春金. 污染环境下具有脉冲输入的随机捕食-食饵模型的动力学研究. 数学物理学报[J], 2019, 39(3): 674-688 doi:

Fu Yingjie, Lan Guijie, Zhang Shuwen, Wei Chunjin. Dynamics of a Stochastic Predator-Prey Model with Pulse Input in a Polluted Environment. Acta Mathematica Scientia[J], 2019, 39(3): 674-688 doi:

1 引言

随着现代工业和农业的迅速发展,大量的毒物和污染物进入了全球生态系统.因此,环境污染是最重要的一个社会生态问题.环境中各种有毒物质的存在对无保护种群的生存有着极大的威胁,有毒物质的无控制输入将会导致种群走向灭绝,所以环境污染下种群的持续生存问题,成为了生物数学研究的又一个热门课题.目前,已有许多学者对此做了大量的研究,得到了许多成果[1-6].同时,我们注意到,在现实环境中,存在许多随机或偶然的因素影响着生物种群的变化[7-11],比如:地震,洪水,海啸等会对种群产生瞬时的影响,而环境噪声会不断在不同程度上影响着种群的增长率、环境容量、竞争系数和系统的其他参数.因此,研究随机环境下具有脉冲效应的种群动力学行为,得到广大学者的青睐.

张树文等人[12]研究了一个具有脉冲输入毒素的单种群随机干扰模型,并假设种群个体死亡后变成毒素[13],得到了边界周期解以概率1全局吸引的充分条件,证明了系统均值有界且获得了种群灭绝与平均持续生存的阈值.而实际生态系统中,几乎没有独立的单种群存在,而是多种群共同存在的,考虑捕食-食饵关系的两种群生态模型更符合实际,因此,本文在种群个体死亡后变成毒素的假设下,考虑如下具有毒素脉冲输入和干扰的随机捕食-食饵模型

$ \begin{equation} \left\{ \begin{array}{lll} \left. \begin{array}{lll} {\rm d}x(t)=x(t)(r-k_{1}c(t)-ax(t)-\rho_{1}y(t)){\rm d}t+\sigma_{1}x(t){\rm d}B_{1}(t), \\ {\rm d}y(t)=y(t)(-d-k_{2}c(t)+\rho_{2}x(t)){\rm d}t+\sigma_{2}y(t){\rm d}B_{2}(t), \\ {\rm d}c(t)=(-hc(t)+b_{1}k_{1}c(t)x(t)+b_{2}k_{2}c(t)y(t)){\rm d}t, \\ \end{array} \right\}t\neq nT, \\ \left. \begin{array}{lll} \Delta x(t)=0, \\ \Delta y(t)=0, \\ \Delta c(t)=P, \end{array} \right\}t=nT, \end{array}\right. \end{equation} $

其中${x}(t), {y}(t), c(t)$分别代表$t$时刻食饵,捕食者,种群所处环境的毒素密度. $r, a$分别表示食饵种群$x(t)$的内禀增长率和密度制约系数, $d$表示捕食者$y(t)$的死亡率, $h$表示毒素$c(t)$的降解率, $\rho_{1}$是捕食率, $\rho_{2}\ (\rho_{2}<\rho_{1})$是食饵转化率, $k_{1}, k_{2}$代表种群因毒素死亡率, $b_{1}, b_{2}$代表毒素转化率, $\Delta q(t)=q(t^+)-q(t), (q=x, y, c)$, $T$为脉冲周期, $P$代表脉冲时刻输入的毒素浓度的值, $\sigma_{i}\ (i=1, 2)$是白噪声强度, $B_{1}(t), B_{2}(t)$是定义在完备概率空间上相互独立的标准布朗运动,并假设以上所有参数均为正数.

在本文中,我们总假设$(\Omega, {\cal F}, \{{\cal F}_{t}\}_{t\geq0}, P)$为完备的概率空间,其中$\{{\cal F}_{t}\}_{t\geq0}$$\Omega$上的一个$\sigma$ -代数且满足通常条件(即右连续, ${\cal F}_{0}$包含所有的零测集).并记

2 预备知识

给出本文所需要的定义、引理、定理和一些记号如下:

$x(t)=(x_{1}(t), x_{2}(t), \cdots, x_{n}(t))(t\geq0)$是随机微分方程

的解,其中$f\in {\mathit{£}}^{1}({\mathbb{R}}^{n}\times {\mathbb{R}}_{+}, {\mathbb{R}}^{n})$, $g\in{\mathit{£}}^{2}({\mathbb{R}}^{n}\times {\mathbb{R}}_{+}, {\mathbb{R}}^{n\times m})$, $B(t)$$m$维布朗运动.

定义2.1[14]   (1)若种群$x(t)$满足$\lim\limits_{t\rightarrow+\infty}x(t)=0$ a.s.,则称种群$x(t)$是灭绝的;

(2)若种群$x(t)$满足$\limsup\limits_{t\rightarrow+\infty}\frac{1}{t}\int_{0}^{t}x(s){\rm d}s=0$ a.s.,则称种群$x(t)$是非平均持续生存的;

(3)若存在常数$M>0$,使得种群$x(t)$满足$\liminf\limits_{t\rightarrow+\infty}\frac{1}{t}\int_{0}^{t}x(s){\rm d}s\geq M$ a.s.,则称种群$x(t)$是强平均持续生存的;

(4)若存在常数$N>0$,使得种群$x(t)$满足$\limsup\limits_{t\rightarrow+\infty}\frac{1}{t}\int_{0}^{t}x(s){\rm d}s\leq N<+\infty$ a.s.,则称种群$x(t)$是弱平均持续生存的.

定义2.2[14]  设$X^{*}(t)=(x^{*}(t), y^{*}(t), c^{*}(t))$是系统(1.1)满足初始条件$x^{*}(0)>0, $$ y^{*}(0)>0, $$ c^{*}(0)>0$的解,对系统(1.1)满足初始条件$x(0)>0, y(0)>0, c(0)>0$的任意解$X(t)=(x(t), y(t), c(t))$,如果

均成立,则称$X^{*}(t)=(x^{*}(t), y^{*}(t), c^{*}(t))$是全局吸引的.

考虑如下非自治随机单种群Logstic模型

$\begin{equation} {\rm d}N(t)=N(t)[(a(t)-b(t)N(t)){\rm d}t+\alpha(t){\rm d}B(t)], \ \ t\geq0, \end{equation} $

其中$a(t), b(t), \alpha(t) $$[0, +\infty)$上是连续有界函数,且$a(t)>0, ~b(t)>0$.

引理2.1[15]  系统(2.1)存在以$N(0)=N_{0}>0$为初始值的唯一全局连续正解

引理2.2[16]  系统

存在一个正周期解

其中$W^{*}(0^{+})=\frac{ P}{1-\exp(-aT)}$,且对此系统的所有的解$W(t)$均有当$t\rightarrow+\infty$时, $W(t)\rightarrow W^{*}(t)$成立.

引理2.3[11]  设$x(t)\in C(\Omega\times[0, +\infty), {\mathbb{R}}^+)$, $B_{i}(t)\ (1\leq i\leq n)$为标准的布朗运动,则有

(1)若存在正数$T, \mu_{0}$使得

成立,其中$\beta_{i}\ (1\leq i\leq n)$是常数,那么

(2)若存在正数$T, \mu_{0}$$\mu>0$使得

成立,其中$\beta_{i}\ (1\leq i\leq n)$是常数,那么

定理2.1[14](伊藤公式)  设$x(t)(t\geq0)$是伊藤过程,其随机微分为

其中$f\in{\mathit{£}}^{1}({\mathbb{R}}_{+}, {\mathbb{R}}^{n})$, $g\in{\mathit{£}}^{2}({\mathbb{R}}_{+}, {\mathbb{R}}^{n\times m})$.$V(x(t), t)\in C^{2, 1}({\mathbb{R}}^{n}\times{\mathbb{R}}_{+};{\mathbb{R}})$,则$V(x(t), t)$仍然是伊藤过程,具有如下随机微分

3 主要结论

定理3.1  对于任意给定的初值$(x(0^{+}), y(0^{+}), c(0^{+})) \in{\mathbb{R}}_{+}^{3}$,系统$(1.1)$存在唯一全局正解$(x(t), y(t), c(t))$, $t\geq0$,且此解以概率1停留在${\mathbb{R}}_{+}^{3}$中.

  由系统的第一个方程知

构造比较系统

$\begin{equation}\left\{ \begin{array}{lll} {\rm d}u_{1}(t)=u_{1}(t)(r-au_{1}(t)){\rm d}t+\sigma_{1}u_{1}(t){\rm d}B_{1}(t), \\ u_{1}(0^{+})=x(0^{+})>0, \end{array}\right.\end{equation}$

由引理2.1知系统(3.1)存在唯一全局连续正解如下

再由随机微分方程的比较定理得

$\begin{equation}0\leq x(t)\leq u_{1}^{*}(t).\end{equation}$

由系统(1.1)的第二个方程和(3.2)式知

构造比较系统

$\begin{equation}\left\{ \begin{array}{lll} {\rm d}u_{2}(t)=u_{2}(t)(-d+\rho_{2}u_{1}^{*}(t)){\rm d}t+\sigma_{2}u_{2}(t){\rm d}B_{2}(t), \\ u_{2}(0^{+})=y(0^{+})>0, \end{array}\right.\end{equation}$

易知系统(3.3)存在唯一的全局连续正解

根据随机微分方程的比较定理可知

$\begin{equation}0\leq y(t)\leq u_{2}^{*}(t).\end{equation}$

最后,由系统(1.1)的第三个方程, (3.2)和(3.4)式知

构造如下比较系统

$\begin{equation}\left\{ \begin{array}{lll} {\rm d}u_{3}(t)=u_{3}(t)(-h+b_{1}k_{1}u_{1}^{*}(t)+b_{2}k_{2}u_{2}^{*}(t)){\rm d}t, \quad t\neq nT, \\ \Delta u_{3}(t)=P, \quad t= nT, \\ u_{3}(0^{+})=c(0^{+})>0, \end{array}\right.\end{equation}$

根据引理2.2,可得上述脉冲微分方程的全局渐近稳定周期解为

由脉冲微分方程的比较定理得

$\begin{equation}0\leq c(t)\leq u_{3}^{*}(t).\end{equation}$

因此,由(3.2), (3.4)和(3.6)式可知,对任意的初始值$(x(0^{+}), y(0^{+}), c(0^{+}))$,当$t\geq0$时,系统(1.1)存在唯一的全局正解$(x(t), y(t), c(t))$.

定理3.2  如果$X(t)=(x(t), y(t), c(t))$是系统$(1.1)$满足初值$(x(0^{+}), y(0^{+}), c(0^{+}))\in{\mathbb{R}}_{+}^{3}$的解,则存在一个正数$M$,使得$Ex(t)\leq M, Ey(t)\leq M, Ez(t)\leq M$.

  定义$V(x(t), y(t), c(t))=x(t)+y(t)+c(t)$,对$V(X)$ (其中$X=(x(t), y(t), c(t))$)运用伊藤公式有

$\begin{eqnarray}{\rm d}V(X)&=&{\rm d}x(t)+{\rm d}y(t)+{\rm d}c(t) \\&=&(rx(t)-k_{1}c(t)x(t)-ax^{2}(t)-\rho_{1}x(t)y(t)-dy(t)-k_{2}c(t)y(t)+\rho_{2}x(t)y(t) \\&&-hc(t)+b_{1}k_{1}c(t)x(t)+b_{2}k_{2}c(t)y(t)){\rm d}t+\sigma_{1}x(t){\rm d}B_{1}(t)+\sigma_{2}y(t){\rm d}B_{2}(t) \\&\leq& (rx(t)-ax^{2}(t)-dy(t)-hc(t)){\rm d}t+\sigma_{1}x(t){\rm d}B_{1}(t)+\sigma_{2}y(t){\rm d}B_{2}(t), \end{eqnarray}$

$t=nT$,

$\begin{equation}\Delta V(t)=P, \end{equation}$

$\forall \ t\in(nT, (n+1)T]$,将(3.7)式从$nT$t积分得

对上式两边取期望有

易知

由于$-a(Ex(t))^{2}+2rEx(t)$的最大值为$\frac{r^{2}}{a}$,取$m=\min\{r, d, h\}$,有

$\begin{equation} \frac{{\rm d}EV(t)}{{\rm d}t}\leq \frac{r^{2}}{a}-mEV(t), \end{equation}$

另一方面,由(3.8)式可知

$\begin{equation}\Delta EV(t)=P, \end{equation}$

结合(3.9)和(3.10)式可知,若考虑如下脉冲微分方程

$\begin{equation}\left\{ \begin{array}{lll} {\rm d}Q(t)=\Big[\frac{r^{2}}{a}-mQ(t)\Big]{\rm d}t, & \quad t\neq nT, \\[2mm] \Delta Q(t)=P, & \quad t=nT, \end{array}\right.\end{equation}$

则系统(3.11)的解为

其中

由脉冲微分方程比较定理得

即系统是均值有界的.

为进一步研究系统,令$x(t)=0, y(t)=0$,考虑如下系统

$\begin{equation}\left\{ \begin{array}{lll} {\rm d}c(t)=-hc(t){\rm d}t, &\quad t\neq nT, \\ \Delta c(t)=P, &\quad t= nT, \end{array}\right.\end{equation}$

由引理2.2知系统(3.12)存在唯一正周期解$c^{\intercal}(t)=\frac{ P\exp[-h(t-nT)]}{1-\exp(-hT)}, ~t\in(nT, (n+1)T], n\in Z_{+}$,且当$t\rightarrow+\infty$时,有$c(t)\rightarrow c^{\intercal}(t)$.

显然,在任意脉冲区间$(nT, (n+1)T], n\in Z_{+}$上,系统存在一个边界周期解$(0, 0, c^{\intercal}(t))$.证毕.

定理3.3  如果系统(1.1)满足

则系统(1.1)的边界周期解$(0, 0, c^{\intercal}(t))$以概率1全局吸引.

  由系统(1.1)的第三个式子可知

因此考虑如下脉冲微分方程

$\begin{equation}\left\{ \begin{array}{lll} {\rm d}v(t)=-hv(t){\rm d}t, \quad & t\neq nT, \\ \Delta v(t)=P, \quad & t= nT, \\ v(0^{+})=c(0^{+})>0, \end{array}\right.\end{equation}$

由脉冲微分方程比较定理得$c(t)\geq v(t)$,又由系统(3.12)可知,当$t\rightarrow+\infty$时, $v(t)\rightarrow c^{\intercal}(t)$.则当$t$充分大时,对任意的$\varepsilon_{1}>0$,有$c(t)>c^{\intercal}(t)-\varepsilon_{1}>0$.

即,对任意小的$\varepsilon_{1}>0$,存在$T_{1}>0$,使得当$t>T_{1}$时,有$c(t)>c^{\intercal}(t)-\varepsilon_{1}>0$,使得不等式

成立.

构造比较系统

$\begin{equation}\left\{ \begin{array}{lll} {\rm d}w(t)=w(t)(r-k_{1}(c^{\intercal}(t)-\varepsilon_{1})-aw(t)-\rho_{1}y(t)){\rm d}t+\sigma_{1}w(t){\rm d}B_{1}(t), \\ w(0)=x(0)>0, \end{array}\right.\end{equation}$

利用伊藤公式,沿着系统(3.14)对$\ln w(t)$求随机微分可得

两边从$0$$t$积分并除以$t$

$\begin{eqnarray}\frac{\ln w(t)}{t}&=&\frac{\ln w(0)}{t}+\frac{1}{t}\int_{0}^{t}\Big[r-\frac{\sigma_{1}^{2}}{2}-k_{1}(c^{\intercal}(s)-\varepsilon_{1})-aw(s)-\rho_{1}y(s)\Big]{\rm d}s+\frac{\sigma_{1}B_{1}(t)}{t} \\&\leq& \frac{\ln w(0)}{t}+\frac{1}{t}\int_{0}^{t}\Big[r-\frac{\sigma_{1}^{2}}{2}-k_{1}(c^{\intercal}(s)-\varepsilon_{1})\Big]{\rm d}s+\frac{\sigma_{1}B_{1}(t)}{t} \\&=&\frac{\ln w(0)}{t}+\Big(r-\frac{\sigma_{1}^{2}}{2}\Big)-\frac{1}{t}\int_{0}^{t}[k_{1}(c^{\intercal}(s)-\varepsilon_{1})]{\rm d}s+\frac{\sigma_{1}B_{1}(t)}{t}, \end{eqnarray}$

由于$c^{\intercal}(s)$是以$T$为周期的周期解,则有

$t\rightarrow+\infty$时,即当$n\rightarrow+\infty$时有

因此当$t\rightarrow+\infty$时,有

$\begin{equation} \frac{1}{t}\int_{0}^{t}[k_{1}(c^{\intercal}(s)-\varepsilon_{1})]{\rm d}s \rightarrow \frac{1}{T}\int_{0}^{T}[k_{1}(c^{\intercal}(s)-\varepsilon_{1})]{\rm d}s = \frac{Pk_1}{hT}.\end{equation}$

由于$\varepsilon_{1}$足够小,则当$t\rightarrow+\infty$时,由大数定律并结合(3.16)式,对(3.15)式取上确界极限有

所以当$t\rightarrow+\infty$时, $w(t)\rightarrow0$,即当$t\rightarrow+\infty$时, $x(t)\rightarrow0$.

则对任意的$0<\varepsilon_{2}< \frac{1}{\rho_{2}}(d+\frac{\sigma_{2}^{2}}{2}+\frac{k_{2}P}{hT})$,存在$T_{2}>T_{1}>0$,当$t>T_{2}$时,有$0<x(t)<\varepsilon_{2}$.因此有不等式

构造比较系统

$\begin{equation}\left\{ \begin{array}{lll} {\rm d}z(t)=z(t)[-d-k_{2}(c^{\intercal}(t)-\varepsilon_{1})+\rho_{2}\varepsilon_{2}]{\rm d}t+\sigma_{2}z(t){\rm d}B_{2}(t), \\ z(0)=y(0)>0, \end{array}\right.\end{equation}$

利用伊藤公式,沿着系统(3.17)对$\ln z(t)$求随机微分可得

两边从$0$$t$积分并除以$t$

$\begin{equation}\frac{\ln z(t)}{t}=\frac{\ln z(0)}{t}+\Big(-d-\frac{\sigma_{2}^{2}}{2}+\rho_{2}\varepsilon_{2}\Big)-\frac{1}{t}\int_{0}^{t}[k_{2}(c^{\intercal}(s)-\varepsilon_{1})]{\rm d}s+\frac{\sigma_{1}B_{2}(t)}{t}, \end{equation}$

由于$c^{\intercal}(s)$是以$T$为周期的周期解,同理,当$t\rightarrow+\infty$时,有

$\begin{equation} \frac{1}{t}\int_{0}^{t}[k_{2}(c^{\intercal}(s)-\varepsilon_{1})]{\rm d}s \rightarrow \frac{1}{T}\int_{0}^{T}[k_{2}(c^{\intercal}(s)-\varepsilon_{1})]{\rm d}s = \frac{k_{2}P}{hT}.\end{equation}$

由于$\varepsilon_{1}$足够小,则当$t\rightarrow+\infty$时,由大数定律并结合(3.19)式,对(3.18)式取上确界极限有

又因为$0<\varepsilon_{2}< \frac{1}{\rho_{2}}(d+\frac{\sigma_{2}^{2}}{2}+\frac{k_{2}P}{hT})$,则$-d-\frac{\sigma_{2}^{2}}{2}+\rho_{2}\varepsilon_{2}-\frac{k_{2}P}{hT}<0$,所以有$\limsup\limits_{t\rightarrow+\infty}\frac{1}{t}\ln z(t)<0$.即当$t\rightarrow+\infty$时,有$z(t)\rightarrow0$.则当$t\rightarrow+\infty$时,有$y(t)\rightarrow0$.

同理可证,当$t\rightarrow+\infty$时,有$c(t)\rightarrow c^{\intercal}(t)$.

因此,当$2r>\sigma_{1}^{2}$$P>\frac{hT(r-\frac{\sigma_{1}^{2}}{2})}{k_{1}}$成立时,系统(1.1)的边界周期解$(0, 0, c^{\intercal}(t))$是全局吸引的.

定理3.4  当$2r>\sigma_{1}^{2}$$P=\frac{hT(r-\frac{\sigma_{1}^{2}}{2})}{k_{1}}$时,系统(1.1)的解满足

则种群$x(t)$是非平均持续生存的,种群$y(t)$是灭绝的.

  结合系统(3.15)和脉冲微分方程比较定理可得: $c(t)\geq c^{\intercal}(t)-\varepsilon_{1}$.$\delta^{*}=r-\frac{Pk_{1}}{hT}-\frac{\sigma_{1}^{2}}{2}$,根据定理3.3的证明过程可知,对任意给定的$\varepsilon_{3}>0$,存在$T_{3}>T_{2}>0$,使得当$t>T_{3}$时有

将上式代入

$\begin{equation}\ln w(t)\leq\lambda t-a\int_{0}^{t}w(s){\rm d}s, \quad t\geq T_{3}, \end{equation}$

其中$\lambda=\delta^{*}+\varepsilon_{3}$,因此当$t\geq T_{3}$时,根据比较定理有

$\begin{equation}x(t)\leq w(t), \quad \ln w(t)\leq\lambda t-a\int_{0}^{t}x(s){\rm d}s, \end{equation}$

由(3.20)和(3.21)式可知

$\begin{equation}\ln x(t)\leq\lambda t-a\int_{0}^{t}x(s){\rm d}s.\end{equation}$

$h(t)=\int_{0}^{t}x(s){\rm d}s$,则(3.22)式可化为

上式两端同时从$T_{3}$$t$积分得

整理得

上式两端同时取对数有

两端同时除以$t$,并取上确界极限有

由洛必达法则可得

其中$\lambda=\delta^{*}+\varepsilon_{3}$,由$\varepsilon_{3}$的任意性可知

则当$r=\frac{Pk_{1}}{hT}+\frac{\sigma_{1}^{2}}{2}$时, $\limsup\limits_{t\rightarrow+\infty}\frac{1}{t}\int_{0}^{t}x(s){\rm d}s=0$ a.s.,即种群$x(t)$是非平均持续生存的.

同理,沿着系统的解对$\ln y(t)$求随机微分可得

两端同时从$0$$t$取积分并除以$t$

$\varepsilon_{1}$的任意性及大数定律,对上式两端取极限有

$\lim\limits_{t\rightarrow+\infty}y(t)=0$,即种群$y(t)$是灭绝的.

定理3.5  当$2r>\sigma_{1}^{2}$$P<\frac{[\rho_{2}(r-\frac{\sigma_{1}^{2}}{2})-a(d+\frac{\sigma_{2}^{2}}{2})]hT}{ak_{2}+\rho_{2}k_{1}} < \frac{hT(r-\frac{\sigma_{1}^{2}}{2})}{k_{1}}$时,有

其中$\lambda=\frac{\rho_{2}(r-\frac{Pk_{1}}{hT}-\frac{\sigma_{1}^{2}}{2})}{a}-d-\frac{\sigma_{2}^{2}}{2}-\frac{Pk_{2}}{hT}>0$,即种群$x(t)$是弱平均持续生存的,种群$y(t)$是强平均持续生存的.

  考虑系统

$\begin{equation}{\rm d}\Psi(t)= \Psi(t)(r-k_{1}(c^{\intercal}(t)-\varepsilon_{1})-a\Psi(t)){\rm d}t+\sigma_{1}\Psi(t){\rm d}B_{1}(t), \Psi(0)=x(0)>0, \end{equation}$

根据文献[17]及任意小的$\varepsilon_{1}$,可得

$\begin{equation}\left\{ \begin{array}{lll} \lim\limits_{t\rightarrow\infty}\Psi(t)=0 \ a.s., & \mbox{若} \ P>\frac{hT(r-\frac{\sigma_{1}^{2}}{2})}{k_{1}}, \\[3mm] \lim\limits_{t\rightarrow\infty}\frac{1}{t}\int_{0}^{t}\Psi(s){\rm d}s=\frac{r-\frac{Pk_{1}}{hT}-\frac{\sigma_{1}^{2}}{2}}{a} \ a.s., & \mbox{若} \ P<\frac{hT(r-\frac{\sigma_{1}^{2}}{2})}{k_{1}}, \end{array}\right.\end{equation}$

由微分方程的比较定理,可知$x(t)\leq \Psi(t), \ t\geq0 $,则有$\limsup\limits_{t\rightarrow+\infty}\frac{1}{t}\int_{0}^{t}x(s) {\rm d}s\leq\frac{r-\frac{Pk_{1}}{hT}-\frac{\sigma_{1}^{2}}{2}}{a}$ a.s.,即当$P<\frac{hT(r-\frac{\sigma_{1}^{2}}{2})}{k_{1}}$时,种群$x(t)$是弱平均持续生存的.

根据系统(1.1)的第一个等式和(3.23)式,对$\ln x(t), \ln\Psi (t)$求随机微分可得

$\begin{equation}\left\{ \begin{array}{lll} \frac{\ln x(t)-\ln x(0)}{t}=r-\frac{\sigma_{1}^{2}}{2}-\frac{a}{t}\int_{0}^{t}x(s){\rm d}s-\frac{\rho_{1}}{t}\int_{0}^{t}y(s){\rm d}s-\frac{k_{1}}{t}\int_{0}^{t}c(s){\rm d}s+\frac{\sigma_{1}B_{1}(t)}{t}, \\\frac{\ln \Psi(t)-\ln \Psi(0)}{t}=r-\frac{\sigma_{1}^{2}}{2}-\frac{a}{t}\int_{0}^{t}\Psi(s){\rm d}s-\frac{k_{1}}{t}\int_{0}^{t}c(s){\rm d}s+\frac{\sigma_{1}B_{1}(t)}{t}, \end{array}\right. \end{equation}$

由(3.25)式可得

$\begin{equation}\frac{1}{t}\int_{0}^{t}(\Psi(s)-x(s)){\rm d}s\leq\frac{\rho_{1}}{at}\int_{0}^{t}y(s){\rm d}s, \end{equation}$

结合(3.26)式对系统(1.1)的第二个式子运用伊藤公式可得

由(3.24)式可知,对任意的$\varepsilon>0$,存在$T>0$,使得当$t>T$时,有

则对任意的$t>T$,有

其中$\lambda=-d-\frac{\sigma_{2}^{2}}{2}-\frac{Pk_{2}}{hT}+\frac{\rho_{2}(r-\frac{Pk_{1}}{hT}-\frac{\sigma_{1}^{2}}{2})}{a}>0$,即

由引理2.3和$\varepsilon$的任意性知

证毕.

4 数值模拟与结论

令周期数$T=10$,取参数$r=0.1, k_1=0.2, k_2=0.1, a=0.05, \rho_1=0.5, \rho_2=0.3, $$ d=0.3, h=0.5, b_1=0.1, b_2=0.1, \sigma_{1}=0.4, \sigma_{2}=0.3$.并取初始值为$(x_{1}(0), y_{1}(0), c_{1}(0))=(1, 0.3, 2)$$(x_{2}(0), y_{2}(0), c_{2}(0))=(1, 0.3, 3)$.

(1)令脉冲值$P=1$,则满足条件$0.2=2r>\sigma_{1}^{2}=0.16$$1=P>\frac{hT(r-\frac{\sigma_{1}^{2}}{2})}{k_{1}}=0.5$,由定理3.3知,系统(1.1)满足初始值下的解$(x_{1}(t), y_{1}(t), c_{1}(t)), (x_{2}(t), y_{2}(t), c_{2}(t))$全局吸引到$(0, 0, c^{\intercal}(t))$,见图 1.

图 1

图 1   图(a), (b), (c)分别代表脉冲值$P=1$时食饵种群$x(t)$,捕食者种群$y(t)$以及毒素$c(t)$的变化趋势


(2)令脉冲值$P=5$,且保持初始值及其他参数不变,则满足条件$0.2=2r>\sigma_{1}^{2}=0.16$$5=P>\frac{hT(r-\frac{\sigma_{1}^{2}}{2})} {k_{1}}=0.5$,由定理3.3知,系统(1.1)满足初始值下的解$(x_{1}(t), y_{1}(t), c_{1}(t)), $$ (x_{2}(t), y_{2}(t), c_{2}(t))$全局吸引到$(0, 0, c^{\intercal}(t))$,见图 2.

图 2

图 2   图(a), (b), (c)分别代表脉冲值$P=5$时食饵种群$x(t)$,捕食者种群$y(t)$以及毒素$c(t)$的变化趋势


(3)令脉冲值$P=10$,且保持初始值及其他参数不变,则满足条件$0.2=2r>\sigma_{1}^{2}=0.16$$10=P>\frac{hT(r-\frac{\sigma_{1} ^{2}}{2})}{k_{1}}=0.5$,由定理3.3知,系统(1.1)满足初始值下的解$(x_{1}(t), y_{1}(t), c_{1}(t)), $$(x_{2}(t), y_{2}(t), c_{2}(t))$全局吸引到$(0, 0, c^{\intercal}(t))$,见图 3.

图 3

图 3   图(a), (b), (c)分别代表脉冲值$P=10$时食饵种群$x(t)$,捕食者种群$y(t)$以及毒素$c(t)$的变化趋势


图 1, 图 2, 图 3可知,其他参数一定时,周期投放毒素脉冲值越大,种群灭绝的速度越快.

(4)令脉冲值$P=0.1$, $\sigma_{1}=0.2$,且保持初始值及其他参数不变,则满足条件$0.2=2r>\sigma_{1}^{2}=0.04$,且$0.1=P<\frac{[\rho_{2}(r-\frac{\sigma_{1}^{2}}{2})-a(d+\frac{\sigma_{2}^{2}}{2})]hT}{ak_{2}+\rho_{2}k_{1}}=0.9038<2.375=\frac{hT(r-\frac{\sigma_{1}^{2}}{2})}{k_{1}}$,由定理3.5知,种群$x(t)$是弱平均持续生存的,种群$y(t)$是强平均持续生存的,见图 4.

图 4

图 4   图(a)表示食饵种群$x(t)$是弱平均持续生存的,图(b)表示捕食者种群$y(t)$是强平均持续生存的


5 小结

本文通过研究周期脉冲毒素输入的随机捕食-食饵系统,证明了系统的均值有界性,全局正解的存在唯一性,并得到种群灭绝与持续生存的阈值$P^{*}=\frac{hT(r-\frac{\sigma_{1}^{2}}{2})}{k_{1}}$,使得

(1)当$2r>\sigma_{1}^{2}$,且$P>P^{*}$时,系统(1.1)存在边界周期解$(0, 0, c^{\intercal}(t))$且以概率1全局吸引;

(2)当$2r>\sigma_{1}^{2}$,且$P=P^{*}$时,系统(1.1)中种群$x(t)$是非平均持续生存的,种群$y(t)$是灭绝的;

(3)当$2r>\sigma_{1}^{2}$,且$P<\frac{[\rho_{2}(r-\frac{\sigma_{1}^{2}}{2})-a(d+\frac{\sigma_{2}^{2}}{2})]hT}{ak_{2}+\rho_{2}k_{1}} < P^{*}$时,种群$x(t)$是弱平均持续生存的,种群$y(t)$是强平均持续生存的.

由理论结果和数值模拟可知,当脉冲毒素输入超过一定阈值$P^{*}$时,会导致种群灭绝,并且周期投放毒素脉冲值越大,种群将越快的趋于灭绝;而当脉冲输入毒素和白噪声足够小时,两种群都将持续生存.

参考文献

Zhao Y , Yuan S L , Zhang Q M .

The effect of Lévy noise on the survival of a stochastic competitive model in an impulsive polluted environment

Appl Math Model, 2016, 40: 7583- 7600

DOI:10.1016/j.apm.2016.01.056      [本文引用: 1]

Wang X H , Jia J W .

Dynamic of a delayed predator-prey model with birth pulse and impulsive harvesting in a polluted environment

Physica A, 2015, 422: 1- 15

DOI:10.1016/j.physa.2014.12.003     

Wei F Y , Chen L H .

Psychological effect on single-species population models in a polluted environment

Math Biosc, 2017, 290: 22- 30

DOI:10.1016/j.mbs.2017.05.011     

Zhao Y , Yuan S L .

Optimal harvesting policy of a stochastic two-species competitive model with Lévy noise in a polluted environment

Physica A, 2017, 477: 20- 33

DOI:10.1016/j.physa.2017.02.019     

He X , Shan M J , Liu M .

Persistence and extinction of an n-species mutualism model with random perturbations in a polluted environment

Physica A, 2018, 491: 313- 324

DOI:10.1016/j.physa.2017.08.083     

Jiang D Q , Zhang Q M , Tasawar H , Ahmed A .

Periodic solution for a stochastic non-autonomous competitive Lotka-Volterra model in a polluted environment

Physica A, 2017, 471: 276- 287

DOI:10.1016/j.physa.2016.12.008      [本文引用: 1]

Zhao D L , Yuan S L .

Dynamics of the stochastic Leslie-Gower predator-prey system with randomized intrinsic growth rate

Physica A, 2016, 461 (1): 419- 428

URL     [本文引用: 1]

Jiang D Q , Zuo W J , Tasawar H , Ahmed A .

Stationary distribution and periodic solutions for stochastic Holling-Leslie predator-prey systems

Physica A, 2016, 460 (15): 16- 28

URL    

Liu Q , Zu L , Jiang D Q .

Dynamics of stochastic predator-prey models with Holling Ⅱ functional response

Commu Nonl Sci Numer Simulat, 2016, 37: 62- 76

DOI:10.1016/j.cnsns.2016.01.005     

Guo W J , Cai Y L , Zhang Q M , Wang W M .

Stochastic persistence and stationary distribution in an SIS epidemic model with media coverage

Physica A, 2018, 492: 2220- 2236

DOI:10.1016/j.physa.2017.11.137     

Liu M , Wang K .

Survival analysis of a stochastic cooperation system in a polluted environment

J Biol Syst, 2011, 19: 183- 204

DOI:10.1142/S0218339011003877      [本文引用: 2]

张树文, 蔡明夷.

具脉冲输入毒素的单种群随机干扰模型

应用数学学报, 2014, 37 (5): 797- 804

URL     [本文引用: 1]

Zhang S W , Cai M Y .

A single population model in a polluted environment with pulse toxicant input and random perturbations

Acta Math Appl Sinica, 2014, 37 (5): 797- 804

URL     [本文引用: 1]

Rehim M , Sun L L , Abdurahman X , Teng Z D .

Study of chemostat model with impulsive input and nutrient recycling in a polluted environment

Commun Nonl Sci Numer Simulat, 2011, 16: 2563- 2574

DOI:10.1016/j.cnsns.2010.09.030      [本文引用: 1]

王克. 随机生物数学模型. 北京: 科学出版社, 2010

[本文引用: 3]

Wang K . Random Biological Mathematical Model. Beijing: Science Press, 2010

[本文引用: 3]

Jiang D Q , Shi N Z , Li X Y .

Global stability and stochastic permanence of nonautonomous lodistic equation with random perturbation

Math Anal Appl, 2008, 340: 588- 597

DOI:10.1016/j.jmaa.2007.08.014      [本文引用: 1]

Liu B , Teng Z D , Li X Y .

Qualitative analysis of a stochastic ratio-dependent predator-prey system

J Comput Appl Math, 2011, 235: 1326- 1341

DOI:10.1016/j.cam.2010.08.021      [本文引用: 1]

Zuo W J , Jiang D Q .

Stationary distribution and periodic solution for stochastic predator-prey systems with nonlinear predator harvesting

Commun Nonl Sci Numer Simulat, 2016, 36: 65- 68

DOI:10.1016/j.cnsns.2015.11.014      [本文引用: 1]

/