数学物理学报, 2019, 39(3): 417-422 doi:

论文

广义Kato分解与Weyl型定理

陈俐宏,, 苏维钢,

Generalized Kato Decomposition and Weyl Type Theorems

Chen Lihong,, Su Weigang,

通讯作者: 苏维钢, E-mail: wgsu@fjnu.edu.cn

收稿日期: 2018-03-13  

基金资助: 国家自然科学基金.  11171066
福建省自然科学基金.  2013J01003

Received: 2018-03-13  

Fund supported: the NSFC.  11171066
the Natural Science Foundation of Fujian Province.  2013J01003

作者简介 About authors

陈俐宏,chenlh2016@163.com , E-mail:chenlh2016@163.com

摘要

该文利用算子的广义Kato分解特征,从广义Kato谱的角度探讨了有界线性算子满足Browder定理和Weyl定理的充要条件.

关键词: 广义Kato分解 ; Browder定理 ; Weyl定理

Abstract

Using the character of generalized Kato decomposition, this paper discusses the sufficient and necessary conditions for which Browder's theorem and Weyl's theorem hold from the angle of generalized Kato spectrum for a bounded linear operator.

Keywords: Generalized Kato decomposition ; Browder's theorem ; Weyl's theorem

PDF (252KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

陈俐宏, 苏维钢. 广义Kato分解与Weyl型定理. 数学物理学报[J], 2019, 39(3): 417-422 doi:

Chen Lihong, Su Weigang. Generalized Kato Decomposition and Weyl Type Theorems. Acta Mathematica Scientia[J], 2019, 39(3): 417-422 doi:

1 预备知识

本文中,设$X$是无限维复Banach空间, $L(X)$表示从$X$$X$的有界线性算子的全体.对于$T\in L(X)$, $T^*$表示$T$的共轭算子, $\alpha(T)$表示零空间$N(T)$的维数, $\beta(T)$表示值域$R(T)$的亏维. $p(T)$$q(T)$分别表示$T$的升指数和降指数,即

(若下确界不存在,记$p(T)=\infty$, $q(T)=\infty$).$T$的升指数和降指数都是有限的,那么它们相等(见文献[1,定理1.19]).称$T$是Fredholm算子(上半Fredholm算子),若$\alpha(T)$$\beta(T)$都有限($R(T)$闭且$\alpha(T) < \infty$). $T$的Fredholm指标定义为$ind(T)=\alpha(T)-\beta(T)$.指标为0的Fredholm算子称为Weyl算子.若$T$是Fredholm算子且$p(T)=q(T) < \infty$,则称$T$是Browder算子.若$p(T)=q(T) < \infty$,则称$T$为Drazin可逆.若$\lambda I-T$不可逆但Drazin可逆,则称$\lambda\in{\Bbb C}$$T$的极点,记$\Pi(T)$$T$的所有极点组成的集合.同时,用$\Pi^0(T)$表示$T$的所有有限秩的极点,即

此外,定义

显然$\Pi^0(T)\subseteq E^0(T)$.定义$\sigma(T)$表示$T$的谱集, $T$的本性谱$\sigma_f(T)$, Weyl谱$\sigma_w(T)$, Browder谱$\sigma_b(T)$分别定义为:

$\rho_{f}(T)={\Bbb C}\setminus\sigma_{f}(T), \rho_{w}(T)={\Bbb C}\setminus\sigma_{w}(T), \rho_{b}(T)={\Bbb C}\setminus\sigma_{b}(T)$为这些谱子集相对应的预解集.

Dunford在文献[2]和[3]中引入了单值扩张性的概念(简称SVEP),它作为研究算子的谱的有力工具极大地丰富了算子谱结构的经典研究.称$T$$\lambda_0\in{\Bbb C}$处有SVEP,如果对$\lambda_0$的任何开邻域$U$,满足式子$(\lambda I-T)f(\lambda)=0 (\forall\lambda\in U)$的唯一解析函数$f:U\longrightarrow X$$U$上的零函数.称$T$有SVEP,若$T$在任意的$\lambda\in{\Bbb C}$处都有SVEP.显然, $T$$T^*$$\lambda\in iso\sigma(T)$处都有SVEP.

近年来,许多学者对Weyl型定理从不同角度进行了研究, Coburn在文献[4]中称$T$满足Weyl定理,若$\sigma(T)\setminus\sigma_{w}(T)= E^{0}(T), $ Harte和Lee在文献[5]中称$T$满足Browder定理,若$\sigma(T)\setminus\sigma_{w}(T)=\Pi^{0}(T)$.本文利用算子的广义Kato分解特征,从广义Kato谱的角度继续探讨了有界线性算子满足Browder定理和Weyl定理的充要条件.

2 广义Kato分解与Weyl型定理

$T\in L(X)$,称$T$为半正则算子,如果对任意的$n\in{\Bbb N}$, $R(T^n)$闭且$N(T^n)\subseteq R(T)$.$T$有广义Kato分解(简记为GKD),如果存在$T$的不变子空间$(M, N)$使得$T=M\oplus N$,使得$T|_M$半正则且$T|_N$拟幂零.称$T$是Kato型算子,如果$T$有GKD(M, N)使得$T|_N$是幂零的.称$T$是广义Drazin可逆的,如果存在$S\in L(X)$使得$ST=TS, STS=S, TST=T+U$,其中$U$是拟幂零的. Drazin可逆的算子必定是广义Drazin可逆的算子.记$T$的广义Kato谱和广义Drazin谱分别为:

$\rho_{gk}(T)={\Bbb C}\setminus\sigma_{gk}(T)$.由文献[6,定理4.2]知$\lambda\notin\sigma_{gd}(T)$当且仅当$\lambda\notin acc\sigma(T)$, $\rho_{gd}(T)\subseteq\rho_{gk}(T)$.下面先引入有关$\sigma_{gk}(T)$$\sigma_{gd}(T)$的一个重要引理:

引理2.1  设$T\in L(X)$,则$\sigma_{gd}(T)=\sigma_{gk}(T)\cup int\sigma(T)$.

  对任意的$\lambda\notin\sigma_{gd}(T)$,则$\lambda\notin acc\sigma(T)$.$\lambda\notin\sigma(T)$,则$\lambda\notin int\sigma(T)$$\lambda I-T$有广义Kato分解,即$\lambda\notin\sigma_{gk}(T)\cup int\sigma(T)$.$\lambda\in\sigma(T)$,显然$\lambda\in iso\sigma(T)$,则$\lambda\notin int\sigma(T)$$T$$T^*$都在$\lambda$处有SVEP,由文献[7,定理3.1.11]可知, $\lambda I-T$有广义Kato分解,即$\lambda\notin\sigma_{gk}(T)\cup int\sigma(T)$.所以$\sigma_{gk}(T)\cup int\sigma(T)\subseteq\sigma_{gd}(T)$.

反之,对任意的$\lambda\notin\sigma_{gk}(T)\cup int\sigma(T)$,则$\lambda\notin\sigma_{gk}(T)$$\lambda\in\rho(T)\cup\partial\sigma(T)$.$\lambda\notin\sigma_{gk}(T)$$\lambda\in\rho(T)$,显然$\lambda\notin\sigma_{gd}(T)$.$\lambda\notin\sigma_{gk}(T)$$\lambda\in\partial\sigma(T)$,由文献[7,推论3.1.12]可知, $\lambda\in iso\sigma(T)$,即$\lambda\notin acc\sigma(T)$,则$\lambda\notin\sigma_{gd}(T)$.所以, $\sigma_{gd}(T)\subseteq\sigma_{gk}(T)\cup int\sigma(T)$.

下面利用$\sigma_{gk}(T)$$\sigma_{gd}(T)$刻画Browder定理和Weyl定理.

定理2.1  $T$满足Browder定理当且仅当$\sigma_{gd}(T)\subseteq\sigma_{gk}(T)\cup int\sigma_w(T)$.

  $\Rightarrow)$$T$满足Browder定理,即有$\sigma_b(T)=\sigma_w(T)$.$\lambda_0\notin\sigma_{gk}(T)\cup int\sigma_w(T)$,有$\lambda_0\notin\sigma_{gk}(T)$$\lambda_0\in\rho_w(T)\cup\partial\sigma_w(T)$.

$\lambda_0\notin\sigma_{gk}(T)$$\lambda_0\in\rho_w(T)$,则$\lambda_0\notin\sigma_w(T)=\sigma_{b}(T)$,即$\lambda_0 I-T$是Browder算子,从而$\lambda_0 I-T$是Drazin可逆算子,所以$\lambda_0\notin\sigma_{gd}(T)$.

$\lambda_0\notin\sigma_{gk}(T)$$\lambda_0\in\partial\sigma_w(T)$,因$\sigma_b(T)=\sigma_w(T)$,有$\lambda_0\in\partial\sigma_b(T)$,则对$\forall\varepsilon>0$,都存在$\lambda_1$满足$0 < |\lambda_1-\lambda_0| < \varepsilon$,使得$\lambda_1 I-T$是Browder算子,即$\lambda_1 I-T$是Fredholm算子且$p(\lambda_1 I-T)=q(\lambda_1 I-T) < \infty$.下面分情况讨论.若$p(\lambda_1 I-T)=q(\lambda_1 I-T)=0$,则$\lambda_1 I-T$可逆,所以$\lambda_0\in\partial\sigma(T)$.$0 < p(\lambda_1 I-T)=q(\lambda_1 I-T) < \infty$,即$\lambda_1$$T$的极点.因$\lambda_1 I-T$是Fredholm算子,由文献[1,定义1.76]知,存在$d\in{\Bbb N}$使得$\lambda_1 I-T$是对$n\geq d$有拓扑一致降指数的算子.于是,由文献[8,推论4.8]知,对任意满足$(\varepsilon-|\lambda_1-\lambda_0|)>\varepsilon_1>0$$\varepsilon_1$,都存在$\lambda_2$满足$0 < |\lambda_2-\lambda_1| < \varepsilon_1$,使得$\lambda_2 I-T$可逆.因

所以$\lambda_0\in\partial\sigma(T)$.又因$\lambda_0\notin\sigma_{gk}(T)$,由引理2.1可知, $\lambda_0\notin\sigma_{gd}(T)$.因此

$\Leftarrow)$显然$\sigma_w(T)\subseteq\sigma_b(T)$,下证: $\sigma_b(T)\subseteq\sigma_w(T)$.$\lambda_0\notin\sigma_w(T)$,即$\lambda_0 I-T$是Weyl算子,则$\lambda_0\notin\sigma_{gk}(T)\cup int\sigma_w(T)$,从而$\lambda_0\notin\sigma_{gd}(T)$,即有$\lambda_0\notin acc\sigma(T)$.$\lambda_0\notin\sigma(T)$,显然$\lambda_0\notin\sigma_b(T)$.$\lambda_0\in\sigma(T)$,则$\lambda_0\in iso\sigma(T)$.由文献[1,定理2.66]可知, $\lambda_0 I-T$是Browder算子,即$\lambda\notin\sigma_b(T)$.所以$\sigma_b(T)\subseteq\sigma_w(T)$.因此, $T$满足Browder定理.

定理2.2   $T$满足Weyl定理当且仅当$\sigma_{gd}(T)\subseteq\sigma_{gk}(T)\cup int\sigma_w(T)$$\sigma_f(T)\cap E^0(T)=\emptyset$.

   $\Rightarrow)$$T$满足Weyl定理,则$T$满足Browder定理,由定理2.1知, $\sigma_{gd}(T)\subseteq\sigma_{gk}(T)\cup int\sigma_w(T)$.又由于$E^0(T)=\sigma(T)\setminus\sigma_w(T)\subseteq\rho_f(T)$,所以, $\sigma_f(T)\cap E^0(T)=\emptyset$.

$\Leftarrow)$由定理2.1可知,当$\sigma_{gd}(T)\subseteq\sigma_{gk}(T)\cup int\sigma_w(T)$时, $T$满足Browder定理,即

下面证明: $E^0(T)\subseteq\sigma(T)\setminus\sigma_w(T)$.对任意的$\lambda\in E^0(T)$,由于$\sigma_f(T)\cap E^0(T)=\emptyset$,则$\lambda I-T$是Fredholm算子.因$\lambda\in iso\sigma(T)$,由文献[1,定理2.66]可知, $\lambda I-T$是Browder算子,所以$\lambda\in\sigma(T)\setminus\sigma_b(T)\subseteq\sigma(T)\setminus\sigma_w(T)$.因此, $\sigma(T)\setminus\sigma_w(T)=E^0(T)$,即$T$满足Weyl定理.

在定理2.1和定理2.2中,若$\sigma_{gk}(T)=\emptyset$,能否得到$T$满足Browder定理或者Weyl定理?

定理2.3  设$T\in L(X)$, $T$满足Browder定理,如果$T$满足下列条件之一:

$(1)$$\sigma_{gk}(T)=\emptyset$;

$(2)$任意的$\lambda\in\partial\sigma(T)$都是孤立的;

$(3)$任意的$\lambda\in\sigma(T)$都是孤立的;

$(4)$$\sigma(T)$是一个有限集;

$(5)$$\sigma_{gd}(T)=\emptyset$.

  由文献[7,定理3.2.17]知,条件$(1)(2)(3)(4)(5)$等价.若$\sigma_{gd}(T)=\emptyset$,显然$\sigma_{gd}(T)\subseteq\sigma_{gk}(T)\cup int\sigma_w(T)$,所以由定理2.1知, $T$满足Browder定理.

然而,当$\sigma_{gk}(T)=\emptyset$时, $T$不一定满足Weyl定理.例如:设$T(x_1, x_2, x_3, \cdots)=(\frac{1}{3}x_2, \frac{1}{4}x_3, \cdots), (x_n)\in l^2({\Bbb N})$,则$\sigma(T)=\sigma_{w}(T)=\{0\}$$E^0(T)=\{0\}$,由文献[7,定理3.2.17]可知$\sigma_{gk}(T)=\emptyset$,但是$\sigma(T)\setminus\sigma_{w}(T)=\emptyset\neq E^0(T)$,即$T$不满足Weyl定理.

定理2.3的逆命题也不一定成立.例如:设$T\in L(l^2({\Bbb N}))$是单边右移位算子,则$\sigma(T)=\sigma_w(T)={\Bbb D}(0, 1)$,其中${\Bbb D}(0, 1)$${\Bbb C}$中的单位闭圆盘,且$\Pi^0(T)=\emptyset$.所以$\sigma(T)\setminus\sigma_w(T)=\emptyset=\Pi^0(T)$,即$T$满足Browder定理.但是, $\sigma(T)={\Bbb D}(0, 1)$不是有限集,即$(4)$不成立,又由文献[7,定理3.2.17]可知, $(1)(2)(3)(5)$也不成立.

下面给出$T$满足Browder定理与$\sigma_{gk}(T)=\emptyset$的等价条件.

定理2.4  $\sigma_{gk}(T)=\emptyset$当且仅当$T$满足Browder定理且$\sigma_b(T)\cap\sigma_{gd}(T)=\emptyset$.

  $\Rightarrow)$$\sigma_{gk}(T)=\emptyset$,由定理2.3可知, $T$满足Browder定理.又由文献[7,定理3.2.17]可知, $\sigma_{gd}(T)=\emptyset$,即有$\sigma_b(T)\cap\sigma_{gd}(T)=\emptyset$.

$\Leftarrow)$由于$T$满足Browder定理,则$\Pi^0(T)=\sigma(T)\setminus\sigma_w(T)\subseteq\rho_{gk}(T)$.$\sigma_b(T)\cap\sigma_{gd}(T)=\emptyset$,则$\sigma_b(T)\subseteq\rho_{gd}(T)$.又因$\rho_{gd}(T)\subseteq\rho_{gk}(T)$,所以$\sigma_b(T)\subseteq\rho_{gk}(T)$.显然$\rho(T)\subseteq\rho_{gk}(T)$.又由$\Pi^0(T)=\sigma(T)\setminus\sigma_b(T)$,所以

因此, $\rho_{gk}(T)={\Bbb C}$,即$\sigma_{gk}(T)=\emptyset$.

下面进一步利用$\sigma_{gk}(T)$来得到$T$满足Browder定理和Weyl定理的充要条件.

定理2.5  设$T\in L(X)$,则下列叙述等价:

$(1)$$T$满足Browder定理;

$(2)$$\sigma_{b}(T)=[\sigma_{gk}(T)\cap acc\sigma(T)]\cup int\sigma_w(T)\cup\{\lambda\in{\Bbb C}: \alpha(\lambda I-T)=\infty\}\cup\{\lambda\in{\Bbb C}: R(\lambda I-T)$不闭$\}$;

$(3)$$\sigma_{b}(T)\subseteq[\sigma_{gk}(T)\cap acc\sigma(T)]\cup int\sigma_w(T)\cup\{\lambda\in{\Bbb C}: \alpha(\lambda I-T)=\infty\}\cup\{\lambda\in{\Bbb C}: R(\lambda I-T)$不闭$\}$.

  $(1)\Rightarrow(2)$$T$满足Browder定理,即有$\sigma_b(T)=\sigma_w(T)$.显然$[\sigma_{gk}(T)\cap acc\sigma(T)]\cup int\sigma_w(T)\cup\{\lambda\in{\Bbb C}: \alpha(\lambda I-T)=\infty\}\cup\{\lambda\in{\Bbb C}: R(\lambda I-T)$不闭$\}\subseteq\sigma_w(T)=\sigma_b(T)$.

反之,设$\lambda_0\notin[\sigma_{gk}(T)\cap acc\sigma(T)]\cup int\sigma_w(T)\cup\{\lambda\in{\Bbb C}: \alpha(\lambda I-T)=\infty\}\cup\{\lambda\in{\Bbb C}: R(\lambda I-T)$不闭$\}$,则$\lambda_0\in\rho_w(T)\cup\partial\sigma_w(T)$, $\alpha(\lambda_0 I-T) < \infty$$R(\lambda_0 I-T)$闭,从而$\lambda_0 I-T$是上半Fredholm算子.下面对$\lambda_0\notin \sigma_{gk}(T)\cap acc\sigma(T)$分两种情形讨论:

情形1    $\lambda_0\notin\sigma_{gk}(T)$, $\lambda_0\in\rho_w(T)\cup\partial\sigma_w(T)$$\lambda_0 I-T$是上半Fredholm算子.

$\lambda_0\in\rho_w(T)$,因$\sigma_w(T)=\sigma_b(T)$,则$\lambda_0\notin\sigma_b(T)$.

$\lambda_0\in\partial\sigma_w(T)$,因$\sigma_b(T)=\sigma_w(T)$,由定理2.1的证明过程可知, $\lambda_0\in\partial\sigma(T)$.

$\lambda_0\notin\sigma_{gk}(T)$,由文献[7,推论3.1.12]知, $\lambda_0\in iso\sigma(T)$.又因$\lambda_0 I-T$是上半Fredholm算子,由文献[1,定理2.66]可知, $\lambda_0 I-T$是Browder算子,即$\lambda_0\notin\sigma_b(T)$.

情形2   $\lambda_0\notin acc\sigma(T)$, $\lambda_0\in\rho_w(T)\cup\partial\sigma_w(T)$$\lambda_0 I-T$是上半Fredholm算子.

$\lambda_0\notin\sigma(T)$,显然$\lambda_0\notin\sigma_b(T)$.$\lambda_0\in\sigma(T)$,则$\lambda_0\in iso\sigma(T)$,由情形1的证明过程可知, $\lambda_0\notin\sigma_b(T)$.

由情形1和情形2知, $\sigma_{b}(T)\subseteq[\sigma_{gk}(T)\cap acc\sigma(T)]\cup int\sigma_w(T)\cup\{\lambda\in{\Bbb C}: \alpha(\lambda I-T)=\infty\}\cup\{\lambda\in{\Bbb C}: R(\lambda I-T)$不闭$\}$.

$(2)\Rightarrow(3)$显然成立.

$(3)\Rightarrow(1)$显然$\sigma_w(T)\subseteq\sigma_b(T)$,又因$\sigma_b(T)\subseteq[\sigma_{gk}(T)\cap acc\sigma(T)]\cup int\sigma_w(T)\cup\{\lambda\in{\Bbb C}: \alpha(\lambda I-T)=\infty\}\cup\{\lambda\in{\Bbb C}: R(\lambda I-T)$不闭$\}\subseteq\sigma_w(T)$,即有$\sigma_b(T)\subseteq\sigma_w(T)$.因此, $\sigma_w(T)=\sigma_b(T)$,即$T$满足Browder定理.

定理2.6  设$T\in L(X)$,则下列叙述等价:

$(1)$$T$满足Weyl定理;

$(2)$$\sigma_{b}(T)=[\sigma_{gk}(T)\cap acc\sigma(T)]\cup int\sigma_w(T)\cup\{\lambda\in\sigma(T): \alpha(\lambda I-T)=\infty$$\alpha(\lambda I-T)=0\}$;

$(3)$$\sigma_{b}(T)\subseteq[\sigma_{gk}(T)\cap acc\sigma(T)]\cup int\sigma_w(T)\cup\{\lambda\in{\Bbb C}: \alpha(\lambda I-T)=\infty$$\alpha(\lambda I-T)=0\}$.

  $(1)\Rightarrow(2)$$T$满足Weyl定理,则$T$满足Browder定理,即有$\sigma_b(T)=\sigma_w(T)$.于是,显然$[\sigma_{gk}(T)\cap acc\sigma(T)]\cup int\sigma_w(T)\cup\{\lambda\in\sigma(T): \alpha(\lambda I-T)=\infty$$\alpha(\lambda I-T)=0\}\subseteq\sigma_w(T)=\sigma_b(T)$.

$\lambda_0\notin[\sigma_{gk}(T)\cap acc\sigma(T)]\cup int\sigma_w(T)\cup\{\lambda\in\sigma(T): \alpha(\lambda I-T)=\infty$$\alpha(\lambda I-T)=0\}$,若$\lambda_0\notin\sigma(T)$,则$\lambda_0\notin\sigma_b(T)$.不妨设$\lambda_0\in\{\lambda\in{\Bbb C}: 0 < \alpha(\lambda I-T) < \infty\}$.分两种情形讨论:

情形1  $\lambda_0\notin\sigma_{gk}(T)$, $\lambda_0\in\rho_w(T)\cup\partial\sigma_w(T)$$0 < \alpha(\lambda_0 I-T) < \infty$.

$\lambda_0\in\rho_w(T)$,因$\sigma_w(T)=\sigma_b(T)$,则$\lambda_0\notin\sigma_b(T)$.

$\lambda_0\in\partial\sigma_w(T)$,因$\sigma_b(T)=\sigma_w(T)$,由定理2.1的证明过程可知, $\lambda_0\in\partial\sigma(T)$.$\lambda_0\notin\sigma_{gk}(T)$,由文献[7,推论3.1.12]可知, $\lambda_0\in iso\sigma(T)$.又因$0 < \alpha(\lambda_0 I-T) < \infty$,则$\lambda_0\in E^0(T)$.由于$T$满足Weyl定理,所以$\lambda_0\notin\sigma_w(T)=\sigma_b(T)$.

情形2  $\lambda_0\notin acc\sigma(T)$, $\lambda_0\in\rho_w(T)\cup\partial\sigma_w(T)$$0 < \alpha(\lambda_0 I-T) < \infty$.

$\lambda_0\notin\sigma(T)$,显然$\lambda_0\notin\sigma_b(T)$.$\lambda_0\in\sigma(T)$,则$\lambda_0\in iso\sigma(T)$,由情形1的证明过程可知, $\lambda_0\notin\sigma_b(T)$.

由情形1和情形2知, $\sigma_{b}(T)\subseteq[\sigma_{gk}(T)\cap acc\sigma(T)]\cup int\sigma_w(T)\cup\{\lambda\in\sigma(T): \alpha(\lambda I-T)=\infty$$ \alpha(\lambda I-T)=0\}.$

$(2)\Rightarrow(3)$显然成立.

$(3)\Rightarrow(1)$由于$\{[\sigma(T)\setminus\sigma_w(T)]\cup E^0(T)\}\cap\{[\sigma_{gk}(T)\cap acc\sigma(T)]\cup int\sigma_w(T)\cup\{\lambda\in{\Bbb C}: \alpha(\lambda I-T)=\infty$$\alpha(\lambda I-T)=0\}\}=\emptyset$,则$\{[\sigma(T)\setminus\sigma_w(T)]\cup E^0(T)\}\cap\sigma_b(T)=\emptyset$,从而$[\sigma(T)\setminus\sigma_w(T)]\cap\sigma_b(T)=\emptyset$$E^0(T)\cap\sigma_b(T)=\emptyset$,所以$\sigma_w(T)=\sigma_b(T)$$E^0(T)\subseteq\sigma(T)/\sigma_w(T)$.又因$\sigma(T)/\sigma_w(T)=\sigma(T)\setminus\sigma_b(T)=\Pi^0(T)\subseteq E^0(T)$,所以$\sigma(T)/\sigma_w(T)=E^0(T)$,即$T$满足Weyl定理.

$T\in L(X)$,称$T$是isoloid算子,若$iso\sigma(T)\subseteq E(T)$.

推论2.1  $T$$isoloid$算子且满足Weyl定理当且仅当$\sigma_{b}(T)=[\sigma_{gk}(T)\cap acc\sigma(T)]\cup int\sigma_w(T)\cup\{\lambda\in{\Bbb C}: \alpha(\lambda I-T)=\infty\}$.

   $\Rightarrow)$$T$$isoloid$算子且满足Weyl定理,由定理2.6知, $\sigma_{b}(T)=[\sigma_{gk}(T)\cap acc\sigma(T)]\cup int\sigma_w(T)\cup\{\lambda\in\sigma(T): \alpha(\lambda I-T)=\infty$$\alpha(\lambda I-T)=0\}=[\sigma_{gk}(T)\cap acc\sigma(T)]\cup int\sigma_w(T)\cup\{\lambda\in{\Bbb C}: \alpha(\lambda I-T)=\infty\}\cup\{\lambda\in\sigma(T): \alpha(\lambda I-T)=0\}$.下面证明: $\{\lambda\in\sigma(T): \alpha(\lambda I-T)=0\}\subseteq[\sigma_{gk}(T)\cap acc\sigma(T)]\cup int\sigma_w(T)$.

$\lambda_0\notin[\sigma_{gk}(T)\cap acc\sigma(T)]\cup int\sigma_w(T)$,由$\lambda_0\notin int\sigma_w(T)$,有$\lambda_0\in\rho_w(T)\cup\partial\sigma_w(T)$.$\lambda_0\in\rho_w(T)$,显然$\lambda_0\notin\{\lambda\in\sigma(T): \alpha(\lambda I-T)=0\}$.$\lambda_0\in\partial\sigma_w(T)$,因$T$满足Weyl定理,则$T$满足Browder定理,即有$\sigma_b(T)=\sigma_w(T)$.由定理2.1的证明过程可知, $\lambda_0\in\partial\sigma(T)$.又由$\lambda_0\notin\sigma_{gk}(T)\cap acc\sigma(T)$,下面分两种情形讨论:

情形1  当$\lambda_0\notin acc\sigma(T)$时,若$\lambda_0\notin\sigma(T)$,则$\lambda_0\notin\{\lambda\in\sigma(T): \alpha(\lambda I-T)=0\}$.$\lambda_0\in\sigma(T)$,有$\lambda_0\in iso\sigma(T)$,因$T$是isoloid算子,则$\alpha(\lambda_0 I-T)>0$,所以$\lambda_0\notin\{\lambda\in\sigma(T): \alpha(\lambda I-T)=0\}$.

情形2  若$\lambda_0\notin\sigma_{gk}(T)$,因$\lambda_0\in\partial\sigma(T)$,由文献[7,推论3.1.12]可知, $\lambda_0\in iso\sigma(T)$.同情形1的证明过程可知, $\lambda_0\notin\{\lambda\in\sigma(T): \alpha(\lambda I-T)=0\}$.

因此

所以

$\Leftarrow)$$\sigma_{b}(T)=[\sigma_{gk}(T)\cap acc\sigma(T)]\cup int\sigma_w(T)\cup\{\lambda\in{\Bbb C}: \alpha(\lambda I-T)=\infty\}$,由定理2.6可知, $T$满足Weyl定理,下面证明$T$是isoloid算子.

对任意的$\lambda\in iso\sigma(T)$,若$\alpha(\lambda I-T)=0$,则$\lambda\notin[\sigma_{gk}(T)\cap acc\sigma(T)]\cup int\sigma_w(T)\cup\{\lambda\in{\Bbb C}: \alpha(\lambda I-T)=\infty\}=\sigma_b(T)$.又因$T$满足Weyl定理,则$T$满足Browder定理,即有$\lambda\notin\sigma_b(T)=\sigma_w(T)$,所以$\lambda I-T$是Weyl算子.又由于$\alpha(\lambda I-T)=0$,则$\lambda I-T$可逆,这与$\lambda\in iso\sigma(T)$矛盾.因此, $\alpha(\lambda I-T)>0$,即$T$是isoloid算子.

参考文献

Aiena P. Semi-Fredholm Operators, Perturbation Theory and Localized SVEP. Merida: Venezuela, 2007

[本文引用: 6]

Dounford N .

Spectral theory. Ⅱ. Resolutions of the identity

Pacific Journal of Mathematics, 1952, 2 (4): 559- 614

DOI:10.2140/pjm      [本文引用: 1]

Dounford N .

Spectral operators

Pacific Journal of Mathematics, 1954, 4 (3): 321- 354

DOI:10.2140/pjm      [本文引用: 1]

Coburn L A .

Weyl's theorem for nonnormal operators

Michigan Mathematical Journal, 1966, 13 (3): 285- 288

DOI:10.1307/mmj/1031732778      [本文引用: 1]

Harte R , Lee W Y .

Another note on Weyl's theorem

Transactions of the American Mathematical Society, 1997, 349 (5): 2115- 2124

DOI:10.1090/S0002-9947-97-01881-3      [本文引用: 1]

Koliha J J .

A generalized Drazin inverse

Glasgow Mathematcial Journal, 1996, 38 (3): 367- 381

DOI:10.1017/S0017089500031803      [本文引用: 1]

江樵芬.两类算子与局部谱理论[D].福州:福建师范大学, 2010

[本文引用: 8]

Jiang Q F. Two Classes of Operators and Local Spectral Theory[D]. Fuzhou: Fujian Normal University, 2010

[本文引用: 8]

Grabiner S .

Uniform ascent and descent of bounded operators

Journal of the Mathematical Society of Japan, 1982, 34 (2): 172- 175

URL     [本文引用: 1]

/