数学物理学报, 2019, 39(2): 329-338 doi:

论文

纯位移线弹性方程Locking-Free非协调三棱柱单元的构造分析

孙艳萍,1, 陈绍春2

A Nonconforming Locking-Free Triangular Prism Element Analysis for Linear Elasticity Problem

Sun Yanping,1, Chen Shaochun2

通讯作者: 孙艳萍, E-mail: yanpingsun2007@126.com

收稿日期: 2017-10-12  

基金资助: 国家自然科学基金.  11701522
河南省教育厅科学技术研究重点项目.  17A110017

Received: 2017-10-12  

Fund supported: the NSFC.  11701522
the Science and Technology Research Program of Education Department of Henan Province.  17A110017

摘要

主要构造了三维空间中线弹性问题纯位移变分形式下无闭锁三棱柱单元.此单元是具有18个自由度的非协调元.单元的形函数满足位移的散度属于零次多项式空间,通过分析得到有限元解和真解误差的能量模具有一阶收敛性,L2模具有二阶收敛性.

关键词: 平面弹性问题 ; 非协调单元 ; 三棱柱单元 ; Strong引理 ; Lamé常数

Abstract

This paper discuss the linear elasticity problem and constructs a nonconforming triangular prism element with 18 degrees of freedom. The shape functions of this element satisfy that the divergence of displacement is zeroth polynomial. We can deduce that the energy norm has the first order convergence rate and the L2 norm has the second order convergence rate.

Keywords: Planar elasticity problem ; Nonconforming element ; Triangular prism element ; Strong lemma ; Lamé constant

PDF (393KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

孙艳萍, 陈绍春. 纯位移线弹性方程Locking-Free非协调三棱柱单元的构造分析. 数学物理学报[J], 2019, 39(2): 329-338 doi:

Sun Yanping, Chen Shaochun. A Nonconforming Locking-Free Triangular Prism Element Analysis for Linear Elasticity Problem. Acta Mathematica Scientia[J], 2019, 39(2): 329-338 doi:

1 引言

对于各向同性,均匀介质的平面弹性问题,当Lamé常数$\lambda\rightarrow \infty$时,弹性材料是几乎不可压的,此时的协调有限元会产生闭锁现象[1-5],即有限元解往往不能很好的收敛到原问题的真解,或者不能得到最优的收敛阶.产生此现象的原因是误差估计的系数中含有$\lambda$,不可压条件下误差估计会趋向于无穷.为了克服闭锁现象,需要构造满足特殊条件的单元,使得当单元剖分足够细时,对任意$\lambda$仍然能够一致收敛.

对于此问题的研究与讨论,之前有一些工作.文献[2-3, 6-8]讨论了纯应力边界条件的弹性问题,构造了满足第二类离散Korn不等式的有限元空间,并借助于混合有限元方法分析其收敛性.其中文献[2, 6]构造了三角形单元,文献[3, 7]构造了矩形单元,文献[8]构造了NRQ$_1$元.但是对于纯位移问题, Korn不等式不是构造Locking-free单元的必须条件.利用插值算子的散度满足散度的$L^2$投影,文献[1]通过三角非协调C-R元,对纯位移问题通过扩展有限元空间的分析方法得到误差估计,文献[1, 3]同时也讨论了纯应力问题的Locking-free单元,并对纯应力问题证明了Korn不等式.利用降阶积分的方法[9]构造了矩形高次元和一次三角形元.文献[10]构造了一次四边形单元,在误差分析中采用将大单元分割成小单元的棋盘模式得到最优收敛阶.文献[11]给出了构造Locking-free单元的新途径,并且按照文中的方法构造了一个矩形元.文献[12]在[11]基础上构造了一个最低阶的矩形Locking-free单元.文献[13]在三维空间讨论了弹性Locking-free四面体单元.文献[14]构造了形函数空间具有高阶项的矩形各向异性单元.文献[15]通过引入补充空间和新技巧构造了非协调具有各向异性的矩形元.文献[16-17]构造了位移散度属于$P_1$的多项式空间,且能量模具有二阶收敛, $L^2$模具有三阶收敛的三角形和矩形Locking-free单元.文献[18]利用双参数方法构造四面体单元并且通过后处理算子得到四边形单元的超收敛结果.

本文以弹性纯位移变分问题为基础构造了三维的三棱柱单元并且证明了单元的适定性,得到能量模具有一阶收敛性, $L^2$模具有二阶收敛性.

2 基本问题和概念

本文中, $X$是剖分单元$K$, $\hat{K}$或整个区域$\Omega$. $\|\cdot\|_{0, \, X}$定义$L^2(X)$空间中的范数, $H^k(X)$空间中函数的$k$阶导数属于$L^2(X)$,其上的范数和半范数定义为$\parallel \cdot \parallel_{k, \, X}$$|\cdot|_{k, \, X}$,即

$D^{\alpha} u$是函数$u$的弱导数. $H^k_0(X)$定义函数$v\in H^k(X)$$v\mid_{\partial X}=0$.在三维空间中定义三维向量$\vec{u}\in(L^2(X))^3$,其中每一个分量均是$L^2(X)$中的元素.类似的$(H^k(X))^3$中每一个分量均属于$H^k(X)$. $P_{k}(X)$$X$上的次数不超过$k$次的多项式空间. $\vec{u}$表示三维向量函数, $\vec{n}$表示单元的外法向分量. $\operatorname{div} \vec{u}$表示向量的散度,且$\operatorname{div} \vec{u}=\frac{\partial\vec{u}}{\partial x}+\frac{\partial\vec{u}}{\partial y}+\frac{\partial\vec{u}}{\partial z}.$

本文讨论的基本问题是均匀介质各向同性材料的纯位移平面弹性问题.令$\Omega\subset R^3$是凸区域,位移$\vec{u}=(u_1, \, u_2, \, u_3)\in(H^2(\Omega))^3$,满足

$\begin{equation}\label{2.1} \left\{\begin{array}{ll} -\mu\vartriangle\vec{u}-(\mu+\lambda){\rm grad}(\operatorname{div}\vec{u}) = \vec{f}, & {\rm in} \ \Omega, \\ \vec{u}=0, & {\rm on} \ \partial\Omega. \end{array}\right.\end{equation}$

其中$\vec{f}\in(L^2(\Omega))^3, \, (\mu, \, \lambda)\in\, [\mu_1, \mu_2]\times(0, \, +\infty)$是Lamé常数,且$0 < \mu_1 < \mu_2$.

对应(2.1)变分问题:求$\vec{u}\in (H_0^1(\Omega))^3$满足

$\begin{equation}\label{2.2} a(\vec{u}, \, \vec{v})=(\vec{f}, \, \vec{v}), \quad\forall \vec{v}\in\, (H_0^1(\Omega))^3.\end{equation}$

其中

$ \begin{eqnarray}\label{2.3} a(\vec{u}, \, \vec{v})&=&\int_{\Omega}[\mu\nabla\vec{u}\, :\, \nabla\vec{v}+(\mu+\lambda)\operatorname{div}\vec{u}\cdot \operatorname{div}\vec{v}]{\rm d}x, \\ (\vec{f}, \, \vec{v})&=&\int_{\Omega}\vec{f}\cdot\vec{v}{\rm d}x. \end{eqnarray}$

显然由Korn不等式可知任意$\vec{v}\in(H_0^1(\Omega))^3$

$\begin{equation}\label{2.4} a(\vec{v}, \, \vec{v})=\mu|\vec{v}|^{2}_{1, \, \Omega}+(\mu+\lambda)\|\operatorname{div} \vec{v} \|^{2}_{0, \, \Omega}\geq \alpha\|\vec{v}\|^{2}_{1, \, \Omega}, \end{equation}$

由Lax-milgram定理可以得到上述变分问题有唯一解.

3 三棱柱单元构造

$\Gamma_h$是三维空间$\Omega$的拟一致三棱柱剖分,且$\bar{\Omega}=\bigcup\limits_{K\in \Gamma_h}K$.三棱柱的上下两个平行的面与坐标面$z=0$平行.其它三个侧面与$z$轴平行.

$a_i(x_i, \, y_i, \, z_i)(K)\, (i=1, \cdots, 6)$$F_j(K)\, (j=1, \cdots, 5)$分别是单元$K$的顶点和外表面.令$\hat{K}$ (图 1)是参考单元,其坐标轴设为$\xi, \, \eta, \, \zeta$分别对应坐标轴$x, \, y, \, z$. $\hat{F}_j\, (j=1, \, \cdots, \, 5), \, \hat{a}_i\, (i=1, \, \cdots, \, 6)$分别是参考单元的顶点和面,令$h=\max\limits_{K\in \Gamma_h}h_K$.参考单元顶点坐标$\hat{a}_i$ (图 1).

图 1

图 1   三棱柱参考单元


在参考单元$\hat{K}$上定义多项式空间如下

$ \begin{eqnarray}\label{3.2}\vec{\hat{P}}\triangleq \{(P_1(\hat{K}))^3\oplus(\zeta^2-\xi\zeta)\vec{p}_0\oplus(\eta^2-\xi\eta)\vec{q}_0\oplus(\xi^2-\xi\zeta)\vec{r}_0;\, \, \vec{p}_0, \, \vec{q}_0, \, \vec{r}_0\in \mathbb{R}^3\}, \end{eqnarray}$

其中$(P_1(\hat{K}))^3$$R^3$中各个分量次数不超过一次的多项式空间,形函数空间定义如下

$\begin{equation}\label{3.3}\hat{P}(\hat{K})\triangleq \{\vec{\hat{v}}|\vec{\hat{v}}\in\vec{\hat{P}}, \, \operatorname{div}\vec{\hat{v}}\in P_0(\hat{K})\}, \end{equation}$

则有dim$\hat{P}(\hat{K})=3\times 4+9-3=18$.

定理3.1   参考单元上的自由度定义如下

$\left\{\begin{array}{l}{\text { (i) } \frac{1}{\left|\hat{F}_{i}\right|} \int_{\hat{F}_{i}} \overrightarrow{\hat{v}} \mathrm{d} \hat{f}, \quad i=1, \cdots, 5} \\ {\text { (ii) } \frac{1}{|\hat{K}|} \int_{\tilde{K}} \vec{v} \mathrm{d} \hat{x}}\end{array}\right.$

其中$\vec{\hat{v}}\in \hat{P}(\hat{K})$由(3.3)式唯一决定.

  三棱柱的五个外表面的方程分别为$\hat{F}_1:\zeta=1, \, \hat{F}_2:\zeta=0, \, \hat{F}_3:\xi=0, \, \hat{F}_4:\eta=0, \, \hat{F}_5:1-\xi-\eta=0.$

$\begin{eqnarray}\label{3.5.1} \vec{\hat{v}}&= &\left(\begin{array}{ccc} \alpha_0+\alpha_1\xi+\alpha_2\eta+\alpha_3\zeta\\ \beta_0+\beta_1\xi+\beta_2\eta+\beta_3\zeta\\ \gamma_0+\gamma_1\xi+\gamma_2\eta+\gamma_3\zeta\\ \end{array}\right)+(\zeta^2-\xi\zeta)\left(\begin{array}{ccc}p_1 \\p_2\\p_3\\ \end{array}\right)\\& &+(\eta^2-\xi\eta)\left(\begin{array}{ccc}q_1 \\q_2\\q_3\\ \end{array}\right)+(\xi^2-\xi\zeta)\left(\begin{array}{ccc}r_1 \\r_2\\r_3\\ \end{array}\right). \end{eqnarray}$

由(3.3)式的第(ⅰ)个自由度和形函数空间(3.4)定义,可以得到下面的方程

同理在另外四个面上积分得下面四个方程

$ \begin{eqnarray}\label{3.6} \int_{\hat{F}_2}\hat{v}_1{\rm d}\hat{f}&=&\frac{1}{2}\alpha_0 +\frac{1}{6}\alpha_1+\frac{1}{6}\alpha_2+\frac{1}{24}q_1+\frac{1}{12}r_1, \\ \int_{\hat{F}_3}\hat{v}_1{\rm d}\hat{f}&=&\alpha_0 +\frac{1}{2}\alpha_2+\frac{1}{2}\alpha_3+\frac{1}{3}p_1+\frac{1}{3}q_1, \\ \int_{\hat{F}_4}\hat{v}_1{\rm d}\hat{f}&=&\alpha_0 +\frac{1}{2}\alpha_1+\frac{1}{2}\alpha_3+\frac{1}{12}p_1+\frac{1}{12}r_1, \\ \int_{\hat{F}_5}\hat{v}_1{\rm d}\hat{f}&=&\sqrt{2} \bigg (\alpha_0+\frac{1}{2}\alpha_1+\frac{1}{2}\alpha_2+\frac{1}{2}\alpha_3+\frac{1}{12}p_1+\frac{1}{6}q_1+\frac{1}{12}r_1\bigg). \end{eqnarray}$

同理,对$\hat{v}_2, \, \hat{v_3}$采用同样的方法对三棱柱的各个面分别计算,可以得到另外两组类似于(3.5)式的方程组.再根据(3.3)式的第(ⅱ)个自由度,有

$\begin{eqnarray}\label{3.7} \int_{\hat{K}_1}\hat{v}_1{\rm d}\hat{V}&=&\int_{0}^{1} {\rm d}\zeta\int_{0}^{1}{\rm d}\xi\int_{0}^{1-\xi}\hat{v}_1{\rm d}\eta=\frac{1}{2}\alpha_0 +\frac{1}{6}\alpha_1+\frac{1}{6}\alpha_2+\frac{1}{4}\alpha_3+\frac{1}{12}p_1+\frac{1}{24}q_1, \\ \int_{\hat{K}_1}\hat{v}_2{\rm d}\hat{V}&=&\frac{1}{2}\beta_0 +\frac{1}{6}\beta_1+\frac{1}{6}\beta_2+\frac{1}{4}\beta_3+\frac{1}{12}p_2+\frac{1}{24}q_2, \\ \int_{\hat{K}_1}\hat{v}_3{\rm d}\hat{V}&=&\frac{1}{2}\gamma_0 +\frac{1}{6}\gamma_1+\frac{1}{6}\gamma_2+\frac{1}{4}\gamma_3+\frac{1}{12}p_3+\frac{1}{24}q_3. \end{eqnarray}$

对(3.4)式定义的多项式求偏导数,得

$\begin{eqnarray}\label{3.8}\frac{\partial \hat{v}_1}{\partial \xi}&=&\alpha_1-\zeta p_1-\eta q_1+(2\xi-\zeta)r_1, \\\frac{\partial \hat{v}_2}{\partial \eta}&=&\beta_2+(2\eta-\xi)q_2, \\\frac{\partial \hat{v}_3}{\partial \zeta}&=&\gamma_3+(2\zeta-\xi)p_3-\xi r_3. \end{eqnarray}$

由(3.2)式定义的形函数空间的约束条件div$ \vec{\hat{v}}\in P_0(\hat{K})$,得到下面三个方程

$\begin{eqnarray}\label{3.9}&&2r_1-q_2-p_3-r_3=0, \\&&-q_1+2q_2=0, \\&&-p_1-r_1+2p_3=0. \end{eqnarray}$

计算由(3.5)式, (3.6)和(3.8)式构成的21个方程组成的方程组,可以得到矩阵的阶数也是21,即方程组有唯一解.也即形函数空间(3.2)可以由(3.3)式定义的自由度唯一确定.

定义仿射变换$F_K: \, \hat{K}\rightarrow K$,且

$\begin{equation}\label{3.10}X=B\hat{X}+X_1, \end{equation}$

其中$\hat{a}_i\rightarrow a_i$, $X_1$指顶点a1的坐标.计算可得

对向量值函数采用Piola变换$\vec{v}=B\vec{\hat{v}}\cdot F^{-1}_K$,定义梯度算子

$\begin{equation}\hat{\nabla}=\bigg(\displaystyle\frac{\partial}{\partial \xi}, \, \displaystyle\frac{\partial}{\partial \eta}, \, \displaystyle\frac{\partial}{\partial \zeta}\bigg)'=\hat{\rm grad}, \, \quad\nabla=\bigg(\displaystyle\frac{\partial}{\partial x}, \, \displaystyle\frac{\partial}{\partial y}, \displaystyle\frac{\partial}{\partial z}\bigg)'={\rm grad}, \label{3.11}\end{equation}$

由梯度算子的定义有$\hat{\nabla}=B^T\nabla$,因为

定义一般单元$K$上的形函数空间如下

$\begin{equation}\label{3.12}P(K)=\{\vec{v}=B\vec{\hat{v}}\cdot F^{-1}_K, \quad \forall \vec{\hat{v}}\in \hat{P}(\hat{K})\}, \end{equation}$

定义插值算子$\Pi_K:\, (H^1(K))^3\rightarrow P(K)$$\hat{\Pi}_{\hat{K}}:\, (H^1(\hat{K}))^3\rightarrow \hat{P}(\hat{K})$,且

$\begin{equation}\label{3.13}\Pi_K \vec{v}=B\hat{\Pi}_{\hat{K}} \vec{\hat{v}}\cdot F^{-1}_K, \end{equation}$

显然插值算子是仿射等价的.

对于任意$v\in(H^1(\Omega))^3$,定义$\Pi_h:\, \Pi_h\vec{v}|_K=\Pi_K\vec{v}$,定义一般单元上的形函数空间

$\begin{equation}\label{3.14} V_h=\bigg\{\vec{v}_h|_K\in P(K), \, \int_{F_i}[\vec{v}_h]{\rm d}f=0, \forall F_i\subset \partial K\bigg\}, \end{equation} $

由有限元空间定义可知$v_h\nsubseteq (H^1_0(\Omega))^3$,因此这里构造的单元是非协调元.

引理3.1   插值算子$\hat{\Pi}$保持一次多项式空间不变,即

$\begin{equation}\label{3.15} \hat{\Pi}\vec{\hat{p}}=\vec{\hat{p}}, \quad \forall \vec{\hat{p}}\in(P_1(\hat{K}))^3. \end{equation}$

引理3.2   对于任给$\vec{v}\in (H^1(\Omega))^3$,有$\operatorname{div} \vec{v}=\hat{\operatorname{div}}\vec{\hat{v}}$成立.

  由$\hat{\nabla}=B^T\nabla, $

证毕.

4 误差估计

接下来我们进行误差估计,方程(2.2)对应的离散有限元格式为:求$\vec{u}_h\in V_h$

$\begin{equation}\label{4.1} a_h(\vec{u}_h, \, \vec{v}_h)=(\vec{f}, \, \vec{v}_h), \quad\forall \vec{v}_h\in\, V_h, \end{equation}$

其中

$\begin{eqnarray}\label{4.2}a_h(\vec{u}_h, \, \vec{v}_h)&=&\sum\limits_{K\in \Gamma_h}\int_{K}[\mu\nabla\vec{u}_h\, :\, \nabla\vec{v}_h+(\mu+\lambda)\operatorname{div}\vec{u}_h\cdot \operatorname{div}\vec{v}_h]{\rm d}x, \\(\vec{f}, \, \vec{v}_h)&=&\int_{\Omega}\vec{f}\cdot\vec{v}_h{\rm d}x. \end{eqnarray}$

定义有限元空间$V_h$上的范数

$\begin{equation}\label{4.3}\|\vec{v}_h\|_h=(\mu|\vec{v}_h|_1^2+(\mu+\lambda)\|\operatorname{div} \vec{v}_h\|_0^2)^{\frac{1}{2}}=(a_h(\vec{v}_h, \, \vec{v}_h))^{\frac{1}{2}}, \end{equation}$

显然当$\|\vec{v}_h\|=0$时得到$\vec{v}_h=C$ (常数).再由有限元空间定义,在$\Omega$边界上有$\int_{\partial\Omega}[\vec{v}_h]{\rm d}f=0$,则可知$\vec{v}_h|_{\Omega}\equiv 0$.

引理4.1   设$L^2$投影算子$\Pi_{P_0}:\, L^2(K)\rightarrow P_0$满足$\int_K\Pi_{P_0}w{\rm d}x=\int_K w{\rm d}x$, $\forall w\in L^2(K)$,则有

$ \begin{equation}\label{4.4} \Pi_{P_0}\operatorname{div}\vec{v}=\operatorname{div}\Pi_K\vec{v}, \quad \forall\vec{v}\in H^1(K). \end{equation} $

  由单元$K$上自由度定义和Green公式,得

证毕.

引理4.2   定义$P_0\vec{v}=\frac{1}{|F_i|}\int_{F_i}\vec{v}{\rm d}F$,并且设$ L(\frac{\partial\vec{u}}{\partial\vec{n}})$$\frac{\partial\vec{u}}{\partial\vec{n}}$的分片常数插值.则

$ \begin{equation}\label{4.5} \sum\limits_{K\in\Gamma_h}\sum\limits_{i=1}^{5}\int_{F_i}L\bigg(\frac{\partial\vec{u}}{\partial\vec{n}}\bigg)(\vec{v}-P_0\vec{v}){\rm d}F=0. \end{equation} $

证毕.

定理4.1   令$\Gamma_h$$\Omega$的正则拟一致剖分,设$\vec{f}\in (L^2(\Omega))^3$,令$\vec{u}\in(H_0^1(\Omega))^3\cap (H^2(\Omega))^3$是连续问题$(2.1)$的解,且$\vec{u}_h\in V_h$是离散问题$(4.1)$的解,则有下述误差估计成立

$ \begin{equation}\label{4.6} \|\vec{u}-\vec{u}_h\|_h\leq ch(|\vec{u}|_{2, \, \Omega}+\lambda|\operatorname{div} \vec{u}|_{1, \, \Omega}). \end{equation}$

  由Strong引理

$\begin{equation}\label{4.7} \|\vec{u}-\vec{u}_h\|_h\leq \inf\limits_{\vec{v}\in V_h}\|\vec{u}-\vec{v}_h\|_h+\sup\limits_{\vec{v}\in V_h\setminus \{0\}}\frac{|a_h(\vec{u}, \vec{v}_h)-\int_{\Omega}\vec{f}\cdot \vec{v}_h{\rm d}x|}{\|\vec{v}_h\|_h}. \end{equation} $

首先讨论逼近误差,由于插值对一次多项式精确成立,所以有

$\begin{equation}\label{4.8} |\vec{u}-\Pi_h\vec{u}|_{1, \, K}\leq ch|\vec{u}|_{2, \, K}, \end{equation}$

再由引理4.1得

$\begin{equation}\label{4.9} \|\operatorname{div} (\vec{u}-\Pi_K\vec{u})\|_{0, \, K}=\|\operatorname{div} \vec{u}-\Pi_{P_0}\operatorname{div}\vec{u}\|_{0, \, K}\leq ch |\operatorname{div} \vec{u}|_{1, \, K}. \end{equation} $

由(4.7)-(4.9)式得逼近误差为

$ \begin{eqnarray}\label{4.10} \inf\limits_{\vec{v}\in V_h}\|\vec{u}-\vec{u}_h\|_h& \leq &\|\vec{u}-\Pi_h\vec{u}\|_h\\ &=&\sum\limits_{K\in\Gamma_h}(\mu|\vec{u}-\Pi_h\vec{u}|^2_{1, \, K}+(\mu+\lambda)\|\operatorname{div} (\vec{u}-\Pi_h\vec{u})\|^2_{0, \, K})^\frac{1}{2}\\ &\leq& ch(|\vec{u}|_{2, \, \Omega}+\lambda|\operatorname{div} \vec{u}|_{1, \, \Omega}), \end{eqnarray}$

这里的常数$c$与单元剖分尺度$h$无关.

接下来讨论相容误差, $\forall\vec{v}_h\in V_h$

$\begin{eqnarray}\label{4.11}a_h(\vec{u}, \, \vec{v}_h)-\int_{\Omega}\vec{f}\cdot \vec{v}_h{\rm d}x&=&\sum\limits_{K\in\Gamma_h}\int_{K}(\mu\nabla\vec{u}\, :\, \nabla\vec{v}_h+(\mu+\lambda)\operatorname{div}\vec{u}\; \operatorname{div}\vec{v}_h){\rm d}x-\int_{\Omega}\vec{f}\cdot \vec{v}_h{\rm d}x\\&=&\sum\limits_{K\in\Gamma_h}\int_{\partial K}\bigg(\mu \vec{v}_h\frac{\partial\vec{u}}{\partial \vec{n}}+(\mu+\lambda)\operatorname{div}\vec{u}\, \vec{v}_h\, \cdot\, \vec{n}\bigg){\rm d}F, \end{eqnarray}$

$\vec{w}=\frac{\partial\vec{u}}{\partial \vec{n}}, \, \forall\vec{v}_h\in V_h$,由迹定理,参考单元和一般单元的仿射变换(3.9)及引理4.2,得

$\begin{eqnarray}\label{4.12}\sum\limits_{K\in\Gamma_h}\int_{\partial K}\mu \vec{v}_h\frac{\partial\vec{u}}{\partial \vec{n}}{\rm d}F&=&\sum\limits_{K\in\Gamma_h}\sum\limits_{i=1}^5\int_{F_i}\mu(\vec{w}-L(\vec{w}))(\vec{v}_h-P_0(\vec{v}_h)){\rm d}F\\ &\leq &\sum\limits_{K\in\Gamma_h}\sum\limits_{i=1}^5\mu\|\vec{w}-L(\vec{w})\|_{0, \, F_i}\|\vec{v}_h-P_0(\vec{v}_h)\|_{0, \, F_i}\\ &\leq &\sum\limits_{K\in\Gamma_h}\mu h|\vec{w}|_{1, \, K}|\vec{v}_h|_{1, \, K}\\ &\leq &ch|\vec{u}|_{2, \, \Omega}\|\vec{v}_h\|_{h, \, \Omega}. \end{eqnarray} $

$\begin{eqnarray}\label{4.13} \sum\limits_{K\in\Gamma_h}\int_{\partial K}\operatorname{div}\vec{u}\, \vec{v}_h\, \cdot\, \vec{n}{\rm d}F&=&\sum\limits_{K\in\Gamma_h}\sum\limits_{i=1}^5\int_{F_i}(\operatorname{div}\vec{u}-L(\operatorname{div}\vec{u}))(\vec{v}_h-P_0\vec{v}_h)\cdot \vec{n}{\rm d}F\\ &\leq &\sum\limits_{K\in\Gamma_h}\sum\limits_{i=1}^5\|\operatorname{div} \vec{u}-L(\operatorname{div}\vec{u})\|_{0, \, F_i}\|\vec{v}_h-P_0\vec{v}_h\|_{0, \, F_i}\\ &\leq& ch|\operatorname{div} \vec{u}|_{1, \, \Omega}\|\vec{v}_h\|_{h, \, \Omega}. \end{eqnarray}$

由(4.11)-(4.13)式得

$\begin{equation}\label{4.14} \sup\limits_{\vec{v}\in V_h\setminus \{0\}}\frac{|a_h(\vec{u}, \, \vec{v})-\int_{\Omega}\vec{f}\cdot \vec{v}{\rm d}x|}{\|\vec{v}_h\|_h}\leq ch(|\vec{u}|_{2, \, \Omega}+\lambda|\operatorname{div} \vec{u}|_{1, \, \Omega}). \end{equation} $

综合(4.7), (4.10)和(4.14)式,得误差估计(4.6).

接下来我们证明关于位移的$L^2$模.

定理4.2   在定理4.1的条件下可得位移的$L^2$模估计

$\begin{equation}\label{4.15}\|\vec{u}-\vec{u}_h\|_{0, \, \Omega}\leq ch^2(|\vec{u}|_{2, \, \Omega}+\lambda|\operatorname{div} \vec{u}|_{1, \, \Omega}), \end{equation}$

其中$c$是与$h$$\lambda$无关的常数.

  方程(2.1)的对偶问题如下

$\begin{equation}\label{4.16} \left\{\begin{array}{ll} -\mu\vartriangle\vec{\phi}-(\mu+\lambda) {\rm grad}(\operatorname{div}\vec{\phi}) = \vec{g}, & {\rm in} \ \Omega, \\ \vec{\phi}=0, & {\rm on}\ \partial\Omega, \end{array}\right.\end{equation}$

其中$g\in (L^2(\Omega))^3$$\phi\in (H^1_0(\Omega))^3\cap (H^2(\Omega))^3$.则相应的变分问题为

$ \begin{equation}\label{4.17} a(\vec{v}, \, \vec{\phi})=\int_{\Omega}\vec{g}\cdot\vec{v}{\rm d}x, \quad \forall \vec{v}\in (H^1_0(\Omega))^3, \end{equation}$

这里双线性形$a(\cdot, \, \cdot)$的定义如(2.3)式.由正则性理论可知

$ \begin{equation}\label{4.18}\|\vec{\phi}\|_{2, \Omega}+\lambda\|\operatorname{div} \vec{\phi}\|_{1, \Omega}\leq c\|\vec{g}\|_{0, \Omega}.\end{equation}$

对应于(4.17)式的离散问题是求$\vec{\phi}_h\in V_h$满足

$ \begin{equation}\label{4.19} a_h(\vec{v}_h, \, \vec{\phi}_h)=\int_{\Omega}\vec{g}\cdot\vec{v}_h{\rm d}x, \quad \forall \vec{v}_h\in V_h.\end{equation}$

由定理4.1的证明可知

$\begin{equation}\label{4.20} \|\vec{\phi}-\vec{\phi}_h\|_h\leq ch(|\vec{\phi}|_{2, \Omega}+\lambda|\operatorname{div} \vec{\phi}|_{1, \, \Omega})\leq ch\|\vec{g}\|_{0, \, \Omega}. \end{equation} $

$L^2$模定义$ \|\vec{u}-\vec{u}_h\|_{0, \Omega}\leq \sup\limits_{\forall \vec{g}\in L^2(\Omega)}\frac{\langle \vec{u}-\vec{u}_h, \, \vec{g}\rangle }{\|\vec{g}\|_{0, \, \Omega}}, $

$\begin{eqnarray}\label{4.22} \langle \vec{u}-\vec{u}_h, \, \vec{g}\rangle &=&a(\vec{u}, \, \vec{\phi})-a_h(\vec{u}_h, \, \vec{\phi}_h)\\ &=&a_h(\vec{u}-\vec{u}_h, \, \vec{\phi}-\Pi_h\vec{\phi})+a_h(\vec{u}-\vec{u}_h, \, \Pi_h\vec{\phi})\\ &&+a_h(\vec{u}_h-\Pi_h\vec{u}_h, \, \vec{\phi}-\vec{\phi}_h)+a_h(\Pi_h\vec{u}_h, \, \vec{\phi}-\vec{\phi}_h). \end{eqnarray} $

下面我们逐项讨论(4.21)式中各部分.由定理4.1和(4.20)式,有

$\begin{eqnarray}\label{4.23} a_h(\vec{u}-\vec{u}_h, \, \vec{\phi}-\Pi_h\vec{\phi})&\leq&\|\vec{u}-\vec{u}_h\|_h\|\vec{\phi}-\Pi_h\vec{\phi}\|_h\\ &\leq &ch^2(|\vec{u}|_{2, \, \Omega}+\lambda|\operatorname{div} \vec{u}|_{1, \, \Omega})\|\vec{\phi}\|_{2, \, \Omega}\\ &\leq &ch^2(|\vec{u}|_{2, \, \Omega}+\lambda|\operatorname{div} \vec{u}|_{1, \, \Omega})\|\vec{g}\|_{0, \, \Omega}. \end{eqnarray}$

因为

$ \begin{eqnarray}\label{4.24} a_h(\vec{u}-\vec{u}_h, \, \Pi_h\vec{\phi})&=&a_h(\vec{u}, \, \Pi_h \vec{\phi})-a_h(\vec{u}_h, \, \Pi_h \vec{\phi})\\ &=&\sum\limits_{K\in\Gamma_h}\int_K \mu \nabla \vec{u}:\nabla \Pi_h\, \vec{\phi}+(\mu+\lambda)\operatorname{div} \vec{u}\, \operatorname{div} \Pi_h \vec{\phi}{\rm d}x-(f, \Pi_h \vec{\phi})\\ &=&\sum\limits_{K\in\Gamma_h}\bigg[\int_K(-\mu\triangle \vec{u}\, \cdot\, \Pi_h\, \vec{\phi}-(\mu+\lambda){\rm grad}(\operatorname{div} \vec{u})\, \cdot \, \Pi_h \vec{\phi}){\rm d}x\\& &+\int_{\partial K}(\mu\nabla \vec{u}\, \Pi_h \vec{\phi}+(\mu+\lambda)\operatorname{div} \vec{u}\, \Pi_h \vec{\phi})\cdot \vec{n}{\rm d}F\bigg]-(f, \Pi_h \vec{\phi})\\ &=&\sum\limits_{K\in\Gamma_h}\int_{\partial K}\mu\frac{\partial\vec{u}}{\partial\vec{n}}\, \Pi_h\vec{\phi}{\rm d}F+\int_{\partial K}(\mu+\lambda)\operatorname{div} \vec{u}\, \Pi_h \vec{\phi}\cdot\vec{n}{\rm d}F. \end{eqnarray}$

$\vec{w}=\frac{\partial\vec{u}}{\partial\vec{n}}$,由单元自由度定义可知

$ \begin{equation}\label{4.25} \int_{\partial K}L(\vec{w})(\vec{\phi}-\Pi _h \vec{\phi}){\rm d}F=L(\vec{w})\int_{\partial K}(\vec{\phi}-\Pi_h \vec{\phi}){\rm d}F=0. \end{equation} $

根据位移$\vec{u}$跨单元边界的连续性可得

$\begin{equation}\label{4.26} \sum\limits_{K\in\Gamma_h}\int_{F_i}\frac{\partial \vec{u}}{\partial \vec{n}}\, \vec{\phi} {\rm d}F=0. \end{equation} $

类似(4.12)和(4.13)式的分析可以推出

$ \begin{eqnarray}\label{4.27} \sum\limits_{K\in\Gamma_h}\int_{\partial K}\frac{\partial\vec{u}}{\partial\vec{n}}\, \Pi_h\vec{\phi}{\rm d}F &=&\sum\limits_{K\in\Gamma_h}\int_{\partial K} \bigg(\frac{\partial\vec{u}}{\partial\vec{n}}-L(\frac{\partial\vec{u}}{\partial\vec{n}})\bigg)(\vec{\phi}-\Pi_h\vec{\phi}){\rm d}F\\ &\leq& ch^2|\vec{u}|_{2, \, \Omega}\|\vec{g}\|_{0, \, \Omega}\end{eqnarray} $

$ \begin{eqnarray}\label{4.28} \sum\limits_{K\in\Gamma_h}\int_{\partial K}\operatorname{div} \vec{u}\, \Pi_h \vec{\phi}\cdot\vec{n}{\rm d}F&=&\sum\limits_{K\in\Gamma_h}\int_{\partial K}(\operatorname{div} \vec{u}-L(\operatorname{div} \vec{u}))\, (\vec{\phi}-\Pi_h \vec{\phi})\cdot\vec{n}{\rm d}F\\ &\leq& ch^2|\operatorname{div} \vec{u}|_{1, \, \Omega}\|\vec{g}\|_{0, \, \Omega}. \end{eqnarray} $

由(4.24)-(4.28)式得

$ \begin{equation}\label{4.29} a_h(\vec{u}-\vec{u}_h, \, \Pi_h\vec{\phi})\leq ch^2(|\vec{u}|_{2, \, \Omega}+\lambda|\operatorname{div} \vec{u}|_{1, \, \Omega})\|\vec{g}\|_{0, \, \Omega}\end{equation} $

$ \begin{equation}\label{4.30} a_h(\vec{\phi}-\vec{\phi}_h, \, \Pi_h\vec{u_h})\leq ch^2(|\vec{u}|_{2, \, \Omega}+\lambda|\operatorname{div} \vec{u}|_{1, \, \Omega})\|\vec{g}\|_{0, \, \Omega}, \end{equation}$

$ \begin{eqnarray}\label{4.31} a_h(\vec{u}-\vec{u}_h, \, \vec{\phi}-\vec{\phi}_h)&\leq&\|\vec{u}-\vec{u}_h\|_h\|\phi-\phi_h\|_h\\ &\leq &ch^2(|\vec{u}|_{2, \, \Omega}+\lambda|\operatorname{div} \vec{u}|_{1, \, \Omega})(|\vec{\phi}|_{2, \, \Omega}+\lambda|\operatorname{div} \vec{\phi}|_{1, \, \Omega})\\&\leq &ch^2(|\vec{u}|_{2, \, \Omega}+\lambda|\operatorname{div} \vec{u}|_{1, \, \Omega})\|\vec{g}\|_{0, \, \Omega}. \end{eqnarray} $

通过上述逐项分析得到(4.21)-(4.22), (4.28)-(4.30)式,代入$L^2$模定义可得结论.

参考文献

Brenner S C , Li Y S .

Linear finite element methods for planar linear elasticity

Mathematics of Computation, 1992, 59: 321- 330

DOI:10.1090/S0025-5718-1992-1140646-2      [本文引用: 3]

Falk R S .

Nonconforming finite element methods for the equations of linear elasticity

Mathematics of Computation, 1991, 57: 529- 550

DOI:10.1090/S0025-5718-1991-1094947-6      [本文引用: 2]

Chen S C , Zheng Y J , Mao S P .

New second order nonconforming triangular element for planar elasticity problems

Acta Mathematica Scientia, 2011, 31B (3): 815- 825

URL     [本文引用: 3]

Babuška I , Suri M .

Locking effects in the finite element approximation of elasticity problems

Numer Math, 1992, 62 (1): 439- 464

DOI:10.1007/BF01396238     

Brenner S C , Scott L R . The Mathematical Theory of Finite Element Methods. New York: Springer-Verlag, 2002

[本文引用: 1]

Kouhia R , Stenberg R .

A linear nonconforming finite element method nearly incompressible elasticity and stokes flow

Comput Methods Appl Mech Engi, 1995, 124 (3): 195- 212

DOI:10.1016/0045-7825(95)00829-P      [本文引用: 2]

Zhang Z M .

Analysis of some quadrilateral nonconforming elements for incompressible elasticity

SIAM J Numer Anal, 1997, 34 (2): 640- 663

URL     [本文引用: 1]

明平兵.非协调元vs Locking问题[D].杭州:浙江大学, 1999

[本文引用: 2]

Ming P B. Nonconforming Finite Elements vs Locking Problem[D]. Hangzhou: Zhejiang University, 1999

[本文引用: 2]

Lee C O , Lee J , Sheen D .

A locking-free nonconforming finite element method for planar linear elasticity

Adv Comput Math, 2003, 19: 277- 291

DOI:10.1023/A:1022838628615      [本文引用: 1]

Cheng X L , Hong H C , Zou J .

Quadrilateral finite elements for planar linear elasticity problem with large Lamé constant

Journal of Computational Mathematics, 1998, 16: 357- 366

[本文引用: 1]

王烈衡, 齐禾.

关于纯位移边界条件的平面弹性问题Locking-Free有限元格式

计算数学, 2002, 24 (2): 243- 256

DOI:10.3321/j.issn:0254-7791.2002.02.011      [本文引用: 2]

Wang L H , Qi H .

On locking-free finite element schemes for the pure displacement boundary value problem in the planar elasticity

Mathematica Numerica Sinica, 2002, 24 (2): 243- 256

DOI:10.3321/j.issn:0254-7791.2002.02.011      [本文引用: 2]

Wang L H , Qi H .

A locking-free scheme of nonconforming rectangular finite element for the planar elasticity

Journal of Computational Mathematics, 2004, 22 (5): 641- 650

URL     [本文引用: 1]

Qi H , Wang L H , Zheng W Y .

On locking-free finite element schemes for three-dimensional elasticity

Journal of Computational Mathematics, 2005, 23 (1): 101- 112

URL     [本文引用: 1]

Shi D Y , Mao S P , Chen S C .

A locking-free anisotropic nonconforming finite element for planar linear elasticity problem

Acta Mathematica Scientia, 2007, 27B (1): 193- 202

URL     [本文引用: 1]

Shi D Y , Wang C X .

A locking-free anisotropic nonconforming rectangular finite element approximation for the planar elasticity problem

Appl Math J Chin Univ, 2008, 23 (1): 9- 18

DOI:10.1007/s11766-008-0102-7      [本文引用: 1]

陈绍春, 任国彪.

一个二阶收敛的平面弹性问题Locking-Free三角形元

工程数学学报, 2009, 26 (3): 509- 518

DOI:10.3969/j.issn.1005-3085.2009.03.019      [本文引用: 1]

Chen S C , Ren G B .

A locking-free triangular element with second-order convergence for the planar elasticity problem

Chinese Journal of Engineering Mathematics, 2009, 26 (3): 509- 518

DOI:10.3969/j.issn.1005-3085.2009.03.019      [本文引用: 1]

陈绍春, 肖留超.

平面弹性的一个新的Locking-Free非协调有限元

应用数学, 2007, 20 (4): 739- 747

DOI:10.3969/j.issn.1001-9847.2007.04.017      [本文引用: 1]

Chen S C , Xiao L C .

A new locking-free nonconforming finite element for the planar elasticity

Mathematica Applicata, 2007, 20 (4): 739- 747

DOI:10.3969/j.issn.1001-9847.2007.04.017      [本文引用: 1]

Sun H X , Xiao L C .

Locking-free DSP element for linear elasticity problem

Chinese Journal of Engineering Mathematics, 2011, 28 (1): 118- 128

URL     [本文引用: 1]

/