Processing math: 11%

数学物理学报, 2019, 39(2): 286-296 doi:

论文

含参数拟线性非齐次椭圆型方程的多重解

宋洪雪,1,2, 魏云峰2,3

Multiple Solutions for Quasilinear Nonhomogeneous Elliptic Equations with a Parameter

Song Hongxue,1,2, Wei Yunfeng2,3

通讯作者: 宋洪雪, E-mail: songhx@njupt.edu.cn

收稿日期: 2018-01-15  

基金资助: 国家自然科学基金.  61503198
中国博士后科学基金面上项目.  2017M611664
南京邮电大学校级科研基金.  NY217092
南京邮电大学校级科研基金.  NY218076

Received: 2018-01-15  

Fund supported: the NSFC.  61503198
the China Postdoctoral Science Foundations.  2017M611664
the NUPTSF.  NY217092
the NUPTSF.  NY218076

摘要

该文研究如下形式的拟线性非齐次椭圆型方程

pup(|u|2α)|u|2α2u+V(x)|u|p2u=h(u)+g(x),   xRN,

其中1<pN (N3), 12<α1, VC(RN,R), hC(R,R),而且扰动项gLp(RN),这里p=pp1.利用变量代换结合极小极大方法可以证明该问题存在多重解.

关键词: 拟线性椭圆型方程 ; Ekeland变分原理 ; P-S序列

Abstract

In this paper, we study the following quasilinear nonhomogeneous elliptic equations of the form

pup(|u|2α)|u|2α2u+V(x)|u|p2u=h(u)+g(x),   xRN,

where 1<pN (N3), 12<α1, VC(RN,R), hC(R,R) and gLp(RN), where p=pp1, is a disturbance term. Using a variable replacement and minimax method, we show the existence and multiplicity of solutions to this problem.

Keywords: Quasilinear elliptic equations ; Ekeland's variational principle ; Palais-Smale sequences

PDF (387KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

宋洪雪, 魏云峰. 含参数拟线性非齐次椭圆型方程的多重解. 数学物理学报[J], 2019, 39(2): 286-296 doi:

Song Hongxue, Wei Yunfeng. Multiple Solutions for Quasilinear Nonhomogeneous Elliptic Equations with a Parameter. Acta Mathematica Scientia[J], 2019, 39(2): 286-296 doi:

1 引言与主要结论

本文,我们研究下面的拟线性薛定谔方程

pup(|u|2α)|u|2α2u+V(x)|u|p2u=h(u)+g(x),   xRN,
(1.1)

其中pu=div(|u|p2u)p -拉普拉斯算子, N3, 1<pN,参数12<α1,VC(RN,R),且hC(R,R).由于比传统的非线性薛定谔方程增加了拟线性非凸项p(|u|2α)(|u|2α2u),所以方程(1.1)被称之为改进型非线性薛定谔方程.这类方程在许多数学物理问题中都有应用,参见文献[9].

对于齐次方程(1.1) (即g(x)=0的情形),当α=1, p=2时,其解是如下方程的驻波解

izt=z+W(x)z˜h(|z|2)zκ(l(|z|2))l(|z|2)z,
(1.2)

其中z:R×RNC, W:RNR是给定的势函数, κ是正常数, ˜h,l:R+R是实函数.形如(1.2)式的拟线性方程出现在许多数学物理问题中,而且根据l的不同形式衍生出不同的物理模型.当l(s)=s时, (1.2)式是等离子体物理学中的超流膜方程[10];当l(s)=(1+s)1/2时, (1.2)式是大功率超短激光在物质中的自沟道方程[21].在等离子物理、流体力学及耗散量子力学中也可见到拟线性薛定谔方程(1.2),参见文献[2, 8].

若令z(t,x)=exp(iEt)u(x),其中ER, u>0是实函数,则(1.2)式变成如下形式的椭圆型方程

u+V(x)u(l(|u|2))l(|u|2)u=h(u),   xRN,
(1.3)

其中V(x)=W(x)E是新的势函数,且h(u)=˜h(u2)u, κ=1.

近年来,人们广泛开展对于p=2, α=1情形的齐次拟线性薛定谔方程(1.1) g(x)=0的研究.据我们所知,文献[20]首次给出了该方程解的存在性,研究方法是约束极值方法.接下来,文献[16]使用变量代换法将拟线性方程化成半线性方程,在Orlicz空间的框架下利用山路引理给出了该问题解的存在性.同样是使用变量代换,文献[5]却在索伯列夫空间H1(RN)的框架下得到了方程(1.1)解的存在性.具体地说,因为问题(1.1)对应的能量泛函在空间H1(RN)中无界,所以作者采用变量代换v=f1(u)将能量泛函转化为在H1(RN)中有意义的泛函,再利用Berestycki和Lions在文献[3]中的经典结论证明了其径向对称解的存在性,其中f是常微分方程

f(t)=11+2f2(t),   t[0,+)

f(t)=f(t),   t(,0]

的解.

最近, Severo在文献[23]中证明:当1<p<N, g(x)=0时,方程(1.1)有一个非平凡的基态解.类似的研究见文献[17, 19, 24-25, 28-29]].

当参数α>12的情形, Liu和Wang[15]利用极小极大方法研究如下的次临界指数问题

u+V(x)u(|u|2α)|u|2α2u=λ|u|p1u,   xRN.

作者证明:当4αp+1<2α2时,对于一列数λnλn0,该问题都有非平凡解.

当参数α>1时,问题

u+λuκ(|u|2α)|u|2α2u=|u|p1u,   xRN

的基态解的唯一性则是由对偶方法获得[1].

另外, Wu在最近的工作[26]中考虑了参数α(12,1]的情形,作者利用对偶方法证明问题

u+V(x)u(|u|2α)|u|2α2u=g(x,u),   xRN

的一组高能量解的存在性.其中对位势函数和非线性项的假设如下

(A1)位势函数VC(RN,R), 0<V0=inf,且对于任意的M>0,都有{\rm meas}\{x\in \mathbb{R}^{N}: V(x)\leq M\} <+\infty,这里{\rm meas}\{\cdot\}表示集合\cdot的测度;

(A2)非线性项g\in C(\mathbb{R}^{N}\times \mathbb{R}, \mathbb{R}),且当N\geq 3时,存在4\alpha <p <2\alpha 2^{*};当N=1, 2时,存在4\alpha <p <\infty,使得|g(x, t)|\leq C(1+|t|^{p-1}), \forall (x, t)\in \mathbb{R}^{N}\times \mathbb{R}.

在文献[26]中条件(A1)是必不可少的,因为它保证了对任意的2\leq s <\frac{2N}{N-2},嵌入E\hookrightarrow L^{s}(\mathbb{R}^{N})都是紧的,其中E是希尔伯特空间H^{1}(\mathbb{R}^{N})的子空间,其范数定义如下

\|u\|_{E}=\bigg(\int_{(\mathbb{R}^{N})}(|\nabla u|^{2}+V(x)| u|^{2}){\rm d}x\bigg)^{1/2}.

受文献[1, 11-12, 25, 23, 26-27]的启发,本文中我们将建立非齐次方程(1.1)弱解的存在性与多重性,对势函数V(x)的假设如下

(V0)对任意的x \in \mathbb{R}^{N},都有V(x)\geq V_{0}>0;

(V1) \underline{}\lim\limits_{|x| \rightarrow +\infty}V(x)=V(\infty),且对任意的x \in \mathbb{R}^{N},都有V(x)\leq V(\infty).

因为势函数只满足有界性条件,这不能保证索伯列夫嵌入的紧性,所以本文我们借助Lions集中紧致原理[14]证明P-S序列有一个收敛子列.此外,非齐次项g可以看作是对次临界指数项h的扰动.据我们所知,目前还没有关于扰动拟线性薛定谔方程解的存在性研究结果.本文中我们处理问题(1.1)的基本思路来源于文献[1, 5, 16, 24],即使用变量代换将拟线性方程化成半线性方程,再在空间W^{1, p}(\mathbb{R}^{N})中寻找对应能量泛函的临界点,即相应方程的弱解.这里,索伯列夫空间W^{1, p}(\mathbb{R}^{N})的范数定义为

\|u\|=\bigg(\int_{\mathbb{R}^{N}}(|\nabla u|^{p}+|u|^{p}){\rm d}x\bigg)^{1/p}.

对于1\leq s \leq \infty, L^{s}(\mathbb{R}^{N})表示Lebesgue空间,其范数为\|u\|_{s}.众所周知,当1 <p <N时,有连续嵌入: W^{1, p}(\mathbb{R}^{N})\hookrightarrow L^{q}(\mathbb{R}^{N}),其中q\in [p, p^{*}];而嵌入:W^{1, N}(\mathbb{R}^{N})\hookrightarrow L^{q}(\mathbb{R}^{N})也是连续的,其中q\geq N.下面介绍对hf的假设

(H0) h\in C(\mathbb{R}, \mathbb{R})是奇函数,且当s>0时, h(s)>0;

(H1)当s\rightarrow 0时, h(s)|s|^{p-2}s的高阶无穷小量,即h(s)=o(|s|^{p-2}s);

(H2)存在常数C>0,使得对任意的s \in \mathbb{R},都有

|h(s)|\leq C(1+|s|^{r-1}),

其中,当1 <p <N时, 2\alpha p <r <2\alpha p^{*};当p=N时, r>2\alpha p;

(H3)存在\mu>2\alpha p,使得对任意的s >0,都有0 <\mu H(s)\leq s h(s),这里H(s)=\int_{0}^{s}h(t){\mathrm d}t;

(H4)测度meas(\{x\in \mathbb{R}^{N}: g(x)>0\})>0,且g\in L^{p'}(\mathbb{R}^{N}),这里p'=\frac{p}{p-1}.

我们利用山路引理和Ekeland变分原理[6]证明问题(1.1)在索伯列夫空间W^{1, p}(\mathbb{R}^{N})中有两个非平凡的弱解,并用I(u)表示弱解u的能量泛函.本文的主要结论如下.

定理1.1  假设1 <p\leq N.如果条件(V0)-(V1)和(H0)-(H4)满足,则存在m_{0}>0,使得当\|g\|_{p'} 6m_{0}时,问题(1.1)至少有两个非平凡弱解u_{0}u_{1},满足I(u_{0})>0, I(u_{1}) 60.

注1.1  如果势函数V(x)满足V(x)\equiv b>0,定理1.1的结论仍然成立.

2 定理的证明

首先我们注意到问题(1.1)的能量泛函为

\begin{eqnarray} I(u)&=&\frac{1}{p}\int_{\mathbb{R}^{N}} |\nabla u|^{p}{\rm d}x+ \frac{1}{2\alpha p}\int_{\mathbb{R}^{N}} |\nabla (|u|^{2\alpha})|^{p}{\rm d}x+ \frac{1}{p}\int_{\mathbb{R}^{N}} V(x)|u|^{p}{\rm d}x \\ &&-\int_{\mathbb{R}^{N}} H(u){\rm d}x-\int_{\mathbb{R}^{N}}g u {\rm d}x. \end{eqnarray}
(2.1)

因为\int_{\mathbb{R}^{N}} |\nabla (|u|^{2\alpha})|^{p}{\rm d}x可能在W^{1, p}(\mathbb{R}^{N})中无界,所以泛函I: W^{1, p}(\mathbb{R}^{N})\rightarrow \mathbb{R}无意义.但是,易见\frac{1}{2\alpha p}\int_{\mathbb{R}^{N}} |\nabla (|u|^{2\alpha})|^{p}{\rm d}x=\frac{(2\alpha)^{p-1}}{p}\int_{\mathbb{R}^{N}}|u|^{p(2\alpha-1)}|\nabla u|^{p}{\rm d}x,从而

\begin{eqnarray}\label{eq:2.1} I(u)&=&\frac{1}{p}\int_{\mathbb{R}^{N}} (1+(2\alpha)^{p-1}|u|^{p(2\alpha-1)})|\nabla u|^{p}{\rm d}x+ \frac{1}{p}\int_{\mathbb{R}^{N}} V(x)|u|^{p}{\rm d}x\\ &&-\int_{\mathbb{R}^{N}} H(u){\rm d}x-\int_{\mathbb{R}^{N}} g u {\rm d}x. \end{eqnarray}
(2.2)

根据文献[1],定义f为下列常微分方程的解

f'(t)=\frac{1}{\sqrt[p]{1+(2\alpha)^{p-1}|f(t)|^{p(2\alpha -1)}}}, ~~~ t\in [0, +\infty)

f(t)=-f(-t), ~~~t\in (-\infty, 0].

下面我们来收集变量代换f: \mathbb{R}\rightarrow \mathbb{R}的性质,这些将在后面的证明中有所应用.

引理2.1  函数f(t)及其导数满足下面的性质

(1) f是唯一确定的C^{\infty}函数,且可逆;

(2)对任意的 t \in \mathbb{R},都有0 <f'(t)\leq 1 ;

(3)对任意的 t \in \mathbb{R},都有|f(t)|\leq |t| ;

(4) \lim\limits_{t\rightarrow 0} \frac{f(t)}{t}=1;

(5) \lim\limits_{t\rightarrow \infty} \frac{|f(t)|^{2\alpha}}{|t|}=\sqrt[p]{2\alpha};

(6)当t\geq 0时, \frac{f(t)}{2}\leq \alpha tf'(t)\leq \alpha f(t);当t\leq 0时, \alpha f(t)\leq \alpha tf'(t)\leq \frac{f(t)}{2};

(7) |f(t)|^{2\alpha}\leq \sqrt[p]{2\alpha}|t|;

(8)存在正常数\theta,使得

\begin{eqnarray*} |f(t)|\geq \left\{ \begin{array}{ll} \theta |t|, &|t|\leq 1, \\ \theta |t|^{\frac{1}{2\alpha}}, ~~&|t|\geq 1. \end{array} \right. \end{eqnarray*}

  该引理在1 < p\leq N, \alpha=1情形的证明可参见文献[23]; p=2, \frac{1}{2} <\alpha \leq1情形的证明可参见文献[26].而对于1 < p\leq N, \frac{1}{2} <\alpha <1情形类似可证,这里不再赘述.

经过变量代换 u=f(v), (2.2)式化为

\begin{eqnarray}\label{eq:2.3} J(v):=I(f(v))&=&\frac{1}{p}\int_{\mathbb{R}^{N}} |\nabla v|^{p}{\rm d}x+ \frac{1}{p}\int_{\mathbb{R}^{N}} V(x)|f(v)|^{p}{\rm d}x\\& & -\int_{\mathbb{R}^{N}} H(f(v)){\rm d}x - \int_{\mathbb{R}^{N}} g f(v) {\rm d}x. \end{eqnarray}
(2.3)

由函数f的性质和假设条件可知J(v)在空间W^{1, p}(\mathbb{R}^{N})中有意义, J\in C^{1}(W^{1, p}(\mathbb{R}^{N}), \mathbb{R}),且

\begin{eqnarray} \langle J'(v), \psi\rangle=\int_{\mathbb{R}^{N}} |\nabla v|^{p-2} \nabla v \nabla \psi {\rm d}x- \int_{\mathbb{R}^{N}} f'(v)\eta(x, f(v)) \psi {\rm d}x, \end{eqnarray}
(2.4)

这里\eta(x, u):=h(u)+g-V(x)|u|^{p-2}u.此外,泛函J的临界点对应下面方程的解

\begin{eqnarray}\label{eq:2.5} -\triangle_{p}v=f'(v)\eta(x, f(v)), ~~~x\in \mathbb{R}^{N}. \end{eqnarray}
(2.5)

我们还可以证明:若v是泛函J的临界点,则u=f(v)是能量泛函I的临界点,即u=f(v)是问题(1.1)的弱解.

引理2.2  存在常数\rho_{0}, a_{0}, m_{0}>0,使得当\|g\|_{p'} <m_{0}时,对一切的\|v\|=\rho_{0},都有J(v)\geq a_{0}.

  由Hölder不等式和Young不等式,对于\epsilon =V_{0}/2p,有

\begin{eqnarray}\label{eq:2.6} \int_{\mathbb{R}^{N}}|g f(v)|{\rm d}x\leq \|f(v)\|_{p}\|g\|_{p'}\leq \epsilon \|f(v)\|_{p}^{p}+C_{\epsilon}\|g\|_{p'}^{p'}, \end{eqnarray}
(2.6)

其中C_{\epsilon}=\frac{p-1}{p}(\frac{V_{0}}{2})^{-1/(p-1)}.这样,由(2.3)式和条件(V0)可知

\begin{eqnarray*} J(v)&\geq &\frac{1}{p}\int_{\mathbb{R}^{N}} |\nabla v|^{p}{\rm d}x+ \frac{V_{0}}{p}\int_{\mathbb{R}^{N}} |f(v)|^{p}{\rm d}x -\int_{\mathbb{R}^{N}} H(f(v)){\rm d}x- \frac{V_{0}}{2p}\int_{\mathbb{R}^{N}} |f(v)|^{p}{\rm d}x-C_{1}\|g\|_{p'}^{p'}\\ &= &\frac{1}{p}\int_{\mathbb{R}^{N}} |\nabla v|^{p}{\rm d}x+ \frac{V_{0}}{2p}\int_{\mathbb{R}^{N}} |f(v)|^{p}{\rm d}x -\int_{\mathbb{R}^{N}} H(f(v)){\rm d}x-C_{1}\|g\|_{p'}^{p'}, \end{eqnarray*}

这里, C_{1}=C_{ \frac{V_{0}}{2p}}.再由条件(H1)-(H2),对于充分小的\epsilon>0,存在C_{\epsilon}>0,使得

H(f(v))\leq \epsilon |v|^{p}+C_{\epsilon}|v|^{r/2\alpha}.

若记K(t)=- \frac{V_{0}}{2p} |f(t)|^{p}+H(f(t)),则\lim\limits_{t\rightarrow 0}\frac{K(t)}{|t|^{p}}=-\frac{V_{0}}{2p},且当1 <p <N时, \lim\limits_{t\rightarrow +\infty}\frac{K(t)}{t^{\frac{Np}{N-p}}}=0;当p=N时, \lim\limits_{t\rightarrow +\infty}\frac{K(t)}{t^{q}}=0,其中q>r/2\alpha.

1 <p <N时,有

\begin{eqnarray*} J(v) &\geq &\frac{1}{p}\int_{\mathbb{R}^{N}} |\nabla v|^{p}{\rm d}x -\int_{\mathbb{R}^{N}} K(v){\rm d}x-C_{1}\|g\|_{p'}^{p'}\\ &\geq& \frac{1}{p}\int_{\mathbb{R}^{N}} |\nabla v|^{p}{\rm d}x+ (\frac{V_{0}}{2p}-\epsilon) \int_{\mathbb{R}^{N}} |v|^{p}{\rm d}x -C_{\epsilon}\int_{\mathbb{R}^{N}} |v|^{\frac{Np}{N-p}} {\rm d}x-C_{1}\|g\|_{p'}^{p'}.\\ \end{eqnarray*}

选择适当小的\epsilon>0,由索伯列夫嵌入不等式可得

\begin{eqnarray}\label{eq:2.7} J(v)\geq C_{2}\|v\|^{p} -C_{3}\|v\|^{\frac{Np}{N-p}} -C_{1}\|g\|_{p'}^{p'}, \end{eqnarray}
(2.7)

这里C_{2}=\min\{\frac{1}{p}, \frac{V_{0}}{2p}-\epsilon\}, C_{3}=C_{\epsilon}.易见函数 Q(t)=C_{2}t^{p} -C_{3}t^{\frac{Np}{N-p}} -C_{1}\|g\|_{p'}^{p'} t=t_{0}=(\frac{C_{2}(N-p)}{C_{3}N})^{(N-p)/p^{2}}取得最大值,且Q(t_{0})=(\frac{C_{3}p}{N-p})(\frac{C_{2}(N-p)}{C_{3}N})^{N/P}-C_{1}\|g\|_{p'}^{p'}.

m_{0}=\left[\frac{1}{2C_{1}}(\frac{C_{3}p}{N-p})(\frac{C_{2}(N-p)}{C_{3}N})^{\frac{N}{p}}\right]^{(p-1)/p}, ~~ \rho_{0}=(\frac{C_{2}(N-p)}{C_{3}N})^{(N-p)/p^{2}},

则当\|h\|_{p'}\leq m_{0}时,对于一切的\|v\|=\rho_{0},都有

J(v)\label{eq:2.4}\geq \frac{1}{2}(\frac{C_{3} p}{N-p})(\frac{C_{2}(N-p)}{C_{3}N})^{N/p}:=a_{0}>0

成立,引理得证.

p=N时,因为

\begin{eqnarray}\label{eq:2.8} J(v)&\geq& \frac{1}{N}\int_{\mathbb{R}^{N}} |\nabla v|^{N}{\rm d}x+ (\frac{V_{0}}{2N}-\epsilon) \int_{\mathbb{R}^{N}} |v|^{N}{\rm d}x -C_{\epsilon}\int_{\mathbb{R}^{N}} |v|^{q} {\rm d}x-C_{1}\|g\|_{N'}^{N'}\\ &\geq& C_{2}\|v\|^{N} -C_{3}\|v\|^{q} -C_{1}\|g\|_{N'}^{N'}, \end{eqnarray}
(2.8)

所以由q>r/2\alpha \geq N可知该引理仍然成立.

引理2.3  存在e\in W^{1, p}(\mathbb{R}^{N})满足\|e\|>\rho_{0},使得J(e) <0.

  选择\varphi \in C_{0}^{\infty}(\mathbb{R}^{N}, [0, 1]),其支集 {\rm supp}\varphi=\overline{B}_{1},且在B_{\frac{1}{2}}上, \varphi\geq \frac{1}{2}.则当t充分大时, t\varphi\geq 1.结合条件(H3)和引理2.1中的性质(8),可得:存在C>0使得当x\in B_{\frac{1}{2}}时, H(f(t\varphi))\geq C (t\varphi)^{\mu/2\alpha}.从而

\begin{eqnarray*} J(t\varphi)&\leq &\frac{1}{p}t^{p}\int_{\mathbb{R}^{N}}|\nabla \varphi|^{p}{\rm d}x+\frac{1}{p}V(\infty)t^{p}\int_{\mathbb{R}^{N}} \varphi^{p}{\rm d}x -\int_{\mathbb{R}^{N}} H(f(t\varphi)){\rm d}x-\int_{\mathbb{R}^{N}}g f(t\varphi) {\rm d}x\\ &\leq &\frac{1}{p}t^{p}\int_{\mathbb{R}^{N}}|\nabla \varphi|^{p}{\rm d}x+\frac{1}{p}V(\infty)t^{p}\int_{\mathbb{R}^{N}} \varphi^{p}{\rm d}x -Ct^{\frac{\mu}{2\alpha}}\int_{B_{\frac{1}{2}}}\varphi^{\frac{\mu}{2\alpha}}{\rm d}x+ t\int_{\mathbb{R}^{N}}|g| \varphi {\rm d}x, \end{eqnarray*}

注意到\mu>2\alpha p,这说明当t\rightarrow +\infty时, J(t\varphi)\rightarrow -\infty ,引理得证.

引理2.2和2.3说明泛函J满足山路几何条件,则由Ambrosetti-Rabinowitz山路引理[22]得:对于常数

c_{0}=\inf\limits_{\gamma\in \Gamma}\sup\limits_{t\in [0, 1]}J(\gamma(t))>0,

其中\Gamma=\{\gamma \in C([0, 1], W^{1, p}(\mathbb{R}^{N}) ): \gamma(0)=0, \gamma(1)\neq0 , J(\gamma(1)) <0\},存在P-S序列\{v_{n}\},满足:当n\rightarrow \infty时,有

\begin{eqnarray}\label{eq:2.10} J(v_{n})\rightarrow c_{0}, ~J'(v_{n})\rightarrow 0. \end{eqnarray}
(2.9)

引理2.4  泛函J在水平c的P-S序列\{v_{n}\}是有界的.

  首先,我们证明:如果W^{1, p}(\mathbb{R}^{N})中的序列\{v_{_{n}}\}满足

\begin{eqnarray}\label{eq:2.11}\int_{\mathbb{R}^{N}} |\nabla v_{n}|^{p}+V(x)|f(v_{n})|{\rm d}x\leq C, \end{eqnarray}
(2.10)

其中C是正常数,则该序列在索伯列夫空间W^{1, p}(\mathbb{R}^{N})中也是有界的.

事实上,我们只需证明\int_{\mathbb{R}^{N}} |v_{n}|^{p}{\rm d}x有界.记

\begin{eqnarray*}\int_{\mathbb{R}^{N}} | v_{n}|^{p}{\rm d}x=\int_{| v_{n}|\leq 1} | v_{n}|^{p}{\rm d}x+ \int_{| v_{n}|\geq 1} | v_{n}|^{p}{\rm d}x. \end{eqnarray*}

由条件(H3)知:对于任意t\geq 1,都有H(f(t))\geq C t^{\mu/2\alpha}\geq C t^{p}.这蕴含着

\begin{eqnarray*}\int_{| v_{n}|\geq 1} | v_{n}|^{p}{\rm d}x\leq \frac{1}{C}\int_{| v_{n}|\geq 1}H(f(v_{n})){\rm d}x\leq \frac{1}{C}\int_{\mathbb{R}^{N}}H(f(v_{n})){\rm d}x. \end{eqnarray*}

另一方面,由(2.6)式可得

\begin{eqnarray*} \int_{\mathbb{R}^{N}}H(f(v_{n})){\rm d}x&=&\frac{1}{p}\int_{\mathbb{R}^{N}} (|\nabla v_{n}|^{p}+V(x)|f(v_{n})|^{p}){\rm d}x-\int_{\mathbb{R}^{N}}g f(v_{n}){\rm d}x-J(v_{n})\\ &\leq& \frac{1}{p}\int_{\mathbb{R}^{N}} (|\nabla v_{n}|^{p}+V(x)|f(v_{n})|^{p}){\rm d}x-J(v_{n})+\epsilon \|f(v_{n})\|_{p}^{p}+C_{\epsilon}\|g\|_{p'}^{p'}\\ &\leq &\frac{1}{p}\int_{\mathbb{R}^{N}} |\nabla v_{n}|^{p}{\rm d}x+(\frac{1}{p}+ \frac{\epsilon}{V_{0}})\int_{\mathbb{R}^{N}}V(x)|f(v_{n})|^{p}{\rm d}x +C_{\epsilon}\|g\|_{p'}^{p'}-J(v_{n}), \end{eqnarray*}

这说明\int_{\mathbb{R}^{N}}H(f(v_{n})){\rm d}x是有界的.

再由引理2.1的性质(8),可得

\int_{| v_{n}|\leq 1} | v_{n}|^{p}{\rm d}x\leq \frac{1}{\theta^{p}}\int_{|v_{n}|\leq 1}|f(v_{n})|^{p}\leq \frac{1}{\theta^{p}V_{0}}\int_{\mathbb{R}^{N}}V(x)|f(v_{n})|^{p}{\rm d}x.

以上论述说明\{v_{n}\}在空间W^{1, p}(\mathbb{R}^{N})中有界.

现设\{v_{n}\}\subset W^{1, p}(\mathbb{R}^{N})为泛函J在水平c的P-S序列,则有

\begin{eqnarray}\label{eq:2.12} \frac{1}{p}\int_{\mathbb{R}^{N}} (|\nabla v_{n}|^{p}+V(x)|f(v_{n})|^{p}){\rm d}x - \int_{\mathbb{R}^{N}} H(f(v_{n})){\rm d}x -\int_{\mathbb{R}^{N}} g f(v_{n}){\rm d}x=c+o_{n}(1) \end{eqnarray}
(2.11)

\begin{eqnarray}\label{eq:2.13} |\langle J'(v_{n}), \psi\rangle|\leq \tau_{n}\|\psi\|, ~ ~\forall \psi\in W^{1, p}(\mathbb{R}^{N}), \end{eqnarray}
(2.12)

其中\tau_{n}\rightarrow 0 (n\rightarrow \infty).\psi_{n}(x):=\frac{f(v_{n}(x))}{f'(v_{n}(x))},由引理2.1中的性质(6), (7)可得:|\psi_{n}|\leq 2\alpha |v_{n}|,且

|\nabla \psi_{n}|=\bigg(1+\frac{(2\alpha-1)(2\alpha)^{p-1}|f(v_{n})|^{p(2\alpha -1)}}{1+(2\alpha)^{p-1}|f(v_{n})|^{p(2\alpha -1)}}\bigg)|\nabla v_{n}|\leq 2\alpha | \nabla v_{n}|.

从而, \|\psi _{n}\|\leq 2\alpha \|v _{n}\|.因为\{v_{n} \}是P-S序列,在(2.12)式中取\psi =\psi_{n},可得

\begin{eqnarray} &&\int_{\mathbb{R}^{N}} \left( 1+\frac{(2\alpha-1)(2\alpha)^{p-1}|f(v_{n})|^{p(2\alpha-1)}}{1+(2\alpha)^{p-1}|f(v_{n})|^{p(2\alpha-1)}} \right)|\nabla v_{n}|^{p}{\rm d}x \\ && +\int_{\mathbb{R}^{N}} V(x) |f(v_{n})|^{p}{\rm d}x -\int_{\mathbb{R}^{N}} h(f(v_{n}))f(v_{n}){\rm d}x -\int_{\mathbb{R}^{N}} g f(v_{n}){\rm d}x \\ &=& \langle J'(v_{n}), \psi_{n} \rangle =o_{n}(1). \end{eqnarray}
(2.13)

由(2.10)式, (2.12)式和条件(H3)可得

\begin{eqnarray*} & &\int_{\mathbb{R}^{N}} \left[\frac{1}{p}-\frac{1}{\mu} \bigg(1+\frac{(2\alpha-1)(2\alpha)^{p-1}|f(v_{n})|^{p(2\alpha -1)}}{1+(2\alpha)^{p-1}|f(v_{n})|^{p(2\alpha -1)}}\bigg)\right]|\nabla v_{n}|^{p}{\rm d}x+(\frac{1}{p}-\frac{1}{\mu})\int_{\mathbb{R}^{N}} V(x)|f(v_{n})|^{p}{\rm d}x\\ & \leq &c+o_{n}(1)+(1-\frac{1}{\mu})\int_{\mathbb{R}^{N}} g f(v_{n}){\rm d}x \\ &\leq& c+o_{n}(1)+(1-\frac{1}{\mu})\bigg(\epsilon \int_{\mathbb{R}^{N}} |f(v_{n})|^{p}{\rm d}x+C_{\epsilon}\|g\|_{p'}^{p'}\bigg) \\ &\leq &c+o_{n}(1)+(1-\frac{1}{\mu})\frac{\epsilon}{V_{0}}\int_{\mathbb{R}^{N}} V(x)|f(v_{n})|^{p}{\rm d}x +(1-\frac{1}{\mu})C_{\epsilon}\|g\|_{p'}^{p'} . \end{eqnarray*}

如果我们选择足够小的\epsilon>0,使得(\frac{1}{p}-\frac{1}{\mu})-(1-\frac{1}{\mu})\frac{\epsilon}{V_{0}}>0,则

\frac{\mu-2\alpha p}{p\mu}\int_{\mathbb{R}^{N}}|\nabla v_{n}|^{p}{\rm d}x+\frac{\mu-p}{2p\mu}\int_{\mathbb{R}^{N}}V(x)|f(v_{n})|^{p}{\rm d}x \leq C +o_{n}(1),

这说明(2.9)式成立,从而序列\{v_{n}\}W^{1, p}(\mathbb{R}^{N})中有界.证毕.

引理2.5  设\{v_{n}\}是满足(2.9)式的P-S序列.则其存在子列(不妨仍记为\{v_{n}\})v_{0}\in W^{1, p}(\mathbb{R}^{N}),使得J(v_{0})=c_{0},且v_{0}是方程(2.5)的解.此外, \{v_{n}\}有一个收敛于v_{0}的子列.

  由引理2.4知P-S序列\{v_{n}\}是有界的,所以其存在一个子列,不妨仍记为\{v_{n}\},使得在 W^{1, p}(\mathbb{R}^{N})中, v_{n}\rightharpoonup v_{0} (弱收敛).根据索伯列夫嵌入定理,在L_{loc}^{q}(\mathbb{R}^{N})中, v_{n}\rightarrow v (强收敛),这里q满足:当1 <p <N时, q \in [1, p^{*}];当p=N时, q\geq 1.从而由条件(H0)-(H2)可得:对任意的R>0,有

\begin{eqnarray*} f'(v_{n})\eta(x, f(v_{n}))\rightarrow f'(v_{0})\eta(x, f(v_{0})), ~\mbox{于}~L^{1}(B_{R})~\mbox{中}. \end{eqnarray*}

进而,类似于文献[7]中引理2.3和文献[18]中引理4的讨论知:对任意的R>0,有

\begin{eqnarray*} |\nabla v_{n}|^{p-2}\nabla v_{n} \rightharpoonup |\nabla v_{0}|^{p-2}\nabla v_{0} ~(\mbox{弱收敛})~\mbox{于}~\left(L^{p/(p-1)}(B_{R})\right)^{N}~\mbox{中}. \end{eqnarray*}

因此,在(2.12)式中取极限得

\begin{eqnarray*} \int_{\mathbb{R}^{N}}|\nabla v_{0}|^{p-2}\nabla v_{0}\nabla \varphi {\rm d}x -\int_{\mathbb{R}^{N}}f'(v_{0})\eta(x, f(v_{0}))\varphi {\rm d}x=0 \end{eqnarray*}

对任意的\varphi \in C_{0}^{\infty}(\mathbb{R}^{N})成立.由C_{0}^{\infty}(\mathbb{R}^{N})W^{1, p}(\mathbb{R}^{N})中稠密可知v_{0}是方程(2.5)的解.并且, g\neq 0说明v_{0}\neq 0.

v_{n}=v_{0}+w_{n},则在W^{1, p}(\mathbb{R}^{N})中, w_{n}\rightharpoonup 0 (弱收敛).因此,当1 <p <N时, w_{n}\rightarrow 0强收敛于L_{loc}^{q}(\mathbb{R}^{N})(1\leq q \leq p^{*})中,且w_{n}\rightarrow 0, a.e.于\mathbb{R}^{N}中.我们断言:存在\tau_{0}>0,使得对于p\leq q <p^{*}, \mbox{当}~ n\rightarrow \infty ~\mbox{时},都有

\begin{eqnarray}\label{eq:2.15} \sup\limits_{y\in \mathbb{R}^{N} } \int_{B_{\tau_{0}}}|w_{n}(x)|^{q}{\rm d}x\rightarrow 0. \end{eqnarray}
(2.14)

反证法.假设对任意的\tau>0,存在\epsilon_{0}>0, y_{m}\in \mathbb{R}^{N}n_{m}(m=1, 2, \cdots),使得对一切的m=1, 2, \cdots,都有

\begin{eqnarray*} \int_{B_{\tau}(y_{m})}|w_{n_{m}}(x)|^{q}{\rm d}x\geq \epsilon_{0}. \end{eqnarray*}

则由积分的绝对连续性,存在\delta>0,使得只要\Omega \subset \mathbb{R}^{N}满足|\Omega| <\delta,就有

\begin{eqnarray*} \int_{\Omega}|w_{n_{m}}(x)|^{q}{\rm d}x <\frac{\epsilon_{0}}{2}. \end{eqnarray*}

我们取足够小的\tau>0使得|B_{\tau}(y_{m})|=\frac{\omega_{N-1}}{N}\tau^{N} <\delta,其中\omega_{N-1}表示\mathbb{R}^{N}中的单位球面.则

\begin{eqnarray*} \int_{B_{\tau}(y_{m})}|w_{n_{m}}(x)|^{q}{\rm d}x <\frac{\epsilon_{0}}{2}. \end{eqnarray*}

矛盾!断言(2.14)得证.由Lions集中紧致引理(文献[14]第二部分的Lemma Ⅰ.1)可得w_{n}\rightarrow 0L^{q}(\mathbb{R}^{N})中,且v_{n}\rightarrow v_{0}L^{q}(\mathbb{R}^{N})中,这里p\leq q <p^{*}.从而存在W_{q}(x)\in L^{q}(\mathbb{R}^{N}),使得|v_{n}(x)|\leq W_{q}(x), a.e.于\mathbb{R}^{N}中.注意到

\begin{eqnarray*} |f(v_{n})|^{p-1}|f'(v_{n})v_{n}|\leq |f(v_{n})|^{p}\leq |v_{n}|^{p}\leq| W_{q}(x)|^{p}, ~{\rm a.e.} ~\mbox{于}~ \mathbb{R}^{N}, \end{eqnarray*}

则由Lebesgue控制收敛定理得

\begin{eqnarray}\label{eq:2.16} \int_{\mathbb{R}^{N}}|f(v_{n})|^{p-2}f(v_{n})f'(v_{n})v_{n}{\rm d}x\rightarrow \int_{\mathbb{R}^{N}}|f(v_{0})|^{p-2}f(v_{0})f'(v_{0})v_{0}{\rm d}x. \end{eqnarray}
(2.15)

类似地,有

\begin{eqnarray}\label{eq:2.17} \int_{\mathbb{R}^{N}}h(f(v_{n}))f'(v_{n})v_{n}{\rm d}x\rightarrow \int_{\mathbb{R}^{N}}h(f(v_{0}))f'(v_{0})v_{0}{\rm d}x\end{eqnarray}
(2.16)

\begin{eqnarray} \label{eq:2.18} \int_{\mathbb{R}^{N}}g f'(v_{n})v_{n}{\rm d}x\rightarrow \int_{\mathbb{R}^{N}}g f'(v_{0})v_{0}{\rm d}x \end{eqnarray}
(2.17)

成立.当p=N时, v_{n}\rightharpoonup v_{0} (弱收敛)于W^{1, N}(\mathbb{R}^{N})中蕴含着:对于q\geq N, v_{n}\rightarrow v_{0}L^{q}_{loc}(\mathbb{R}^{N})中,且v_{n}\rightarrow v_{0}, a.e.于\mathbb{R}^{N}中.类似地, (2.15)-(2.17)式成立.

另一方面,由Brezis-Lieb引理[4]

\begin{eqnarray}\label{eq:2.19} \left\{\begin{array}{ll} \|\nabla v_{n}\|_{p}^{p}=\|\nabla v_{0}\|_{p}^{p}+\|\nabla w_{n}\|_{p}^{p}+o_{n}(1), \\\|v_{n}\|_{L^{p}(\mathbb{R}^{N}, V)}^{p}=\|v_{0}\|_{L^{p}(\mathbb{R}^{N}, V)}^{p}+\|w_{n}\|_{L^{p}(\mathbb{R}^{N}, V)}^{p}+ o_{n}(1), \end{array} \right. \end{eqnarray}
(2.18)

其中1 < p\leq N.由(2.18)式,我们可以推断

J'(v_{n})v_{n}=J'(v_{0})v_{0}+\|\nabla w_{n}\|_{p}^{p}- \int_{\mathbb{R}^{N}} [\eta(x, f(v_{n}))f'(v_{n}) -\eta(x, f(v_{0}))f'(v_{0}) v_{0}] {\rm d}x+o_{n}(1)

成立.应用(2.15)-(2.17)式可以得出:当n\rightarrow \infty时, \|\nabla w_{n}\|_{p}^{p}\rightarrow 0.因此, v_{n}\rightarrow v_{0} (强收敛)于W^{1, p}(\mathbb{R}^{N})中,且J(v_{n})\rightarrow J(v_{0})=c_{0}.证毕.

引理2.6  设m_{0}如引理2.1所述,则当g满足\|g\|_{p'} <m_{0}时,方程(2.5)有一个弱解v_{1}\in W^{1, p}(\mathbb{R}^{N}),满足J(v_{1})=c_{\rho} <0,其中

c_{\rho}=\inf\limits_{v\in B_{\rho}}J(v) <0.

  令\Omega_{g}=\{x\in \mathbb{R}^{N}: g(x)>0\},则由条件(H4)知meas(\Omega_{g})>0.我们选取\varphi \in C_{0}^{\infty}(\mathbb{R}^{N}, [0, 1])满足 {\rm supp}\varphi\subset \Omega_{g},且\int_{\mathbb{R}^{N}}g \varphi {\rm d}x>0.从而,由引理2.1中的性质(3)和(8),对足够小的t>0,成立着

\begin{eqnarray}\label{eq:2.19'} J(t\varphi) &= &\frac{t^{p}}{p}\int_{\mathbb{R}^{N}}|\nabla\varphi|^{p}{\rm d}x \int_{\mathbb{R}^{N}}V(x)|f(t\varphi)|^{p}{\rm d}x-\int_{\mathbb{R}^{N}}H(f(t\varphi)){\rm d}x-\int_{\mathbb{R}^{N}} g f(t\varphi){\rm d}x\\ &\leq & \frac{t^{p}}{p}\int_{\mathbb{R}^{N}}|\nabla\varphi|^{p}{\rm d}x +\frac{t^{p}}{p} V(\infty)\int_{\mathbb{R}^{N}}|\varphi|^{p}{\rm d}x-\theta t\int_{\mathbb{R}^{N}}g \varphi {\rm d}x <0. \end{eqnarray}
(2.19)

则由(2.19)式和引理2.2可知:存在中心在原点的开球B_{\rho}\subset E,使得

c_{\rho}=\inf\limits_{v\in \overline{B}_{\rho}}J(v) <0, ~\mbox{且} \quad \inf\limits_{v\in \partial B_{\rho}}J(v)>0

成立.再由(2.7)-(2.8)式,我们可以推断出-\infty <c_{\rho}.取单调递减趋于零的数列\epsilon_n\downarrow 0,使其满足

0 <\epsilon_n <\underline{}\inf\limits_{\partial{B_{\rho}}}J-\underline{}\inf\limits_{B_{\rho}}J.

对泛函J: \overline{B}_{\rho}\rightarrow \mathbb{R}使用Ekeland变分原理知:存在v_{n}\in \overline{B}_{\rho} ,使得

\begin{eqnarray}\label{eq:2.20} J(v_{n})\leq \underline{}\inf\limits_{\overline{B}_{\rho}}J+\epsilon_{n}, ~~~~\mbox{且}~~~~ J(v_{n}) <J(v)+\epsilon_{n}\|v-v_{n}\|, ~v\neq v_{n}. \end{eqnarray}
(2.20)

J(v_{n})\leq\underline{}\inf\limits_{\overline{B}_{\rho}}J+\epsilon_{n} \leq \underline{}\inf\limits_{B_{\rho}}J+\epsilon_{n} <\underline{}\inf\limits_{\partial{B_{\rho}}}J可推出v_{n}\in B_{\rho}.而且, (2.20)式也说明泛函

F(v)=J(v)+\epsilon_{n}\|v-v_{n}\|, \quad v\in W^{1, p}(\mathbb{R}^{N})

v_{n}达到其严格极小值,所以对于足够小的\lambda>0,都有

\frac{F(v_{n}+\lambda\phi)-F(v_{n})}{\lambda}\geq0, \quad \forall \phi \in B_1

成立.因此

\frac{J(v_{n}+\lambda\phi)-J(v_{n})}{\lambda}+\epsilon_{n}\|\phi\|\geq0.

\lambda\rightarrow 0,可得

\begin{eqnarray}\label{eq:2.22} J'(v_{n})\phi+\epsilon_{n}\|\phi\|\geq0. \end{eqnarray}
(2.21)

在(2.21)式中以-\phi代换\phi,可得

\begin{eqnarray}\label{eq:2.23} -J'(v_{n})\phi+\epsilon_{n}\|\phi\|\geq0. \end{eqnarray}
(2.22)

(2.21)-(2.22)式说明\|J'(v_{n})\|\leq\epsilon_{n}.

综上,存在序列\{v_{n}\}\in B_{\rho},使得J(v_{n})\rightarrow c_{\rho},且J'(v_{n})\rightarrow 0.类似于引理2.5的证明可得: \{v_{n}\} \subset W^{1, p}(\mathbb{R}^{N})存在子列,不妨仍记为\{v_{n}\},使得v_{n}\rightarrow v_{1}W^{1, p}(\mathbb{R}^{N})中.这样, v_{1}是方程(2.5)满足条件J(v_{1})=c_{\rho} <0的弱解.证毕.

定理1.1的证明  由引理2.5和2.6,当扰动项g满足\|g\|_{p'} <m_{0}时,方程(1.1)至少有两个非平凡的解u_{0}=f(v_{0})u_{1}=f(v_{1}),满足I(u_{0})=J(v_{0})>0, I(u_{1})=J(v_{1}) <0.定理证毕.

参考文献

Adachi S , Watanabe T .

Uniqueness of the ground state solutions of quasilinear Schrödinger equations

Nonlinear Anal, 2012, 75: 819- 833

[本文引用: 4]

Bass F , Nasanov N N .

Nonlinear electromagnetic spin waves

Phys Reports, 1990, 189: 165- 223

DOI:10.1016/0370-1573(90)90093-H      [本文引用: 1]

Berestycki H , Lions P L .

Nonlinear scalar field equations I

Arch Ration Mech Anal, 1983, 82: 313- 346

DOI:10.1007/BF00250555      [本文引用: 1]

Chabrowski J. Variational Methods for Potential Operator Equations. Berlin: Walter de Gruyter, 1997

[本文引用: 1]

Colin M , Jeanjean L .

Solutions for a quasilinear Schrödinger equation:a dual approach

Nonlinear Anal, 2004, 56: 213- 226

DOI:10.1016/j.na.2003.09.008      [本文引用: 2]

Ekeland I .

Nonconvex minimization problems

Bull Amer Math Soc, 1979, 1: 443- 474

DOI:10.1090/S0273-0979-1979-14595-6      [本文引用: 1]

Figueiredo G M .

Quasilinear equations with dependence on the gradient via Mountain Pass techniques in \mathbb{R}^N

Applied Mathematics and Computation, 2008, 203: 14- 18

[本文引用: 1]

Hasse R W .

A general method for the solution of nonlinear soliton and kink Schrödinger equation

Z Phys B, 1980, 37: 83- 87

DOI:10.1007/BF01325508      [本文引用: 1]

Kurihura S .

Large-amplitude quasi-solitons in superfluids

J Phys Soc Japan, 1981, 50: 3262- 3267

DOI:10.1143/JPSJ.50.3262      [本文引用: 1]

Laedke E , Spatschek K .

Evolution theorem for a class of perturbed envelope soliton solutions

J Math Phys, 1963, 24: 2764- 2769

URL     [本文引用: 1]

李静, 陈才生.

\mathbb{R}^N上一类拟线性Schrödinger方程的Nehari流形解

数学物理学报, 2016, 36A (3): 507- 520

DOI:10.3969/j.issn.1003-3998.2016.03.013      [本文引用: 1]

Li J , Chen C .

Nehari manifold method for solutions to a class of quasilinear Schrödinger equations in \mathbb{R}^N

Acta Math Sci, 2016, 36A (3): 507- 520

DOI:10.3969/j.issn.1003-3998.2016.03.013      [本文引用: 1]

Li Q , Yang Z D .

Existence and uniqueness of positive radial solutions for a class of quasilinear elliptic systems

J Partial Differ Equa, 2015, 28: 370- 382

DOI:10.4208/jpde      [本文引用: 1]

Li Z X , Shen R T .

Nonsmooth critical point theorems and its applications to quasilinear Schrödinger equations

Acta Math Sci, 2016, 36B (1): 73- 86

Lions P L. The concentration-compactness principle in the calculus of variations. The locally compact case, part 1-2. Ann Inst H Poincaré, 1984, 1: 109-145, 223-283

[本文引用: 2]

Liu J Q , Wang Z Q .

Soliton solutions for quasilinear Schrödinger equations

Proc Amer Math Soc, 2003, 131: 441- 448

DOI:10.1090/S0002-9939-02-06783-7      [本文引用: 1]

Liu J Q , Wang Y , Wang Z Q .

Solutions for quasilinear Schrödinger equations, Ⅱ

J Differential Equations, 2003, 187: 473- 493

[本文引用: 2]

do Ó J M B , Severo U .

Solitary waves for a class of quasilinear Schrödinger equations in dimension two

Calc Var Partial Differential Equations, 2010, 38: 275- 315

DOI:10.1007/s00526-009-0286-6      [本文引用: 1]

do Ó J M B .

Semilinear Dirichlet problems for the N-Laplacian in \mathbb{R}^N with nonlinearities in critical growth range

Differential Integral Equations, 1996, 9: 967- 979

[本文引用: 1]

do Ó J M B , Miyagaki O H , Soares S H M .

Soliton solutions for quasilinear Schrödinger equations with critical growth

J Differential Equations, 2010, 248: 722- 744

DOI:10.1016/j.jde.2009.11.030      [本文引用: 1]

Poppenberg M , Schmitt K , Wang Z Q .

On the existence of soliton solutions to quasilinear Schrödinger equations

Calc Var Partial Differential Equations, 2002, 14: 329- 344

DOI:10.1007/s005260100105      [本文引用: 1]

Ritchie B .

Relativistic self-focusing and channel formation in laser-plasma interactions

Phys Rev E, 1994, 50: 687- 689

URL     [本文引用: 1]

Schechter M. Linking Methods in Critical Point Theory. Boston: Birkhäuser, 1999

[本文引用: 1]

Severo U .

Existence of weak solutions for quasilinear elliptic equations involving the p-Laplacian

Elec J Diff Equa, 2008, 56: 1- 16

URL     [本文引用: 3]

Silva E B , Vieira G F .

Quasilinear asymptotically periodic Schrödinger equations with subcritical growth

Nonlinear Anal, 2010, 72: 2935- 2949

DOI:10.1016/j.na.2009.11.037      [本文引用: 2]

Tang X H .

New super-quadratic conditions on ground state solutions for superlinear Schrödinger equation

Adv Nonlinear Stud, 2014, 14: 349- 361

[本文引用: 2]

Wu X .

Multiple solutions for quasilinear Schrödinger equations with a parameter

J Differential Equations, 2014, 256: 2619- 2632

[本文引用: 4]

Xiang C L .

Gradient estimates for solutions to quasilinear elliptic equations with critical Sobolev growth and Hardy potential

Acta Math Sci, 2017, 37B (1): 58- 68

[本文引用: 1]

Yang H W , Zhu B , Chen J F .

Hamiltonian analysis and dual vector spectral elements for 2D Maxwell eigenproblems

Commun Comput Phys, 2017, 21: 515- 525

[本文引用: 1]

Yang H W , Xu Z H , Yang D Z , et al.

ZK-Burgers equation for three-dimensional Rossby solitary waves and its solutions as well as chirp effect

Adv Differ Equa, 2016, 167: 1- 22

[本文引用: 1]

/