数学物理学报, 2019, 39(2): 277-285 doi:

论文

一类具有偏差变元的p-Laplacian Liénard型方程在吸引奇性条件下周期解的存在性

程志波1,2, 毕中华1, 姚绍文,1

Periodic Solution for p-Laplacian Liénard Equation with Attractive Singularity and Time-Dependent Deviating Argument

Cheng Zhibo1,2, Bi Zhonghua1, Yao Shaowen,1

通讯作者: 姚绍文, E-mail: yaoshaowen@hpu.edu.com

收稿日期: 2017-11-9  

基金资助: 国家自然科学基金.  11501170
国家自然科学基金.  71601072
中国博士后基金.  2016M590886
河南省高校基本科研业务费专项资金.  NSFRF170302
河南理工大学博士基金.  B2013-055

Received: 2017-11-9  

Fund supported: the NSFC.  11501170
the NSFC.  71601072
the China Postdoctoral Science Foundation.  2016M590886
the Fundamental Research Funds for the Universities of Henan Provience.  NSFRF170302
the Henan Polytechnic University Doctor Fund.  B2013-055

摘要

该文考虑了一类具有偏差变元的奇性$p$-Laplacian Liénard型方程

其中$g(x)$在原点处具有吸引奇性.通过应用Manásevich-Mawhin连续定理和一些分析方法,证明了这个方程周期解的存在性.

关键词: Liénard型方程 ; 周期解 ; 吸引奇性 ; p-Laplacian ; 偏差变元

Abstract

In this paper, we consider a kind of $p$-Laplacian singular Liénard equation with time-dependent deviating argument

where $g$ has a attractive singularity at $x=0$. By applications of Manásevich-Mawhin continuation theorem and some analysis skills, sufficient conditions for the existence of periodic solution is established.

Keywords: Liénard equation ; Periodic solution ; Attractive singularity ; p-Laplacian ; Time-dependent deviating argument

PDF (298KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

程志波, 毕中华, 姚绍文. 一类具有偏差变元的p-Laplacian Liénard型方程在吸引奇性条件下周期解的存在性. 数学物理学报[J], 2019, 39(2): 277-285 doi:

Cheng Zhibo, Bi Zhonghua, Yao Shaowen. Periodic Solution for p-Laplacian Liénard Equation with Attractive Singularity and Time-Dependent Deviating Argument. Acta Mathematica Scientia[J], 2019, 39(2): 277-285 doi:

1 引言

近些年来,在对Liénard型方程的周期解的研究中,越来越多的学者把注意力放在了奇性Liénard型方程(参见文献[1-14]).事实上,这是由于奇性方程在应用科学和物理中有重大的意义背景,比如Brillouin电子束聚焦问题(参见文献[3, 13]).在这些研究中,关于Liénard型方程在排斥奇性下的研究可追溯到1996年.章梅荣(参见文献[14])讨论了在奇性条件下Liénard型方程的正周期解的存在性

$ \begin{equation}{\label{eq1.1}} x''(t)+f(x(t))x'(t)+g(t, x(t))=0, \end{equation} $

其中$f:\mathbb{R} \to\mathbb{R} $是连续的, $g:\mathbb{R} \times(0, \infty)\to\mathbb{R} $是一个$L^{2}$-Carathéodory函数,且当$x\to0^+$时, $g(t, x(t))$是无界的.若$g(t, x(t))\to-\infty$,则方程(1.1)是在排斥奇性下的Liénard型方程;或者$g(t, x(t))\to+\infty$,方程(1.1)是在吸引奇性下的Liénard型方程.为证明方程(1.1)至少存在一个$T$周期解,章梅荣给出了下列条件.

(H$_1)$存在两个正常数$0 < D_1 < D_2$使得当$x$是正$T$周期连续函数时满足

则有

其中$\tau\in[0, T]$.

(H$_2)$存在$0 < D_1 < D_2$,对所有的$x\in(0, D_1)$$\overline{g}(x):=\frac{1}{T}\int^T_0g(t, x(t)){\rm d}t < 0$,和对所有的$x>D_2$$\overline{g}(x)>0$.

(H$_3)$$g(t, x(t))=g_0(x)+g_1(t, x(t))$,其中$g_0\in C((0, \infty), \mathbb{R})$$g_1:[0, T]\times[0, \infty)\to\mathbb{R} $是一个$L^{2}$-Carathéodory函数.

(H$_4)$假设对于处处连续的$t\in[0, T]$,存在

即:对于任意的$\varepsilon>0$,有$g_\varepsilon\in L^2(0, T)$使得

其中$x>0$$t\in[0, T]$上处处连续.同时有$\psi\in C(\mathbb{R}, \mathbb{R})$$\psi(t+T)=\psi(t).$

(H$_5)$ (在$x=0$处的排斥奇性条件) $\int^1_0g_0(x){\rm d}x=-\infty$.

定理1.1  假设条件(H$_1)$-(H$_5)$成立.若有$\|\psi^+\|_1 < \frac{\sqrt{3}}{T}$,其中$\|\psi^+\|_1:=\int^T_0|\psi^+(t)|{\rm d}t$$\psi^+(t):=\max(\psi(t), 0)$成立,则方程(1.1)至少有一个正$T$周期解.

王在洪[11]在2014年研究了具有常时滞奇性Liénard型方程的周期解的存在性

$\begin{equation}{\label{eq1.2}}x''(t)+f(x(t))x'(t)+g(t, x(t-\sigma))=0, \end{equation}$

其中$\sigma$是常数且$0\leq\sigma < T$.通过应用Mawhin's连续性定理,作者证明了下面的定理.

定理1.2  假设条件(H$_1)$-(H$_5)$成立.则方程(1.2)至少有一个$T$周期解若有$\|\psi\| < \left(\frac{\pi}{T}\right)^2$成立,其中$\|\psi\|:=\max\limits_{t\in\mathbb{R} }|\psi(t)|$.

最近,辛云和程志波[12]在2016年研究了下面的一类具有常时滞奇性的$p$-Laplacian Liénard型方程

$ \begin{equation}{\label{eq1.3a}}(\varphi_p(x'(t)))'+f(x(t))x'(t)+g(t, x(t-\sigma))=e(t), \end{equation} $

其中$\varphi_p(s)=|s|^{p-2}s$$\varphi_p:\mathbb{R} \to\mathbb{R} $,这里的$p$是一个常数; $e:\mathbb{R} \to\mathbb{R} $是一个连续的周期函数有$e(t+T)=e(t)$$\int^T_0e(t){\rm d}t=0$.作者证明了方程(1.3)至少存在一个$T$周期解.

定理1.3  假设条件(H$_1)$-(H$_3)$和(H$_5)$成立.同时,有下列条件成立

(H$'_4)$假设

存在且$t\in[0, T]$处处连续,即,对任意的$\varepsilon>0$存在$g_\varepsilon\in L^2(0, T)$使得

成立,其中$x>0$$t\in[0, T]$处处连续.同时

则方程(1.3)至少存在一个$T$周期解,若有

成立,其中$\pi_p=2\int^{(p-1)/p}_0\frac{ds}{(1-\frac{s^p}{p-1})^{1/p}}=\frac{2\pi(p-1)^{1/p}}{p\sin(\pi/p)}.$

以上所提及的结论都是Liénard型方程在排斥奇性条件下或者是具有时滞的Liénard型方程相关的.自然而然地有新的问题产生:关于具有偏差变元的Liénard型方程在吸引奇性条件下的周期解的存在性呢?除了实际意义,该问题有显著的理论意义.为了回答这个问题,在本文中,我们讨论了下面具有偏差变元的奇性Liénard型方程

$ \begin{equation}{\label{eq1.3}}(\varphi_p(x'(t)))'+f(x(t))x'(t)+g(t, x(t-\sigma(t)))=e(t), \end{equation} $

其中$\sigma(t)\in C^1(\mathbb R, \mathbb R)$是一个$T$周期函数且有$\sigma'(t) < 1$.显然,吸引奇性条件$\lim\limits_{x\rightarrow0^+}\int^1_{x}g_0(x)=+\infty$与条件(H$_2)$和(H$_4)$ (或者(H$_4')$)是矛盾的.因此,在文献[11-12, 14]中的方法已经不再适用于证明方程(1.4)在吸引奇性条件下的周期解的存在性.因此我们将寻找新的方法来解决.

在本文中,通过应用Manásevich-Mawhin连续性定理,我们证明了下面的定理.

定理1.4  若条件(H$_3)$成立.设有下列条件成立

(H$_2')$存在$0 < D_1 < D_2$,对所有的$x\in(0, D_1)$$\overline{g}(x)>0$和对所有的$x>D_2$$\overline{g}(x) < 0$.

(H$_5')$ (在$x=0$处的吸引奇性条件)

(H$_6)$存在两个正常数$a$$b$使得

如果$\frac{aT^{p}}{2^{p-1}} < 1$,则方程(1.4)至少存在一个$T$周期解.

注1.1  当$\sigma(t)\equiv \sigma$时(其中$\sigma$是任意一个常数),方程(1.4)可变化为方程(1.3).此外,当$p=2$$\sigma(t)=\sigma$时,方程(1.4)可化为方程(1.1)和方程(1.2).因此,定理1.4可看作是定理1.1,定理1.2和定理1.3的综合结论.

2 定理1.4的证明

对于$T$ -周期的边值问题

$\begin{equation}{\label{eq2.1}} (\varphi_p(x'(t)))'=\tilde{f}(t, x, x'), \end{equation}$

其中$\tilde{f}:[0, T]\times\mathbb{R} \times\mathbb{R} \rightarrow\mathbb{R} $被认为是Carathéodory函数.

引理2.1 (Manásevich-Mawhin[7])令$\Omega$是在$C^1_T:=\{x\in C^1(\mathbb{R}, \mathbb{R}): x \mbox{是}T-周期的\}$上的有界开集.满足下列条件

(ⅰ)对每一个$\lambda\in(0, 1)$,

$\partial\Omega$上没有解;

(ⅱ)方程

$\partial\Omega\cap\mathbb{R} $上没有解;

(ⅲ) $F$的Brouwer度

则周期边值方程(2.1)在$\bar{\Omega}$上至少有一个周期解.

定理1.4的证明  考虑方程(1.4)的同伦方程

$\begin{equation}{\label{eq3.1}}(\varphi_p(x'(t)))'+\lambda f(x(t))x'(t)+\lambda g(t, x(t-\sigma(t)))=\lambda e(t).\end{equation}$

首先,我们断言方程(2.2)的所有可能的解都是有界的.令$x(t)\in C^1_T$是方程(2.2)的任意一个$T$周期解.

对方程(2.2)左右两边进行在$[0, T]$上的积分,我们得到

由于$\int^T_0(\varphi_p(x'(t)))'{\rm d}t=0$, $\int^T_0f(x(t))x'(t){\rm d}t=0$$\int^T_0e(t){\rm d}t=0$,可得

$\begin{equation}{\label{eq3.2}}\int^T_0g(t, x(t-\sigma(t))){\rm d}t=0.\end{equation}$

由条件(H$'_2)$$g(x)$的连续性可知,存在一点$\xi\in(0, T)$使得

$\tau=\xi-\sigma(\xi)\in[0, T]$,则有

$\begin{equation}{\label{eq2.5}}D_1\leq x(\tau)\leq D_2.\end{equation}$

因此,我们有

$\begin{eqnarray}{\label{eq3.3}}\|x\|&=&\max\limits_{t\in[0, T]}|x(t)|=\max\limits_{t\in[\tau, \tau+T]}|x(t)|\\ &=&\frac{1}{2}\max\limits_{t\in[\tau, \tau+T]}\left(|x(t)|+|x(t-T)|\right)\\ &=&\frac{1}{2}\max\limits_{t\in[\tau, \tau+T]}\left(\left|x(\tau)+\int^t_{\tau}x'(s){\rm d}s\right| +\left|x(\tau)-\int^{\tau}_{t-T}x'(s){\rm d}s\right|\right)\\& \leq &D_2+\frac{1}{2}\left(\int^t_\tau|x'(s)|{\rm d}s+\int^\tau_{t-T}|x'(s)|{\rm d}s\right)\\ &\leq& D_2+\frac{1}{2}\int^T_0|x'(s)|{\rm d}s. \end{eqnarray}$

方程(2.2)等式两边同时乘以$x(t)$且在$[0, T]$上积分,可得

$\begin{eqnarray}{\label{eq3.6}}&&\int^T_0(\varphi_p(x'(t)))'x(t){\rm d}t+\lambda\int^T_0f(x(t))x'(t)x(t){\rm d}t+\lambda\int^T_0g(t, x(t-\sigma(t)))x(t){\rm d}t\\&=&\lambda\int^T_0e(t)x(t){\rm d}t.\end{eqnarray}$

$\int^T_0(\varphi_p(x'(t)))'x(t){\rm d}t=-\int^T_0|x'(t)|^{p}{\rm d}t$$\int^T_0f(x(t))x'(t)x(t){\rm d}t=0$代入方程(2.6),有

故而有

$\begin{eqnarray}{\label{eq3.6a}}\int^T_0|x'(t)|^{p}{\rm d}t&\leq&\int^T_0|g(t, x(t-\sigma(t)))||x(t)|{\rm d}t+\int^T_0|e(t)||x(t)|{\rm d}t\\ &\leq&\|x\|\int^T_0|g(t, x(t-\sigma(t)))|{\rm d}t+\|x\|\int^T_0|e(t)|{\rm d}t.\end{eqnarray}$

由条件(H$_6)$和方程(2.3)可得

$\begin{eqnarray}{\label{eq3.7}}\int^T_0|g(t, x(t-\sigma(t)))|{\rm d}t&=&\int_{g(t, x(t-\sigma(t)))>0}g^{+}(t, x(t-\sigma(t))){\rm d}t\\&&- \int_{g(t, x(t-\sigma(t)))\leq0}g^{-}(t, x(t-\sigma(t))){\rm d}t\\ &=&-2\int_{g(t, x(t-\sigma(t)))\leq0}g^{-}(t, x(t-\sigma(t))){\rm d}t\\ &\leq& 2\int^T_0(ax^{p-1}+b){\rm d}t\\ &\leq&2aT\|x\|^{p-1}+2bT, \end{eqnarray}$

其中$g^{-}:=\min\{g(t, x(t-\sigma(t))), 0\}$.将方程(2.8)代入方程(2.7)得

$ \begin{equation}{\label{eq3.8}}\int^T_0|x'(t)|^{p}{\rm d}t\leq2aT\|x\|^{p}+\|x\|(2bT+\|e\|T).\end{equation} $

将方程(2.5)代入方程(2.9)可得

$\begin{eqnarray}{\label{eq3.9}}\int^T_0|x'(t)|^{p}{\rm d}t&\leq&2aT\left(D_2+\frac{1}{2}\int^T_0|x'(t)|{\rm d}t\right)^{p}+(2bT+\|e\|T)\left(D_2+\frac{1}{2}\int^T_0|x'(t)|{\rm d}t\right)\\&\leq&2aT\left(\left(\frac{1}{2}\int^T_0|x'(t)|{\rm d}t\right)^{p}+pD_2\left(\frac{1}{2}\int^T_0|x'(t)|{\rm d}t\right)^{p-1}+\cdots+D^{p}_2\right)\\&&+(2bT+\|e\|T)\frac{\int^T_0|x'(t)|{\rm d}t}{2}+(2bT+\|e\|T)D_2\\&=&\frac{aT}{2^{p-1}}\left(\int^T_0|x'(t)|{\rm d}t\right)^{p}+\frac{pD_2}{2^{p-1}}\left(\int^T_0|x'(t)|{\rm d}t\right)^{p-1}+\cdots+2aTD^p_2\\&&+\frac{2bT+\|e\|T}{2}\int^T_0|x'(t)|{\rm d}t+(2bT+\|e\|T)D_2.\end{eqnarray}$

由Hölder不等式,我们可以得到

$\begin{eqnarray}{\label{3.11}}\int^T_0|x'(t)|^{p}{\rm d}t&\leq&\frac{aT}{2^{p-1}}\left(T^{\frac{1}{q}}\left(\int^T_0|x'(t)|^{p}{\rm d}t\right)^{\frac{1}{p}}\right)^{p}+\frac{pD_2}{2^{p-1}}\left(T^{\frac{1}{q}}\left(\int^T_0|x'(t)|^{p}{\rm d}t\right)^{\frac{1}{p}}\right)^{p-1}\\&&+\cdots+2aTD^p_2+\frac{2bT+\|e\|T}{2}T^{\frac{1}{q}}\left(\int^T_0|x'(t)|^{p}{\rm d}t\right)^{\frac{1}{p}}+(2bT+\|e\|T)D_2\\&=&\frac{aT^{p}}{2^{p-1}}\int^T_0|x'(t)|^{p}{\rm d}t+\frac{pD_2}{2^{p-1}}\left(T^{\frac{1}{q}}\left(\int^T_0|x'(t)|^{p}{\rm d}t\right)^{\frac{1}{p}}\right)^{p-1}+\cdots+2aTD^p_2\\&&+\frac{2bT+\|e\|T}{2}T^{\frac{1}{q}}\left(\int^T_0|x'(t)|^{p}{\rm d}t\right)^{\frac{1}{p}}+(2bT+\|e\|T)D_2.\end{eqnarray}$

$\frac{aT^{p}}{2^{p-1}} < 1$,很容易得到存在一个常数$M_1'>0$ (不依赖于$\lambda$),使得

$ \begin{equation}{\label{eq3.12}}\int^T_0|x'(t)|^p{\rm d}t\leq M_1'.\end{equation}$

由方程(2.5)和方程(2.12),我们有

$\begin{equation}{\label{eq3.13}}\|x\|\leq D_2+\frac{1}{2}\int^T_0|x'(s)|{\rm d}s\leq D_2+\frac{T^{\frac{1}{q}}}{2}(M_1')^{\frac{1}{p}}:=M_1.\end{equation}$

因为$x(t)$$T$周期的,则存在一点$t_0\in(0, T)$使得$x'(t_0)=0$,然而$\varphi_p(0)=0$.因此,由方程(2.8)和方程(2.13),我们得

$\begin{eqnarray}{\label{eq3.14}}|\varphi_p(x'(t))|&=&\left|\int^t_{t_0}(\varphi_p(x'(s)))'{\rm d}s\right|\\&\leq&\lambda\int^T_0|f(x(t))||x'(t)|{\rm d}t+\lambda\int^T_0|g(t, x(t-\sigma(t)))|{\rm d}t+\lambda\int^T_0|e(t)|{\rm d}t\\&\leq&\|f_{M_1}\|T^{\frac{1}{q}}(M'_1)^{\frac{1}{p}}+2aTM_1^{p-1}+2bT+T\|e\|:=M'_2, \end{eqnarray}$

其中$\|f_{M_1}\|:=\max\limits_{|x(t)|\leq M_1}|f(x(t))|$.接下来我们断言存在一个正常数$M_2>M_2'+1$,使得对于所有的$t\in\mathbb{R} $,我们有

$\begin{equation}{\label{eq3.15}}\|x'\|\leq M_2.\end{equation}$

事实上,如果$x'(t)$是无界的;则存在一个正常数$M''_2$使得$\|x'\|>M''_2$对于某些$x'(t)\in\mathbb{R} $成立,因此,我们得到$\|\varphi_p(x')\|=\|x'\|^{p-1}\geq(M''_2)^{p-1}$.则它是矛盾的,于是方程(2.15)成立.

另一方面,由方程(2.2)和$g(t, x(t))=g_0(x(t))+g_1(t, x(t))$

$\begin{equation}{\label{eq3.16}}(\varphi_p(x'(t)))'+\lambda f(x(t))x'(t)+\lambda(g_0(t-\sigma(t))+g_1(t, x(t-\sigma(t))))=\lambda e(t).\end{equation}$

$\tau\in[0, T]$且满足方程(2.4)的定义,方程(2.16)两边同时乘以$x'(t-\sigma(t))(1-\sigma'(t))$且在$[\tau, t]$上积分,得

进一步,有

$\begin{eqnarray}{\label{eq3.18}}\lambda\left|\int^{x(t-\sigma(t))}_{x(\tau-\sigma(\tau))}g_0(v){\rm d}v\right|&\leq&\left|\int^t_{\tau}(\varphi_p(x'(s)))'x'(s-\sigma(s))(1-\sigma'(s)){\rm d}s\right| \\&& +\lambda\left|\int^t_{\tau}f(x(s))x'(s)x'(s-\sigma(s))(1-\sigma'(s)){\rm d}s\right|\\&&+\lambda\left|\int^t_{\tau}g_1(s, x(s-\sigma(s)))x'(s-\sigma(s))(1-\sigma'(s)){\rm d}s\right|\\&& +\lambda\left|\int^t_{\tau}e(s)x'(s-\sigma(s))(1-\sigma'(s)){\rm d}s\right|.\end{eqnarray}$

由方程(2.14)和方程(2.15),我们可得

其中$|f|_{M_1}:=\max\limits_{0 < x\leq M_1}|f(x)|$, $\sigma^1:=\max\limits_{t\in[0, T]}|1-\sigma'(t)|$.同时,我们有

这里$\|g_{M_1}\|=\max\limits_{0 < x\leq M_1}|g_1(t, x)|\in L^2(0, T)$.

由以上不等式,我们可得方程(2.17)为

由强吸引奇性条件(H$_5')$,存在一个正常数$M_3>0$使得

$\begin{equation}{\label{eq3.20}} x(t-\sigma(t))\geq M_3,~~ \forall t\in[\tau, T].\end{equation}$

$v=t-\sigma(t)$,则我们有

同理可得$t\in[0, \tau]$ (即$v\in[-\sigma(0), \tau-\sigma(\tau)]$).

定义

这里$E_1 < \min\{D_1, M_3\}$, $E_2>\max\{D_2, M_1\}$.且可知对于$\lambda\in(0, 1)$,方程(2.2)在$\partial\Omega$上没有解并且当$x(t)\in\partial\Omega\cap \mathbb{R} $时,有$ x(t)=E_2$$x(t)=E_1$.由方程(2.5),有$E_2>D_2$;因此,由条件(H$'_2)$,可得

显然,我们能得到

从而引理2.1条件(ⅲ)成立.由定理1.4可知,方程(1.4)至少有一个正的$T$周期解.

接下来,通过下面的例子来阐明我们的定理.

例2.1  考虑下面具有偏差变元的吸引奇性的$p$-Laplacian Liénard型方程

$\begin{equation}{\label{eq4.1}}(\varphi_p(x'(t)))'+e^{x^5}x'(t)-\frac{1}{3}(2+\sin(4t))x^3\left(t-\frac{\sin(4t)}{5}\right)+\frac{1}{x^{\mu}}=\cos(4t), \end{equation}$

这里$p=4$, $\mu$是一个常数且$\mu\geq1$.

对比方程(2.19)和方程(1.4),可知$f(x)=e^{x^{5}}$, $g(t, x(t-\sigma(t)))=-\frac{1}{3}(2+\sin(4t))x^3(t-\frac{\sin(4t)}{5})+\frac{1}{x^{\mu}}$, $\sigma(t)=\frac{\sin(4t)}{5}$, $\sigma'(t)=\frac{4\cos(4t)}{5} < 1$, $T=\frac{\pi}{2}$.$D_2=2$,显然条件(H$'_2)$是成立的.考虑$g(t, x(t-\sigma(t)))=-\frac{1}{3}(2+\sin(4t))x^3(t-\frac{\sin(4t)}{5}))+\frac{1}{x^{\mu}}$,则我们可得$\int^1_0\frac{1}{x^{\mu}}{\rm d}x=+\infty$且有$-g(t, x(t-\sigma(t)))\leq x^3+1$,其中$a=1, b=1$.因此,条件(H$'_5)$和(H$_6)$成立.接下来,我们有下面的条件

因此,通过定理1.4,我们得到方程(1.4)至少有一个$\frac{\pi}{2}$周期解.

参考文献

Cheng Z B , Ren J L .

Periodic and subharmonic solutions for Duffing equation with a singularity

Discrete Contin Dyn Syst, 2012, 32: 1557- 1574

DOI:10.3934/dcdsa      [本文引用: 1]

Chu J F , Torres P , Zhang M R .

Periodic solution of second order non-autonomous singular dynamical systems

J Differential Equations, 2007, 239: 196- 212

DOI:10.1016/j.jde.2007.05.007     

Ding T R .

A boundary value problem for the periodic Brillouin focusing system

Acta Sci Natru Univ Pekinensis, 1965, 11: 31- 38

[本文引用: 1]

Kong F C , Lu S P , Liang Z T .

Existence of positive periodic solutions for neutral Liénard differential equations with a singularity

Electron J Differential Equations, 2015, 242: 1- 12

Li X , Zhang Z H .

Periodic solutions for damped differential equations with a weak repulsive singularity

Nonlinear Anal TMA, 2009, 70: 2395- 2399

DOI:10.1016/j.na.2008.03.023     

Lu S P , Wang Y J , Guo Y Z .

Existence of periodic solutions of a Liénard equation with a singularity of repulsive type

Bound Value Probl, 2017, 95: 1- 10

URL    

Manásevich R , Mawhin J .

Periodic solutions for nonlinear systems with p-Laplacian-like operators

J Differential Equations, 1998, 145: 367- 393

DOI:10.1006/jdeq.1998.3425      [本文引用: 1]

Torres P .

Weak singularities may help periodic solutions to exist

J Differential Equations, 2007, 232: 277- 284

DOI:10.1016/j.jde.2006.08.006     

Wang H Y .

Positive periodic solutions of singular systems with a parameter

J Differential Equations, 2010, 249: 2986- 3002

DOI:10.1016/j.jde.2010.08.027     

Wang Z H , Ma T T .

Existence and multiplicity of periodic solutions of semilinear resonant Duffing equations with singularities

Nonlinearity, 2010, 25: 279- 307

URL    

Wang Z H .

Periodic solutions of Liénard equation with a singularity and a deviating argument

Nonlinear Anal, 2014, 16: 227- 234

DOI:10.1016/j.nonrwa.2013.09.021      [本文引用: 2]

Xin Y , Cheng Z B .

Positive periodic solution of p-Laplacian Liénard type differential equation with singularity and deviating argument

Adv Difference Equ, 2016, 41: 1- 11

[本文引用: 2]

Ye Y Q , Wang X .

Nonlinear differential equations in electron beam focusing theory

Acta Math Appl Sinica, 1978, 1: 13- 41

URL     [本文引用: 1]

Zhang M R .

Periodic solutions of Liénard equation singular forces of repusive type

J Math Anal Appl, 1996, 203: 254- 269

DOI:10.1006/jmaa.1996.0378      [本文引用: 3]

/