数学物理学报, 2019, 39(2): 209-219 doi:

论文

两类双全纯映照子族在Roper-Suffridge延拓算子下的不变性

王朝君,1, 崔艳艳1, 刘浩,2

The Invariance of Two Subclasses of Biholomorphic Mappings Under the Roper-Suffridge Extension Operators

Wang Chaojun,1, Cui Yanyan1, Liu Hao,2

收稿日期: 2017-10-24  

基金资助: 国家自然科学基金.  11271359
国家自然科学基金.  11471098
河南省教育厅科学技术研究重点项目.  17A110041
河南省教育厅科学技术研究重点项目.  19B110016
周口师范学院科研创新基金项目.  ZKNUA201805

Received: 2017-10-24  

Fund supported: the NSFC.  11271359
the NSFC.  11471098
the Science and Technology Research Projects of Henan Provincial Education Department.  17A110041
the Science and Technology Research Projects of Henan Provincial Education Department.  19B110016
the Scientific Research and Innovation Fund Projects of Zhoukou Normal University.  ZKNUA201805

作者简介 About authors

王朝君,E-mail:wang9907081@163.com , E-mail:wang9907081@163.com

刘浩,E-mail:haoliu@henu.edu.cn , E-mail:haoliu@henu.edu.cn

摘要

该文将已有的Roper-Suffridge延拓算子在Bergman-Hartogs域上进行了推广,应用αβ型螺形映照及复数λ阶殆星映照的几何性质及增长定理,讨论了推广后的Roper-Suffridge延拓算子在Bergman-Hartogs域上保持αβ型螺形性及复数λ阶殆星性,并得到一些特殊情况.所得结论为构造多复空间中的αβ型螺形映照及复数λ阶殆星映照提供了新的途径.

关键词: Roper-Suffridge算子 ; 双全纯映照 ; Bergman-Hartogs域

Abstract

In this paper, we generalize the Roper-Suffridge operator on Bergman-Hartogs domains. Applying the geometric properties and the growth theorems of spirallike mappings of type β and order α as well as almost starlike mappings of complex order λ, we obtain that the generalized Roper-Suffridge operators preserve spirallikeness of type β and order α as well as almost starlikeness of complex order λ on Bergman-Hartogs domains which lead to some special cases. The conclusions provide new approaches to construct spirallike mappings of type β and order α and almost starlike mappings of complex order λ in several complex variables.

Keywords: Roper-Suffridge operators ; Biholomorphic mappings ; Bergman-Hartogs domains

PDF (360KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

王朝君, 崔艳艳, 刘浩. 两类双全纯映照子族在Roper-Suffridge延拓算子下的不变性. 数学物理学报[J], 2019, 39(2): 209-219 doi:

Wang Chaojun, Cui Yanyan, Liu Hao. The Invariance of Two Subclasses of Biholomorphic Mappings Under the Roper-Suffridge Extension Operators. Acta Mathematica Scientia[J], 2019, 39(2): 209-219 doi:

1 引言

双全纯映照是一类性质相对较好的映照,因此对其构造及性质的研究是多复变函数论中的主要研究内容之一.对双全纯映照研究的基础是单复变单叶解析函数的理论,在将单复变函数论中的结果向多复变数空间推广的过程中,人们发现单复变中的一些基本结论在多复变中不再成立,于是考虑对双全纯映照加以几何上的限制,例如星形性和凸性[1],而具有特殊几何性质的双全纯映照,例如星形映照和凸映照,便成为主要的研究对象.

在单复变中比较容易构造具有某种特殊几何性质的双全纯函数,然而在多复变数空间中却相当困难. 1995年Roper-Suffridge算子[2]的引入解决了这个问题. Roper-Suffridge算子具有很好的性质,人们证明了该算子保持星形性及Bloch性质[3, 4],通过Roper-Suffridge算子我们可以由单复变中的星形函数构造多复变中的星形映照.后来人们将Roper-Suffridge算子进行了推广,发现推广后的Roper-Suffridge算子在一定条件下保持星形性、凸性和螺形性[5, 6].从而Roper-Suffridge算子可以视为单复变与多复变之间的一座桥梁,利用该算子及其推广我们可以由单复变中具有特殊几何性质的双全纯函数构造出多复变数空间中相应的映照.于是Roper-Suffridge算子成为了多复变函数论中的一个研究热点.而且,随着对具有特殊几何性质的双全纯映照的构造的研究,许多双全纯映照子族涌现了出来,因此讨论这些双全纯映照子族在Roper-Suffridge算子及其推广下的几何不变性便成为了一项重要的工作,于是许多学者在不同空间的不同区域上研究了Roper-Suffridge延拓算子及其推广.到目前为止关于Roper-Suffridge延拓算子已经有了许多很好的结论[7-10].

2016年,唐言言[11]在一类Bergman-Hartogs域

上讨论了推广的Roper-Suffridge延拓算子

$F(w, z)=(w_{(1)}(f'(z_{1}))^{\delta_{1}}, \cdots, w_{(s)}(f'(z_{1}))^{\delta_{s}}, f(z_{1}), (f'(z_{1}))^{\gamma}z_{0})'$

保持$\alpha$次殆$\beta$型螺形性, $\alpha$$\beta$型螺形性和强$\beta$型螺形性.

现在将算子(1.1)进一步推广为

$F(w, z)=\left(w_{(1)}\Big(\frac{f(z_{1})}{z_{1}}\Big)^{\delta_{1}}, \cdots, w_{(s)}\Big(\frac{f(z_{1})}{z_{1}}\Big)^{\delta_{s}}, f(z_{1})+G\Big(\Big[\frac{f(z_{1})}{z_{1}}\Big]^\gamma z_0\Big), \Big(\frac{f(z_{1})}{z_{1}}\Big)^{\gamma}z_0\right)', $

其中$(w, z)=(w_{(1)}, \cdots, w_{(n)}, z)\in\Omega_{p_{1}, \cdots, p_{s}, q}^{B_{n}}$, $z=(z_{1}, z_{0})\in B^n$, $f(z_1)$是单位圆盘$D$上正规化的双全纯函数, $G$$C^{n-1}$中的全纯映照,且$G(0)=0, DG(0)=I, \gamma\geq 0$.幂函数取分支使得$[f'(z_{1})]^{\delta_i}|_{z_{1}=0}=1$$(i=1, \cdots, s), $$[f'(z_{1})]^{\gamma}|_{z_{1}=0}=1$. $G(z)$的齐次展开式是$\sum\limits^{\infty}_{j=0}P_{j}(z)$,其中$P_{j}(z)$$j$次齐次多项式.

在(1.2)式中令$w_{(1)}=\cdots=w_{(s)}=0$,则得到下述算子

$F(z)=\left(f(z_{1})+G\Big(\Big[\frac{f(z_{1})}{z_{1}}\Big]^\gamma z_0\Big), \Big(\frac{f(z_{1})}{z_{1}}\Big)^{\gamma}z_0\right)'.$

本文主要讨论$\alpha$$\beta$型螺形映照及复数$\lambda$阶殆星映照在Roper-Suffridge延拓算子(1.2)下的几何不变性.在第2节给出所要用到的定义及引理.在第3-5节,应用$\alpha$$\beta$型螺形映照及复数$\lambda$阶殆星映照的几何性质及增长定理,讨论了算子(1.2)在Bergman-Hartogs域$\Omega_{p_{1}, \cdots, p_{s}, q}^{B_{n}}$上保持$\alpha$$\beta$型螺形性及复数$\lambda$阶殆星性,从而得到Roper-Suffridge延拓算子(1.3)在一定条件下也保持同样的性质.

2 定义及引理

定义2.1 (Feng S X, Liu T S[12])  设$\Omega$$C^{n}$中的有界星形圆形域,其Minkowski泛函$\rho(z)$除去一个低维流形域外是$C^1$的.设$f:\Omega\rightarrow C^n$$\Omega$上的正规化局部双全纯映照.若$\alpha\in{(0, 1)}$, $\beta\in{(-\frac{\pi}{2}, \frac{\pi}{2})}$,且

则称$f$$\Omega$上的$\alpha$$\beta$型螺形映照.

在定义2.1中令$\beta=0$, $\Omega=B^{n}$,则得到$B^{n}$$\alpha$次星形映照[13]的定义, $D$$\alpha$次星形函数的定义是由M S Robertson引入的[14].

定义2.2 (赵燕红[15])  设$\Omega$$C^{n}$中的有界星形圆形域,其Minkowski泛函$\rho(z)$除去一个低维流形域外是$C^1$的.设$F(z)$$\Omega$上正规化的局部双全纯映照.若

其中$\lambda\in{\Bbb C}$, ${\rm Re}\lambda\leq$0.则称$F(z)$$\Omega$上的复数$\lambda$阶殆星映照.

在定义2.2中令$\lambda=\frac{\alpha}{\alpha-1}, \alpha\in[0, 1)$则得到$\Omega$$\alpha$次殆星形映照的定义.

引理2.3 (Liu T S, Ren G B[16])  设$\Omega\subset C^n$是有界星形圆形域,其Minkowski泛函$\rho(z)$除去一个低维流行$\Omega_{0}$外一阶可导,则$\forall z=(z_{1}, \cdots, z_{n})\in\Omega\setminus\Omega_{0}$

引理2.4 (唐言言[11])  $\rho(w, z)$$\Omega_{p_{1}, \cdots, p_{s}, q}^{B_{n}}$上的Minkowski泛函,若$(w, z)\in\partial\Omega_{p_{1}, \cdots, p_{s}, q}^{B_{n}}$,则有$\rho(w, z)=1$

其中$\nabla_1=(n+1)q\pi^{nq}(n!)^{-q}(1-\|z\|^2)^{(n+1)q-1}\|z\|^2, \nabla_2=\Sigma^s_{k=1}p_k\|w_{(k)}\|^{2p_k}.$

引理2.5 (冯淑霞,刘太顺,任广斌[17])  设$f(z)$$n$维复Banach空间单位球$B$上的$\alpha$$\beta$型螺形映照, $\alpha\in(0, 1)$, $\beta\in(-\pi/2, \pi/2)$.

$n=1$时有

引理2.6 (Duren P L[18])  设$f(z)$是单位圆盘$D$上正规化的双全纯函数,则

3 $\alpha$$\beta$型螺形性

定理3.1   设$f(z_{1})$$D$上正规化的$\alpha$$\beta$型螺形函数, $\alpha\in[\frac{1}{2}, 1)$, $\beta\in{(-\frac{\pi}{2}, \frac{\pi}{2})}$,且$F(w, z)$是由(1.2)式所定义的映照, $p_i>1, \delta_i\in[0, 1]$$(i=1, \dots, s), (1-\alpha)\gamma<\frac{1}{4}$.幂函数取分支使得$(\frac{f(z_{1})}{z_{1}})^{\delta_{i}}|_{z_1=0}=1, (\frac{f(z_{1})}{z_{1}})^{\gamma}|_{z_1=0}=1$.$\delta=\max\{p_1\delta_1, \cdots, p_s\delta_s\}$.$q\geq\frac{\delta}{n+1}$,有

$F(w, z)$$\Omega$上的$\alpha$$\beta$型螺形映照.

  由定义2.1下证

$\begin{equation}\bigg|2\alpha\ (1-i\tan\beta)\frac{2}{\rho(w, z)}\frac{\partial\rho(w, z)}{\partial(w, z)}(DF(w, z))^{-1}F(w, z)-1+i2\alpha\tan\beta\bigg|<1.\end{equation}$

$w=z_{0}=0$时(3.1)式显然成立.否则,令$(w, z)=\zeta(\xi, \eta)=|\zeta|{\rm e}^{{\rm i}\theta}(\xi, \eta)$,其中$(\xi, \eta)\in\partial\Omega$, $\zeta\in\bar{D}\setminus\{0\}$,则由引理2.3有

若固定$\xi, \eta$,则$\frac{2\partial\rho}{\partial(w, z)}(\xi, \eta)\frac{(DF(\zeta\xi, \zeta\eta))^{-1}F(\zeta\xi, \zeta\eta)}{\zeta}$关于$\zeta$全纯,由全纯函数的最大模原理知(3.1)式左端在$|\zeta|=1$上达到最大值,故只需证明当$(w, z)\in\partial\Omega$时(3.1)式成立即可.此时$\rho(w, z)=1$.

$\begin{equation}h(z_1)=2\alpha(1-i\tan\beta)\frac{f(z_1)}{z_1f'(z_1)}-1+i2\alpha\tan\beta.\end{equation}$

$h(z_1)\in H(D), \quad|h(z_1)|<1.$$g(z_1)=\frac{h(z_1)+1-2\alpha}{2\alpha(1-i\tan\beta)}$,则有$g(z_1)\in H(D), g(0)=0$$|h(z_1)|=|2\alpha(1-i\tan\beta)g(z_1)-(1-2\alpha)|<1$, $\frac{2\alpha}{\cos\beta}|g(z_1)|-|1-2\alpha|<|2\alpha(1-i\tan\beta)g(z_1)-(1-2\alpha)|$.于是当$\alpha\in[\frac{1}{2}, 1)$时有$|g(z_1)|<\frac{\cos\beta}{2\alpha}(1+|1-2\alpha|)\leq\cos\beta\leq1$.由Schwarz引理得$|g(z_1)|\leq|z_1|$,则

$\begin{equation}|h(z_1)+1-2\alpha|\leq\frac{2\alpha}{\cos\beta}|z_1|.\end{equation}$

由(1.2)式经计算可得$(DF(w, z))^{-1}F(w, z)=(h_1, \cdots, h_{s+n})'$,其中

由引理2.4得

$\begin{equation}\frac{2\partial\rho}{\partial(w, z)}(w, z)(DF(w, z))^{-1}F(w, z)=\frac{G(w, z)}{\nabla_{1}+\nabla_{2}}, \end{equation}$

其中

于是由(3.2)及(3.4)式得

其中$\widetilde{\nabla_2}=\sum\limits^s_{k=1}\delta_kp_k\|w_k\|^{2p_k}$.$(w, z)\in\Omega_{p_{1}, \cdots, p_{s}, q}^{B_{n}}$$\sum\limits^s_{k=1}\|w_{(k)}\|^{2p_k}< (\frac{\pi^n}{n!})^q(1-\|z\|^2)^{(n+1)q}.$$\nabla_1=(n+1)q\pi^{nq}(n!)^{-q}(1-\|z\|^2)^{(n+1)q-1}\|z\|^2, \quad\widetilde{\nabla_2}<\delta\sum\limits^s_{k=1}\|w_k\|^{2p_k}, $$\frac{\widetilde{\nabla_2}}{\nabla_1}<\frac{\delta(1-\|z\|^2)}{(n+1)q\|z\|^2}.$于是当$q\geq\frac{\delta}{n+1}$时有

$\begin{eqnarray} \frac{\widetilde{\nabla_2}}{\nabla_1}\|z\|^2 +|z_1|^2+\gamma\|z_0\|^2 &<&\frac{\delta}{(n+1)q}(1-\|z\|^2)+\|z\|^2+(\gamma-1)\|z_0\|^2 \\ &=&\frac{\delta}{(n+1)q}+(1-\frac{\delta}{(n+1)q})\|z\|^2+(\gamma-1)\|z_0\|^2 \\ &<&1.%(3.5)\end{eqnarray}$

由(3.3), (3.5)式及引理2.5知,当$(1-\alpha)\gamma<\frac{1}{4}$

时有

故(3.1)式成立,于是定理得证.

在定理3.1中令$w_{(1)}=\cdots=w_{(s)}=0$则有以下结论.

推论3.2  设$f(z_{1})$$D$上正规化的$\alpha$$\beta$型螺形函数, $\alpha\in[\frac{1}{2}, 1)$, $\beta\in{(-\frac{\pi}{2}, \frac{\pi}{2})}$. $F(z)$是(1.3)式所定义的映照, $(1-\alpha)\gamma<\frac{1}{4}$.幂函数取分支使得$(\frac{f(z_{1})}{z_{1}})^{\gamma}|_{z_1=0}=1$.

$F(z)$$B^n$上的$\alpha$$\beta$型螺形映照.

定理3.3  设$f_1(z_1)\cdots, f_n(z_n)$$D$上的$\alpha$$\beta$型螺形函数, $\alpha\in(0, 1)$, $\beta\in{(-\frac{\pi}{2}, \frac{\pi}{2})}$,

$F(w, z)$$\Omega$上的$\alpha$$\beta$型螺形映照.

  由$F(w, z)$的表达式经计算可知

于是由引理2.4得

与定理3.1同理可得结论成立.

推论3.4  设$f_1(z_1)\cdots, f_n(z_n)$$D$上的$\alpha$$\beta$型螺形函数, $\alpha\in(0, 1)$, $\beta\in{(-\frac{\pi}{2}, \frac{\pi}{2})}$,

$F(z)$$B^n$上的$\alpha$$\beta$型螺形映照.

注3.5  在定理3.1, 3.3及推论3.2, 3.4中令$\beta=0$,则得到相应的$\alpha$次星形映照的结论.

4 复数$\lambda$阶殆星形性

定理4.1  设$f(z_{1})$$D$上的复数$\lambda$阶殆星函数, $\lambda\in{\Bbb C}$, ${\rm Re}\lambda\leq$0, $F(w, z)$是(1.2)式所定义的映照, $p_i>1, \delta_i\in[0, 1]$$(i=1, \dots, s), \gamma\in[0, \frac{1}{4})$.幂函数取分支使得$(\frac{f(z_{1})}{z_{1}})^{\delta_{i}}|_{z_1=0}=1, $$(\frac{f(z_{1})}{z_{1}})^{\gamma}|_{z_1=0}=1$.$\delta=\max\{p_1\delta_1, \cdots, p_s\delta_s\}$.$q\geq\frac{\delta}{n+1}$, $P_j=0(j<\frac{4}{1-4\gamma})$

$F(w, z)$$\Omega$上的复数$\lambda$阶殆星映照.

  由定义2.2下证

${\rm Re}\bigg[(1-\lambda)\frac{2}{\rho(w, z)}\frac{\partial\rho}{\partial(w, z)}(w, z)(DF(w, z))^{-1}F(w, z)+\lambda\bigg]\geq0.$

与定理3.1同理可知${\rm Re}\big[(1-\lambda)\frac{2}{\rho(w, z)}\frac{\partial\rho}{\partial(w, z)}(w, z)(DF(w, z))^{-1}F(w, z)+\lambda\big]$是一全纯函数的实部,从而是调和函数.由调和函数的最小值原理知,我们只需证明当$(w, z)\in\partial\Omega$时(4.1)式成立即可.此时$\rho(w, z)=1$.

由于$f(z_{1})$$D$上的复数$\lambda$阶殆星函数,则${\rm Re}[(1-\lambda)\frac{f(z_{1})}{z_{1}f'(z_{1})}+\lambda]\geq0.$

$h(z_{1})=(1-\lambda)\frac{f(z_{1})}{z_{1}f'(z_{1})}+\lambda.$

${\rm Re} h(z_{1})>0$, $h(0)=1$.$g(z_1)=\frac{h(z_{1})-1}{h(z_{1})+1}$.$g(z_{1})\in H(D), |g(z_{1})|<1, g(0)=0$.由Schwarz引理有$|g(z_{1})|\leq|z_1|$,即$|\frac{h(z_{1})-1}{h(z_{1})+1}|\leq|z_1|$,于是

$|h(z_{1})-1|\leq\frac{2|z_1|}{1-|z_1|}.$

由(4.2)及(3.4)式得

由(4.3), (3.5)式及引理2.6知,当$P_j=0(j<\frac{4}{1-4\gamma})$$\sum\limits^\infty_{j=2}2^{\frac{j}{2}+1}(j-1)\|P_j\|\leq\frac{1-\gamma}{2+|1-\lambda|}$时有

于是(4.1)式成立,则定理得证.

在定理4.1中令$w_{(1)}=\cdots=w_{(s)}=0$,则有以下结论.

推论4.2  设$f(z_{1})$$D$上的复数$\lambda$阶殆星函数, $\lambda\in{\Bbb C}, {\rm Re}\lambda\leq$0. $F(z)$是(1.3)式所定义的映照, $\gamma\in[0, \frac{1}{4})$.幂函数取分支使得$(\frac{f(z_{1})}{z_{1}})^{\gamma}|_{z_1=0}=1$.$P_j=0(j<\frac{4}{1-4\gamma})$

$F(z)$$B^n$上的复数$\lambda$阶殆星映照.

定理4.3  设$f_1(z_1)\cdots, f_n(z_n)$$D$上的复数$\lambda$阶殆星函数, $\lambda\in{\Bbb C}, $${\rm Re}\lambda\leq$0.

$F(w, z)$$\Omega$上的复数$\lambda$阶殆星映照.

  令

与定理4.1同理可证.

推论4.4  设$f_1(z_1)\cdots, f_n(z_n)$$D$上的复数$\lambda$阶殆星函数, $\lambda\in{\Bbb C}$, ${\rm Re}\lambda\leq$0.

$F(z)$$B^n$上的复数$\lambda$阶殆星映照.

注4.5  在定理4.1, 4.3及推论4.2, 4.4中令$\lambda=\frac{\alpha}{\alpha-1}, \alpha\in[0, 1)$,则得到相应的$\alpha$次殆星形映照的结论.

参考文献

Cartan H. Sur la Possibilite D'etendre aux Fonctions de Plusieurs Variables Complexes la Theorie des Fonctions Univalents//Montel P. Lecons sur les Fonctions Univalents on Mutivalents. Paris: Gauthier-Villars, 1933: 129-155

[本文引用: 1]

Roper K A , Suffridge T J .

Convex mappings on the unit ball of Cn

J Anal Math, 1995, 65: 333- 347

DOI:10.1007/BF02788776      [本文引用: 1]

Graha I , Kohr G , Kohr M .

Loewner chains and Roper-Suffridge extension operator

J Math Anal Appl, 2000, 247: 448- 465

DOI:10.1006/jmaa.2000.6843      [本文引用: 1]

Graham I , Kohr G .

Univalent mappings associated with the Roper-Suffridge extension operator

J Analyse Math, 2000, 81: 331- 342

DOI:10.1007/BF02788995      [本文引用: 1]

Graham I , Hamada H , Kohr G , Suffridge T J .

Extension operators for locally univalent mappings

Michigan Math J, 2002, 50: 37- 55

DOI:10.1307/mmj/1022636749      [本文引用: 1]

Liu X S , Liu T S .

The generalized Roper-Suffridge extension operator for locally biholomorphic mappings

Chin Quart J of Math, 2003, 18 (3): 221- 229

URL     [本文引用: 1]

刘名生, 朱玉灿.

有界完全Reinhardt域上推广的Roper-Suffridge算子

中国科学A辑, 2007, 37 (10): 1193- 1206

URL     [本文引用: 1]

Liu M S , Zhu Y C .

Generalized Roper-Suffridge operators on bounded and complete Reinhardt domains

Science in China A, 2007, 37 (10): 1193- 1206

URL     [本文引用: 1]

刘浩, 夏红川.

Reinhardt域上一类推广的Roper-Suffridge算子

数学学报, 2016, 59 (2): 253- 266

DOI:10.3969/j.issn.1006-6330.2016.02.006     

Liu H , Xia H C .

The generalized Roper-Suffridge operator on Reinhardt domains

Acta Mathematica Sinica, Chinese Series, 2016, 59 (2): 253- 266

DOI:10.3969/j.issn.1006-6330.2016.02.006     

Wang J F .

Modifiled Roper-Suffridge operator for some subclasses of starlike mappings on Reinhardt domains

Acta Math Sci, 2013, 33B (6): 1627- 1638

Feng S X , Liu T S .

Uniformly starlike mappings and uniformly convex mappings on the unit ball Bn

Acta Math Sci, 2014, 34B (2): 435- 443

URL     [本文引用: 1]

唐言言. Bergman-Hartogs型域上的Roper-Suffridge算子.开封:河南大学, 2016

URL     [本文引用: 2]

Tang Y Y. Roper-Suffridge Operators on Bergman-Hartogs Domain. Kaifeng: Henan University Master Thesis, 2016

URL     [本文引用: 2]

Feng S X , Liu T S .

The generalized Roper-Suffridge extension operator

Acta Math Sci, 2008, 28B (1): 63- 80

URL     [本文引用: 1]

Curt P .

A Marx-Strohhäcker theorem in several complex variables

Mathematica, 1997, 39: 59- 70

[本文引用: 1]

Robertson V .

On the theory of univalent functions

Ann of Math, 1936, 37: 374- 408

DOI:10.2307/1968451      [本文引用: 1]

赵燕红.复Banach空间单位球上的复数λ阶殆星映射[D].金华:浙江师范大学, 2013

URL     [本文引用: 1]

Zhao Y H. Almost Starlike Mappings of Complex Order λ on the Unit Ball of a Complex Banach Space[D]. Jinhua: Zhejiang Normal University, 2013

URL     [本文引用: 1]

Liu T S , Ren G B .

Growth theorem of convex mappings on bounded convex circular domains

Science in China, 1998, 41 (2): 123- 130

URL     [本文引用: 1]

冯淑霞, 刘太顺, 任广斌.

复Banach空间单位球上几类映射的增长掩盖定理

数学年刊, 2007, 28A (2): 215- 230

DOI:10.3321/j.issn:1000-8134.2007.02.007      [本文引用: 1]

Feng S X , Liu T S , Ren G B .

The growth and covering theorems for several mappings on the unit ball in complex Banach spaces

Chin Ann Math, 2007, 28A (2): 215- 230

DOI:10.3321/j.issn:1000-8134.2007.02.007      [本文引用: 1]

Duren P L . Univalent Functions. New York: Springer-Verlag, 1983: 57- 58

[本文引用: 1]

/