数学物理学报, 2019, 39(1): 49-58 doi:

论文

一类分数阶系统的稳定性和Laplace变换

王春,

Stability of Some Fractional Systems and Laplace Transform

Wang Chun,

收稿日期: 2017-09-30  

基金资助: 山西省自然科学基金.  201801D121024

Received: 2017-09-30  

Fund supported: 山西省自然科学基金.  201801D121024

作者简介 About authors

王春,E-mail:wangchun12001@163.com , E-mail:wangchun12001@163.com

摘要

该文研究了一类分数阶微分系统的Hyers-Ulam-Rassias稳定性.主要应用Laplace变换方法证明了这类分数阶系统是Hyers-Ulam-Rassias稳定的.通过具体的例子说明了所得理论结果的有效性.

关键词: Hyers-Ulam-Rassias稳定性 ; 分数阶微分系统 ; 分数阶微分方程 ; Laplace变换

Abstract

This paper investigates the Hyers-Ulam-Rassias stability of a kind of fractional differential systems, and proves that this kind of fractional differential systems are Hyers-UlamRassias stable by the Laplace transform method. Two examples are given to illustrate the theoretical results.

Keywords: Hyers-Ulam-Rassias stability ; Fractional differential system ; Fractional differential equation ; Laplace transform

PDF (304KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

王春. 一类分数阶系统的稳定性和Laplace变换. 数学物理学报[J], 2019, 39(1): 49-58 doi:

Wang Chun. Stability of Some Fractional Systems and Laplace Transform. Acta Mathematica Scientia[J], 2019, 39(1): 49-58 doi:

1 引言

$X$是一个赋范空间, $I$是一个开区间.对任何$x\in I$和某个$\varepsilon\geq 0$,如果对任何满足微分不等式

的映射$f : I \rightarrow X$,都存在微分方程

的一个解$f_0 : I \rightarrow X $使得对任何的$x\in I$不等式$\|f(x)-f_0(x)\|\leq K(\varepsilon)$都成立,这里$K(\varepsilon)$仅仅是$\varepsilon$的表达式,那么称该微分方程具有Hyers-Ulam稳定性.

在上面的定义中,如果用$\phi(x)$$\Phi(x)$分别代替$\varepsilon$$K(\varepsilon)$时,其结论还是成立的,那么我们称该微分方程有Hyers-Ulam-Rassias稳定性,这里$\phi, \Phi: I\rightarrow[0, \infty)$是不明确依赖于$f$$f_0$的非负函数.该定义也可以参考文献[4].

Obloza是第一个研究线性微分方程Hyers-Ulam稳定性的学者(参考文献[12-13]).从此开始,很多数学家和学者把注意力放在了研究微分方程的Hyers-Ulam稳定性上,得到了一系列丰富的研究结果(可参考文献[1, 3-7, 11, 15, 17-18, 21, 23-24]和这些文献中的相关参考文献).此外,关于函数空间上的算子及具有不同结构的空间上函数方程的Hyers-Ulam-Rassias稳定性研究读者可以参考文献[20, 22, 25-27].

分数阶微分方程在模拟科学和工程各个领域的很多现象中已经变成最有价值和最有用的工具之一,譬如在粘弹性理论、电化学、电磁学、经济、最优控制等学科领域的应用.分数阶导数最主要的优点是能够描述很多材料的记忆性质和遗传性质.因此,近些年来,分数阶微分方程研究得到了较大的关注,这方面可参考专著[9, 14],以及专著内所列的相关参考文献.

近些年来,一些学者研究了某些分数阶系统的解和Hyers-Ulam-Rassias稳定性.在文献[8]中,应用矩阵方法, Jung讨论了常系数一阶线性微分系统的Hyers-Ulam稳定性.在文献[2]中, Gejji和Babakhani给出了一类分数阶系统初始值问题的存在唯一性定理.通过应用Laplace变换方法, Rezaei, Jung和Rassias讨论了线性微分方程的Hyers-Ulam稳定性(参考文献[16]). Wang和Li[19]应用Laplace变换方法研究了一类线性分数阶微分方程的Hyers-Ulam稳定性. Shen和Chen[17]也通过应用Laplace变换方法研究了一类带有常系数的线性分数阶微分方程的Ulam稳定性,得到了一些新颖的结果.

在本文中,我们研究了以下类型的分数阶微分系统的Hyers-Ulam-Rassias稳定性.该类系统包括分数阶系统

$ \begin{equation}\label{e1.1} \left\{ \begin{array}{l} ^C_0\!D_t^\alpha\vec{x}(t)=A\vec{x}(t)+\vec{f}(t), 0<\alpha<1, t\geq0, \\ \vec{x}(0)=\vec{\eta} \end{array} \right. \end{equation}$

和分数阶系统

$ \begin{equation}\label{e1.2} \left\{ \begin{array}{l} ^C_0\!D_t^\alpha\vec{x}(t)=A\ ^C_0\!D_t^\beta\vec{x}(t)+\vec{g}(t), 0<\beta<\alpha<1, t\geq0, \\ \vec{x}(0)=\vec{\eta}, \end{array} \right. \end{equation}$

这里$^C_0\!D_t^\alpha\vec{x}(\cdot)$$^C_0\!D_t^\beta\vec{x}(\cdot)$都是Caputo分数阶微分算子, $A$$n\times n$常数矩阵, $\vec{f}(t)$$\vec{g}(t)$都是$n$ -维连续的向量值函数,通常它们也被称为系统的强迫项.本文中我们给出了使得系统(1.1)和(1.2)是Hyers-Ulam-Rassias稳定的一些充分条件.

2 预备知识

在这一部分,我们给出一些定义和引理,在证明主要结论时要用到它们.

定义2.1  一个向量值函数$\vec{h}:(0, \infty)\rightarrow {\Bbb R}^n$$\alpha (0<\alpha<1)$阶Riemann-Liouville分数阶积分定义为

$\begin{equation}\label{e2.1}_0I_t^\alpha\vec{h}(t)=\frac{1}{\Gamma(\alpha)}\int_0^t(t-s)^{\alpha-1}\vec{h}(s)\text{d}\mathsf{s}.\end{equation}$

定义2.2  一个向量值函数$\vec{h}:(0, \infty)\rightarrow {\Bbb R}^n$$\alpha (0<\alpha<1)$阶Riemann-Liouville分数阶导数定义为

$\begin{equation}_0D_t^\alpha\vec{h}(t)=\frac{1}{\Gamma(1-\alpha)}\frac{{{\rm{d}}}}{{{\rm{d}}}t}\int_0^t(t-s)^{-\alpha}\vec{h}(s){{\rm{d}}}s.\end{equation}$

定义2.3  一个向量值函数$\vec{h}:(0, \infty)\rightarrow {\Bbb R}^n$$\alpha (0<\alpha<1)$阶Caputo分数阶导数定义为

$\begin{equation}\label{e2.3}_0^CD_t^\alpha\vec{h}(t)= {}_0D_t^\alpha[\vec{h}(t)-\vec{h}(0)].\end{equation}$

注2.1  当$\vec{h}\in AC[0, T]$,我们有

$\begin{equation}_0^CD_t^\alpha\vec{h}(t)=\frac{1}{\Gamma(1-\alpha)}\int_0^t(t-s)^{-\alpha}\vec{h}'(s){{\rm{d}}}s.\end{equation}$

定义2.4   Mittag-Leffler函数$E_{\alpha, \beta}(z)$定义为

$\begin{eqnarray} E_{\alpha, \beta}(z)=\sum\limits_{k=0}^{\infty}\frac{z^k}{\Gamma(\alpha k+\beta)} (z, \beta \in {\Bbb C}; \Re(\alpha)>0). \end{eqnarray} $

$\alpha=\beta=1$时,我们得到$E_{1, 1}(z)=e^z$.关于该函数的更多性质可以参考文献[9].此外, $\alpha$ -指数函数定义为

这里$z\in{\Bbb C}\backslash \{0\}, {\mathfrak R}(\alpha)>0, $$\lambda\in{\Bbb C}, $${\Bbb C}$是复平面.

定义2.5  设$\vec{f}(t)$是一个$n$ -维向量值函数. $\vec{f}(t)$的Laplace变换定义为

$\begin{equation} \vec{F}(s)={\cal L}\{\vec{f}(t)\}(s):=\int_0^\infty e^{-st}\vec{f}(t){{\rm{d}}}t. \end{equation}$

定义2.6  设$\vec{f}(t)$是定义在区间$[0, \infty)$上的向量值函数,如果存在两个实常数$M>0$$c$,对充分大的$t$都有

$\begin{eqnarray} \|\vec{f}(t)\|\leq Me^{ct} \end{eqnarray} $

成立,我们称向量值函数$\vec{f}(t)$是指数有界的.

引理2.1[10]  设${\Bbb C}$是复平面, ${\mathfrak R}(s)$表示复数$s$的实部,对任何的$\alpha>0, \beta>0$$A\in {\Bbb C}^{n\times n}$,若${\mathfrak R}(s)>\|A\|^{\frac{1}{\alpha}}$,则

$\begin{equation} {\cal L}\{t^{\beta-1}E_{\alpha, \beta}(A t^\alpha)\}=s^{\alpha-\beta}(s^\alpha I-A)^{-1} \end{equation}$

成立.

在文献[10]中,作者得到了下面的引理2.2,并通过应用引理2.2和逆Laplace变换得到了一类微分系统的解.

引理2.2  设系统(1.1)有惟一的连续解$\vec{x}(t)$,如果$\vec{f}(t)$$[0, \infty)$上是连续的并且是指数有界的,那么$\vec{x}(t)$和它的Caputo导数$^C_0\!D_t^\alpha\vec{x}(t)$都是指数有界的,于是它们的Laplace变换都存在.

在下文中,我们假设在系统(1.1)和(1.2)中的$\vec{f}(t)$$\vec{g}(t)$都是指数有界的.

3 分数阶系统(1.1)的Hyers-Ulam-Rassias稳定性

在这一部分,我们将要应用Laplace变换方法证明分数阶系统(1.1)是Hyers-Ulam-Rassias稳定的.

定理3.1  设$A\in M_{n\times n}({\Bbb R})$, $0<\alpha<1$,向量值函数$\vec{f}(t)$是指数有界的.如果向量值函数$\vec{x}(t): [0, +\infty)\rightarrow{\Bbb R}^n$对所有的$t\in[0, +\infty)$和某个$\varepsilon>0$满足不等式

$ \begin{equation}\label{e3.1} \left\|^C_0\!D_t^\alpha\vec{x}(t)-A\vec{x}(t)-\vec{f}(t)\right\|\leq\varepsilon, \end{equation} $

那么存在分数阶系统(1.1)的一个解$\vec{x}^\ast(t)$使得

$ \begin{equation}\label{e3.2} \left\|\vec{x}(t)-\vec{x}^\ast(t)\right\|\leq\varepsilon t^\alpha E_{\alpha, \alpha+1}\left(\|A\|t^\alpha\right). \end{equation} $

  设$\vec{Z}(t)= \ ^C_0\!D_t^\alpha\vec{x}(t)-A\vec{x}(t)-\vec{f}(t)$,我们有

$ \begin{eqnarray}\label{e3.3} {\cal L}\left\{\vec{Z}(t)\right\} &=& {\cal L}\left\{\ ^C_0\!D_t^\alpha\vec{x}(t)-A\vec{x}(t)-\vec{f}(t)\right\} \nonumber\\&=&s^\alpha I{\cal L}\left\{\vec{x}(t)\right\}-s^{\alpha-1}\vec{\eta}-A{\cal L}\left\{\vec{x}(t)\right\}-{\cal L}\left\{\vec{f}(t)\right\} \nonumber\\ &=&\left(s^\alpha I-A\right){\cal L}\left\{\vec{x}(t)\right\}-s^{\alpha-1}\vec{\eta}-{\cal L}\left\{\vec{f}(t)\right\}, \end{eqnarray} $

这里$I$是单位矩阵.由(3.3)式,我们得到

$ \begin{equation}\label{e3.4} {\cal L}\left\{\vec{x}(t)\right\}=\left(s^\alpha I-A\right)^{-1}\left\{{\cal L}\left\{\vec{Z}(t)\right\}+s^{\alpha-1}\vec{\eta}+{\cal L}\left\{\vec{f}(t)\right\}\right\}. \end{equation}$

$\begin{equation}\label{e3.5} \vec{x}^\ast(t)=\int_0^te_\alpha^{A(t-\xi)}\vec{f}(\xi){{\rm{d}}}\xi+\int_0^te_\alpha^{A(t-\xi)}A\vec{\eta}{{\rm{d}}}\xi+\vec{\eta}, \end{equation}$

通过应用Laplace变换的卷积性质,可证明

$ \begin{eqnarray}\label{e3.6} {\cal L}\left\{\vec{x}^\ast(t)\right\} &=& {\cal L}\left\{\int_0^te_\alpha^{A(t-\xi)}\vec{f}(\xi){{\rm{d}}}\xi\right\}+ {\cal L}\left\{\int_0^te_\alpha^{A(t-\xi)}A\vec{\eta}{{\rm{d}}}\xi\right\}+{\cal L}\left\{\vec{\eta}\right\}\nonumber\\&=& {\cal L}\left\{e_\alpha^{At}\right\}{\cal L}\left\{\vec{f}(t)\right\}+{\cal L}\left\{e_\alpha^{At}\right\}{\cal L}\left\{A\vec{\eta}\right\}+\frac{1}{s}\vec{\eta} \nonumber\\&=&\left(s^\alpha I-A\right)^{-1}{\cal L}\left\{\vec{f}(t)\right\}+\left(s^\alpha I-A\right)^{-1}\frac{1}{s}A\vec{\eta}+\frac{1}{s}\vec{\eta}. \end{eqnarray} $

应用引理2.2和(3.5)式,并进行简单计算,可得

$ \begin{eqnarray}\label{e3.7} {\cal L}\left\{^C_0\!D_t^\alpha\vec{x}^\ast(t)-A\vec{x}^\ast(t)\right\} &=& s^\alpha I{\cal L}\left\{\vec{x}^\ast(t)\right\}(s)-s^{\alpha-1}\vec{\eta}-A{\cal L}\left\{\vec{x}^\ast(t)\right\}(s) \nonumber\\ &=& (s^\alpha I-A){\cal L}\left\{\vec{x}^\ast(t)\right\}(s)-s^{\alpha-1}\vec{\eta} \nonumber\\ &=& (s^\alpha I-A)\left[\left(s^\alpha I-A\right)^{-1}{\cal L}\left\{\vec{f}(t)\right\}\right. \nonumber\\ &&\mbox{}+\left.\left(s^\alpha I-A\right)^{-1}\frac{1}{s}A\vec{\eta}+\frac{1}{s}\vec{\eta}\right]-s^{\alpha-1}\vec{\eta} \nonumber\\ &=& {\cal L}\left\{\vec{f}(t)\right\}+\frac{1}{s}A\vec{\eta}+\left(s^\alpha I-A\right)\frac{1}{s}\vec{\eta}-s^{\alpha-1}\vec{\eta}\nonumber\\ &=& {\cal L}\left\{\vec{f}(t)\right\}.\end{eqnarray}$

因为变换${\cal L}$是一对一的,这就证明了$\vec{x}^\ast(t)$是系统(1.1)的一个解.由(3.4)式和(3.6)式,我们得到

$ \begin{eqnarray}\label{e3.8} {\cal L}\left\{\vec{x}(t)-\vec{x}^{\ast}(t)\right\} &=& {\cal L}\left\{\vec{x}(t)\right\}-{\cal L}\left\{\vec{x}^{\ast}(t)\right\} \nonumber\\ &=& \left(s^\alpha I-A\right)^{-1}\left\{{\cal L}\left\{\vec{Z}(t)\right\}+s^{\alpha-1}\vec{\eta}+{\cal L}\left\{\vec{f}(t)\right\}\right\}\nonumber\\ &\quad&-\left(s^\alpha I-A\right)^{-1}{\cal L}\left\{\vec{f}(t)\right\}-\left(s^\alpha I-A\right)^{-1}\frac{1}{s}A\vec{\eta}-\frac{1}{s}\vec{\eta} \nonumber\\ &=& \left(s^\alpha I-A\right)^{-1}{\cal L}\left\{\vec{Z}(t)\right\}.\end{eqnarray}$

应用卷积性质和引理2.1,我们得到

$\begin{eqnarray}\label{e3.9} {\cal L}\left\{e_\alpha^{Ax}\ast\vec{Z}(t)\right\} &=& {\cal L}\left\{e_\alpha^{Ax}\right\}{\cal L}\left\{\vec{Z}(t)\right\}\nonumber\\ &=& \left(s^\alpha I-A\right)^{-1}{\cal L}\left\{\vec{Z}(t)\right\}.\end{eqnarray}$

由(3.8)和(3.9)式,我们可得

$\begin{equation}\label{e3.10}\vec{x}(t)-\vec{x}^{\ast}(t)=e_\alpha^{Ax}\ast\vec{Z}(t), \end{equation}$

结合(3.1)式,可证明

$\begin{eqnarray} \left\|\vec{x}(t)-\vec{x}^{\ast}(t)\right\| &=& \left\|e_\alpha^{Ax}\ast\vec{Z}(t)\right\| \nonumber\\ &=&\left\|\int_0^te_\alpha^{A(t-\xi)}\vec{Z}(\xi){{\rm{d}}}\xi\right\|\nonumber\\ &=&\left\|\int_0^t(t-\xi)^{\alpha-1}\sum\limits_{k=0}^\infty A^k\frac{(t-\xi)^{\alpha k}}{\Gamma(\alpha k+\alpha)}\vec{Z}(\xi){{\rm{d}}}\xi\right\|\nonumber\\ &=&\left\|\int_0^t\sum\limits_{k=0}^\infty \frac{A^k(t-\xi)^{\alpha k+\alpha-1}}{\Gamma(\alpha k+\alpha)}\vec{Z}(\xi){{\rm{d}}}\xi\right\|\nonumber\\ &\leq&\sum\limits_{k=0}^\infty\int_0^t\left\|\frac{A^k(t-\xi)^{\alpha k+\alpha-1}}{\Gamma(\alpha k+\alpha)}\right\|\left\|\vec{Z}(\xi)\right\|{{\rm{d}}}\xi\nonumber\\ &=&\varepsilon\sum\limits_{k=0}^\infty\frac{\|A\|^k}{\Gamma(\alpha k+\alpha)}\int_0^t(t-\xi)^{\alpha k+\alpha-1}{{\rm{d}}}\xi\nonumber\\ &=&\varepsilon t^\alpha\sum\limits_{k=0}^\infty\frac{\|A\|^kt^{\alpha k}}{\Gamma(\alpha k+\alpha+1)}\nonumber\\ &=&\varepsilon t^\alpha E_{\alpha, \alpha+1}\left(\|A\|t^\alpha\right).\end{eqnarray}$

这就完成了定理的证明.

推论3.1  设$A\in M_{n\times n}({\Bbb R})$, $0<\alpha<1$,向量值函数$\vec{f}(t)$是指数有界的.如果向量值函数$\vec{x}(t): [0, +\infty)\rightarrow{\Bbb R}^n$对任何的$t\in [0, +\infty)$都满足不等式

$\begin{equation}\label{e3.12} \left\|^C_0\!D_t^\alpha\vec{x}(t)-A\vec{x}(t)-\vec{f}(t)\right\|\leq F(t), \end{equation}$

这里数量值函数$F(t)\geq 0$,那么存在分数阶系统(1.1)的一个解$\vec{x}^\ast(t)$使得

$\begin{equation}\label{e3.13} \left\|\vec{x}(t)-\vec{x}^\ast(t)\right\|\leq\sum\limits_{k=0}^\infty\frac{\|A\|^k}{\Gamma(\alpha k+\alpha)}\int_0^t(t-\xi)^{\alpha k+\alpha-1}F(\xi){{\rm{d}}}\xi. \end{equation} $

  应用定理3.1,容易证明该结论.

例3.1  考虑分数阶系统

$\begin{equation}\label{3.14}^C_0\!D_t^{\frac{1}{2}}\vec{x}(t)=A\vec{x}(t)+\vec{f}(t), \end{equation}$

初始值为$\vec{x}(0)=\left[\begin{array}{cc}0\\0\end{array}\right]=\vec{\eta}$,这里$\vec{x}(t)=\left[\begin{array}{cc}x_1(t)\\x_2(t)\end{array}\right]$, $A=\left[\begin{array}{cc}1&2\\3&4\end{array}\right]$,对任何的$\varepsilon>0$,

对任何的$\varepsilon>0$,容易验证向量值函数$\vec{x}_1(t)=\left[\begin{array}{cc}t^2\\t^3\end{array}\right]$满足

$ \begin{equation}\label{e3.15} \left\|^C_0\!D_t^{\frac{1}{2}}\vec{x}_1(t)-A\vec{x}_1(t)-\vec{f}(t)\right\|<\varepsilon, \end{equation}$

并且初始值为$\vec{x}_1(0)=\left[\begin{array}{cc}0\\0\end{array}\right]=\vec{\eta}$.应用(3.5)式和系统(3.14)的初始值,我们得到系统的一个精确解,也就是

$ \begin{equation}\label{e3.16} \vec{x}^\ast(t)=\int_0^te_{\frac{1}{2}}^{A(t-\xi)}\vec{f}(\xi){{\rm{d}}}\xi. \end{equation}$

应用定理3.1, $\vec{x}_1(t)$的控制函数取为$\varepsilon t^{\frac{1}{2}}E_{\frac{1}{2}, \frac{3}{2}}\left(10 t^{\frac{1}{2}}\right)$,于是有

$\begin{equation}\label{e3.17} \|\vec{x}_1(t)-\vec{x}^\ast(t)\|\leq\varepsilon t^{\frac{1}{2}}E_{\frac{1}{2}, \frac{3}{2}}\left(10 t^{\frac{1}{2}}\right). \end{equation}$

因此,我们能够估计逼近解$\vec{x}_1(t)$的误差.

4 分数阶系统(1.2)的Hyers-Ulam-Rassias稳定性

在这一部分,我们将要应用Laplace变换方法研究分数阶系统(1.2)的Hyers-Ulam-Rassias稳定性.

定理4.1  设$A\in M_{n\times n}({\Bbb R})$, $0<\beta<\alpha<1$,向量值函数$\vec{g}(t)$是指数有界的.如果向量值函数$\vec{x}(t): [0, +\infty)\rightarrow{\Bbb R}^n$对任意的$t\in[0, +\infty)$和某个$\varepsilon>0$满足不等式

$\begin{equation}\label{e4.1} \left\|\ ^C_0\!D_t^\alpha\vec{x}(t)-A \ ^C_0\!D_t^\beta\vec{x}(t)-\vec{g}(t)\right\|\leq\varepsilon, \end{equation}$

那么存在分数阶系统(1.2)的一个解$\vec{x}^\ast(t)$使得

$\begin{equation}\label{e4.2} \left\|\vec{x}(t)-\vec{x}^\ast(t)\right\|\leq\varepsilon t^\alpha E_{\alpha-\beta, \alpha+1}\left(\|A\|t^{\alpha-\beta}\right). \end{equation}$

  对任何的$t>0$,设$\vec{Z}(t)= \ ^C_0\!D_t^\alpha\vec{x}(t)-A\ ^C_0\!D_t^\beta\vec{x}(t)-\vec{g}(t)$,我们得到

$\begin{eqnarray}\label{e4.3} {\cal L}\left\{\vec{Z}(t)\right\} &=& {\cal L}\left\{^C_0\!D_t^\alpha\vec{x}(t)-A \ ^C_0\!D_t^\beta\vec{x}(t)-\vec{g}(t)\right\} \nonumber\\ &=& {\cal L}\left\{\ ^C_0\!D_t^\alpha\vec{x}(t)\right\}-A{\cal L}\left\{\ ^C_0\!D_t^\beta\vec{x}(t)\right\}-{\cal L}\left\{\vec{g}(t)\right\} \nonumber\\ &=&s^\alpha I{\cal L}\left\{\vec{x}(t)\right\}-s^{\alpha-1}\vec{\eta}-A\left\{s^\beta I{\cal L}\left\{\vec{x}(t)\right\}-s^{\beta-1}\vec{\eta}\right\}-{\cal L}\left\{\vec{g}(t)\right\} \nonumber\\ &=&\left(s^\alpha I-As^\beta \right){\cal L}\left\{\vec{x}(t)\right\}-s^{\alpha-1}\vec{\eta}+As^{\beta-1}\vec{\eta}-{\cal L}\left\{\vec{g}(t)\right\}, \end{eqnarray}$

这里$I$是单位矩阵.由(4.3)式,得到

$\begin{equation} {\cal L}\left\{\vec{x}(t)\right\}=\left(s^\alpha I-As^\beta \right)^{-1}\left[s^{\alpha-1}\vec{\eta}-As^{\beta-1}\vec{\eta}+{\cal L}\left\{\vec{g}(t)\right\}\right]+\left(s^\alpha I-As^\beta \right)^{-1}{\cal L}\left\{\vec{Z}(t)\right\}. \end{equation}$

$\begin{equation}\label{e4.5} \vec{x}^\ast(t)=x_0(t)\vec{\eta}+\int_0^t(t-\xi)^{\alpha-1}E_{\alpha-\beta, \alpha}\left[A(t-\xi)^{\alpha-\beta}\right]\vec{g}(\xi){{\rm{d}}}\xi, \end{equation}$

这里

$ \begin{equation}\label{e4.6} x_0(t)=E_{\alpha-\beta, 1}(At^{\alpha-\beta})-At^{\alpha-\beta}E_{\alpha-\beta, \alpha-\beta+1}(At^{\alpha-\beta}). \end{equation}$

应用引理2.1,我们得到

$ \begin{eqnarray}\label{e4.7} {\cal L}\{\vec{x}^\ast(t)\} &=&{\cal L}\Bigg{\{}x_0(t)\vec{\eta}+\int_0^t(t-\xi)^{\alpha-1}E_{\alpha-\beta, \alpha}\left[A(t-\xi)^{\alpha-\beta}\right]\vec{g}(\xi){{\rm{d}}}\xi\Bigg{\}}\nonumber\\ &=&{\cal L}\Big{\{}E_{\alpha-\beta, 1}(At^{\alpha-\beta})\Big{\}}\vec{\eta}-{\cal L}\Big{\{}At^{\alpha-\beta}E_{\alpha-\beta, \alpha-\beta+1}(At^{\alpha-\beta})\Big{\}}\vec{\eta}\nonumber\\ &&\mbox{}+{\cal L}\left\{\int_0^t(t-\xi)^{\alpha-1}E_{\alpha-\beta, \alpha}\left[A(t-\xi)^{\alpha-\beta}\right]\vec{g}(\xi){{\rm{d}}}\xi\right\}\nonumber\\ &=&{\cal L}\Big{\{}E_{\alpha-\beta, 1}(At^{\alpha-\beta})\Big{\}}\vec{\eta}-A{\cal L}\Big{\{}t^{\alpha-\beta}E_{\alpha-\beta, \alpha-\beta+1}(At^{\alpha-\beta})\Big{\}}\vec{\eta}\nonumber\\ &&\mbox{}+{\cal L}\left\{t^{\alpha-1}E_{\alpha-\beta, \alpha}\left[At^{\alpha-\beta}\right]\right\}{\cal L}\left\{\vec{g}(t)\right\}\nonumber\\ &=&s^{\alpha-\beta-1}\left(s^{\alpha-\beta}I-A\right)^{-1}\vec{\eta}-As^{\alpha-\beta-(\alpha-\beta+1)}\left(s^{\alpha-\beta}I-A\right)^{-1}\vec{\eta} \nonumber\\ &&\mbox{}+s^{-\beta}\left(s^{\alpha-\beta}I-A\right)^{-1}{\cal L}\left\{\vec{g}(t)\right\} \nonumber\\ &=&\left(s^{\alpha-\beta}I-A\right)^{-1}\left[s^{\alpha-\beta-1}\vec{\eta}-A\cdot s^{-1}\vec{\eta}+s^{-\beta}{\cal L}\left\{\vec{g}(t)\right\}\right]. \end{eqnarray}$

由(4.7)式,可以得到

$\begin{eqnarray}\label{e4.8} &&{\cal L}\left\{\ ^C_0\!D_t^\alpha\vec{x}^\ast(t)-A \ ^C_0\!D_t^\beta\vec{x}^\ast(t)\right\}\\ &=&{\cal L}\left\{^C_0\!D_t^\alpha\vec{x}^\ast(t)\right\}-A{\cal L}\left\{^C_0\!D_t^\beta\vec{x}^\ast(t)\right\}\\ &=&s^\alpha I{\cal L}\left\{\vec{x}^\ast(t)\right\}-s^{\alpha-1}\vec{\eta}-A\left\{s^\beta I{\cal L}\left\{\vec{x}^\ast(t)\right\}-s^{\beta-1}\vec{\eta}\right\}\\ &=&s^\alpha\left(s^{\alpha-\beta}I-A\right)^{-1}\left[s^{\alpha-\beta-1}\vec{\eta}-A\cdot s^{-1}\vec{\eta}+s^{-\beta}{\cal L}\left\{\vec{g}(t)\right\}\right]-s^{\alpha-1}\vec{\eta}\\ &&-A\left\{s^\beta\left(s^{\alpha-\beta}I-A\right)^{-1}\left[s^{\alpha-\beta-1}\vec{\eta}-A\cdot s^{-1}\vec{\eta}+s^{-\beta}{\cal L}\left\{\vec{g}(t)\right\}\right]-s^{\beta-1}\vec{\eta}\right\}\\ &=&s^\alpha\left(s^{\alpha-\beta}I-A\right)^{-1}\left[s^{\alpha-\beta-1}\vec{\eta}-A\cdot s^{-1}\vec{\eta}+s^{-\beta}{\cal L}\left\{\vec{g}(t)\right\}\right]-s^{\alpha-1}\vec{\eta}\\ &&-As^\beta\left(s^{\alpha-\beta}I-A\right)^{-1}\left[s^{\alpha-\beta-1}\vec{\eta}-A\cdot s^{-1}\vec{\eta}+s^{-\beta}{\cal L}\left\{\vec{g}(t)\right\}\right]+As^{\beta-1}\vec{\eta}\\ &=&\left(s^\alpha I-As^\beta\right)\left(s^{\alpha-\beta}I-A\right)^{-1}\left[s^{\alpha-\beta-1}\vec{\eta}-A\cdot s^{-1}\vec{\eta}+s^{-\beta}{\cal L}\left\{\vec{g}(t)\right\}\right]\\ &&-\left(s^{\alpha-1}I-As^{\beta-1}\right)\vec{\eta}\\ &=&s^\beta\left(s^{\alpha-\beta}I-A\right)\left(s^{\alpha-\beta}I-A\right)^{-1}\left[s^{\alpha-\beta-1}\vec{\eta}-A\cdot s^{-1}\vec{\eta}+s^{-\beta}{\cal L}\left\{\vec{g}(t)\right\}\right]\\ &&-\left(s^{\alpha-1}I-As^{\beta-1}\right)\vec{\eta}\\ &=&s^\beta\left[s^{\alpha-\beta-1}\vec{\eta}-A\cdot s^{-1}\vec{\eta}+s^{-\beta}{\cal L}\left\{\vec{g}(t)\right\}\right]-\left(s^{\alpha-1}I-As^{\beta-1}\right)\vec{\eta}\\ &=&{\cal L}\left\{\vec{g}(t)\right\}, \end{eqnarray}$

因此, $\vec{x}^\ast(t)$是系统(1.2)的一个解.应用(4.4)和(4.7)式,我们得到

$ \begin{eqnarray}\label{e4.9} {\cal L}\left\{\vec{x}(t)-\vec{x}^\ast(t)\right\} &=&{\cal L}\left\{\vec{x}(t)\right\}-{\cal L}\left\{\vec{x}^\ast(t)\right\} \nonumber\\ &=&\left(s^\alpha I-As^\beta \right)^{-1}\left[s^{\alpha-1}\vec{\eta}-As^{\beta-1}\vec{\eta}+{\cal L}\left\{\vec{g}(t)\right\}\right]+\left(s^\alpha I-As^\beta\right)^{-1}{\cal L}\left\{\vec{Z}(t)\right\}\nonumber\\ &&\mbox{}-\left(s^{\alpha-\beta}I-A\right)^{-1}\left[s^{\alpha-\beta-1}\vec{\eta}-A\cdot s^{-1}\vec{\eta}+s^{-\beta}{\cal L}\left\{\vec{g}(t)\right\}\right]\nonumber\\ &=&\left(s^\alpha I-As^\beta \right)^{-1}\left[s^{\alpha-1}\vec{\eta}-As^{\beta-1}\vec{\eta}+{\cal L}\left\{\vec{g}(t)\right\}\right]+\left(s^\alpha I-As^\beta \right)^{-1}{\cal L}\left\{\vec{Z}(t)\right\}\nonumber\\ &&\mbox{}-\left(s^\alpha I-As^\beta\right)^{-1}\cdot s^\beta\left[s^{\alpha-\beta-1}\vec{\eta}-A\cdot s^{-1}\vec{\eta}+s^{-\beta}{\cal L}\left\{\vec{g}(t)\right\}\right]\nonumber\\ &=&\left(s^\alpha I-As^\beta \right)^{-1}\left[s^{\alpha-1}\vec{\eta}-As^{\beta-1}\vec{\eta}+{\cal L}\left\{\vec{g}(t)\right\}\right]+\left(s^\alpha I-As^\beta \right)^{-1}{\cal L}\left\{\vec{Z}(t)\right\}\nonumber\\ &&\mbox{}-\left(s^\alpha I-As^\beta\right)^{-1}\left[s^{\alpha-1}\vec{\eta}-A\cdot s^{\beta-1}\vec{\eta}+{\cal L}\left\{\vec{g}(t)\right\}\right]\nonumber\\ &=&\left(s^\alpha I-As^\beta \right)^{-1}{\cal L}\left\{\vec{Z}(t)\right\}. \end{eqnarray}$

另一方面,我们有

$ \begin{eqnarray}\label{e4.10} {\cal L}\left\{\left[t^{\alpha-1}E_{\alpha-\beta, \alpha}\left(At^{\alpha-\beta}\right)\right]\ast \vec{Z}(t)\right\} &=&{\cal L}\left[t^{\alpha-1}E_{\alpha-\beta, \alpha}\left(At^{\alpha-\beta}\right)\right]{\cal L}\left\{\vec{Z}(t)\right\}\nonumber\\ &=&s^{-\beta}(s^{\alpha-\beta}I-A)^{-1}{\cal L}\left\{\vec{Z}(t)\right\}\nonumber\\ &=&(s^\alpha I-As^\beta)^{-1}{\cal L}\left\{\vec{Z}(t)\right\}. \end{eqnarray}$

由(4.9)和(4.10)式,可得

$ \begin{equation}\label{e4.11} \vec{x}(t)-\vec{x}^\ast(t)=\left[t^{\alpha-1}E_{\alpha-\beta, \alpha}\left(At^{\alpha-\beta}\right)\right]\ast \vec{Z}(t). \end{equation} $

因此,应用(4.11)式,得到

$\begin{eqnarray}\label{e4.12} \left\|\vec{x}(t)-\vec{x}^\ast(t)\right\| &=& \left\|\left[t^{\alpha-1}E_{\alpha-\beta, \alpha}\left(At^{\alpha-\beta}\right)\right]\ast \vec{Z}(t)\right\| \nonumber\\ &=&\left\|\int_0^t(t-\xi)^{\alpha-1}E_{\alpha-\beta, \alpha}\left[A(t-\xi)^{\alpha-\beta}\right]\vec{Z}(\xi){{\rm{d}}}\xi\right\|\nonumber\\ &=&\left\|\int_0^t\sum\limits_{k=0}^\infty \frac{A^k(t-\xi)^{\alpha k-\beta k+\alpha-1}}{\Gamma[(\alpha-\beta) k+\alpha]}\vec{Z}(\xi){{\rm{d}}}\xi\right\|\nonumber\\ &=&\left\|\sum\limits_{k=0}^\infty \int_0^t\frac{A^k(t-\xi)^{\alpha k-\beta k+\alpha-1}}{\Gamma[(\alpha-\beta) k+\alpha]}\vec{Z}(\xi){{\rm{d}}}\xi\right\|\nonumber\\ &\leq&\sum\limits_{k=0}^\infty\left\|\int_0^t\frac{A^k(t-\xi)^{\alpha k-\beta k+\alpha-1}}{\Gamma[(\alpha-\beta) k+\alpha]}\vec{Z}(\xi){{\rm{d}}}\xi\right\|\nonumber\\ &\leq&\sum\limits_{k=0}^\infty\int_0^t\left\|\frac{A^k(t-\xi)^{\alpha k-\beta k+\alpha-1}}{\Gamma[(\alpha-\beta) k+\alpha]}\right\|\left\|\vec{Z}(\xi)\right\|{{\rm{d}}}\xi\nonumber\\ &\leq&\varepsilon\sum\limits_{k=0}^\infty\frac{\|A\|^k}{\Gamma[(\alpha-\beta) k+\alpha]}\int_0^t(t-\xi)^{\alpha k-\beta k+\alpha-1}{{\rm{d}}}\xi\nonumber\\ &=&\varepsilon t^\alpha\sum\limits_{k=0}^\infty\frac{\left(\|A\|t^{\alpha-\beta}\right)^k}{\Gamma[(\alpha-\beta) k+\alpha+1]}\nonumber\\ &=&\varepsilon t^\alpha E_{\alpha-\beta, \alpha+1}\left(\|A\|t^{\alpha-\beta}\right).\end{eqnarray}$

这就完成了定理的证明.

推论4.1  设$A\in M_{n\times n}({\Bbb R})$, $0<\beta<\alpha<1$,向量值函数$\vec{g}(t)$是指数有界的.如果向量值函数$\vec{x}(t): [0, +\infty)\rightarrow{\Bbb R}^n$对任意的$t>0$和某个函数$G(t)\geq 0$满足不等式

$\begin{equation}\label{e4.13} \left\|\ ^C_0\!D_t^\alpha\vec{x}(t)-A \ ^C_0\!D_t^\beta\vec{x}(t)-\vec{g}(t)\right\|\leq G(t), \end{equation} $

那么存在分数阶系统(1.2)的一个解$\vec{x}^\ast(t): [0, +\infty)\rightarrow{\Bbb R}^n$使得

$ \begin{equation}\label{e4.14} \left\|\vec{x}(t)-\vec{x}^\ast(t)\right\|\leq\sum\limits_{k=0}^\infty\frac{\|A\|^k}{\Gamma\left[(\alpha-\beta) k+\alpha\right]}\int_0^t(t-\xi)^{\alpha k-\beta k+\alpha-1}G(\xi){{\rm{d}}}\xi. \end{equation}$

  应用定理4.1,容易证明该结论成立.

例4.1  考虑分数阶系统

$\begin{equation}\label{4.15}{}^C_0\!D_t^{\frac{1}{2}}\vec{x}(t)=A \ ^C_0\!D_t^{\frac{1}{3}}\vec{x}(t)+\vec{g}(t), \end{equation}$

初始值为$\vec{x}(0)=\left[\begin{array}{cc}0\\0\end{array}\right]$, $\vec{x}(t)=\left[\begin{array}{cc}x_1(t)\\x_2(t)\end{array}\right]$, $A=\left[\begin{array}{cc}0&1\\-1&0\end{array}\right]$,这里的扰动项为

对于$\varepsilon=\frac{1}{100}$,向量值函数$\vec{x}_1(t)=\left[\begin{array}{cc}\sqrt{t}\\t\end{array}\right]$满足

$ \begin{equation}\label{e4.16} \left\|\ ^C_0\!D_t^{\frac{1}{2}}\vec{x}_1(t)-A \ ^C_0\!D_t^{\frac{1}{3}}\vec{x}_1(t)-\vec{g}(t)\right\|<\frac{1}{100}, \end{equation} $

初始值满足$\vec{x}_1(0)=\left[\begin{array}{cc}0\\0\end{array}\right]$.应用公式(4.5)和系统(4.15)的初始值,我们得到该系统的一个精确解,也就是

$ \begin{equation}\label{e4.17} \vec{x}^\ast(t)=\int_0^t(t-\xi)^{-\frac{1}{2}}E_{\frac{1}{6}, \frac{1}{2}}\left[A(t-\xi)^{\frac{1}{6}}\right]\vec{g}(\xi){{\rm{d}}}\xi. \end{equation}$

应用定理4.1, $\vec{x}_1(t)$的控制函数取为$\frac{1}{100}t^{\frac{1}{2}}E_{\frac{1}{6}, \frac{3}{2}}\left(2t^{\frac{1}{6}}\right)$,于是有

$ \begin{equation}\label{e4.18} \|\vec{x}_1(t)-\vec{x}^\ast(t)\|\leq\frac{1}{100}t^{\frac{1}{2}}E_{\frac{1}{6}, \frac{3}{2}}\left(2t^{\frac{1}{6}}\right). \end{equation}$

这样,我们就能够估计逼近解$\vec{x}_1(t)$的误差.

参考文献

András S , Mészáros A R .

Ulam-Hyers stability of dynamic equations on time scales via Picard operators

Appl Math Comput, 2013, 219: 4853- 4864

URL     [本文引用: 1]

Gejji V D , Babakhani A .

Analysis of a system of fractional differential equations

J Math Anal Appl, 2004, 293: 511- 522

DOI:10.1016/j.jmaa.2004.01.013      [本文引用: 1]

Gordji M E , Cho Y , Ghaemi M , Alizadeh B .

Stability of the second order partial differential equations

J Inequal Appl, 2011, 81: 1- 10

URL     [本文引用: 1]

Hegyi B , Jung S M .

On the stability of Laplace's equation

Appl Math Lett, 2013, 26: 549- 552

DOI:10.1016/j.aml.2012.12.014      [本文引用: 1]

Jung S M .

Hyers-Ulam stability of linear differential equations of first order

Appl Math Lett, 2004, 17: 1135- 1140

DOI:10.1016/j.aml.2003.11.004     

Jung S M .

Hyers-Ulam stability of linear differential equations of first order, Ⅲ

J Math Anal Appl, 2005, 311: 139- 146

DOI:10.1016/j.jmaa.2005.02.025     

Jung S M .

Hyers-Ulam stability of linear differential equations of first order, Ⅱ

Appl Math Lett, 2006, 19: 854- 858

DOI:10.1016/j.aml.2005.11.004      [本文引用: 1]

Jung S M .

Hyers-Ulam stability of a system of first order linear differential equations with constant coefficients

J Math Anal Appl, 2006, 320: 549- 561

DOI:10.1016/j.jmaa.2005.07.032      [本文引用: 1]

Kilbas A A , Srivastava H M , Trujillo J J . Theory and Applications of Fractional Differential Equations. Amsterdam: Elsevier, 2006

[本文引用: 2]

Li K , Peng J .

Laplace transform and fractional differential equations

Appl Math Lett, 2011, 24: 2019- 2023

DOI:10.1016/j.aml.2011.05.035      [本文引用: 2]

Lungu N , Popa D .

Hyers-Ulam stability of a first order partial differential equation

J Math Anal Appl, 2012, 385: 86- 91

DOI:10.1016/j.jmaa.2011.06.025      [本文引用: 1]

Obloza M .

Hyers stability of the linear differential equation

Rocznik Nauk-Dydakt Prace Mat, 1993, 13: 259- 270

URL     [本文引用: 1]

Obloza M .

Connections between Hyers and Lyapunov stability of the ordinary differential equations

Rocznik Nauk-Dydakt Prace Mat, 1997, 14: 141- 146

URL     [本文引用: 1]

Podlubny I . Fractional Differential Equations. San Diego: Academic Press, 1999

[本文引用: 1]

Popa D , Raşa I .

On the Hyers-Ulam stability of the linear differential equation

J Math Anal Appl, 2011, 381: 530- 537

DOI:10.1016/j.jmaa.2011.02.051      [本文引用: 1]

Rezaei H , Jung S M , Rassias T M .

Laplace transform and Hyers-Ulam stability of linear differential equations

J Math Anal Appl, 2013, 403: 244- 251

DOI:10.1016/j.jmaa.2013.02.034      [本文引用: 1]

Shen Y , Chen W .

Laplace transform method for the Ulam stability of linear fractional differential equations with constant coefficients

Mediterr J Math, 2017, 14: 1- 17

DOI:10.1007/s00009-016-0833-2      [本文引用: 2]

Wang J , Zhou Y .

Mittag-Leffler-Ulam stabilities of fractional evolution equations

Appl Math Lett, 2012, 25: 723- 728

DOI:10.1016/j.aml.2011.10.009      [本文引用: 1]

Wang J , Li X .

A uniform method to Ulam-Hyers stability for some linear fractional equations

Mediterr J Math, 2016, 13: 625- 635

DOI:10.1007/s00009-015-0523-5      [本文引用: 1]

Wang C, Xu T Z. Hyers-Ulam stability of differentiation operator on Hilbert spaces of entire functions. J Funct Spaces, 2014, 2014: Article ID: 398673

[本文引用: 1]

Wang C , Xu T Z .

Hyers-Ulam stability of fractional linear differential equations involving Caputo fractional derivatives

Appl Math, 2015, 60: 383- 393

DOI:10.1007/s10492-015-0102-x      [本文引用: 1]

Wang C , Xu T Z .

Hyers-Ulam stability of differential operators on reproducing kernel function spaces

Complex Anal Oper Theory, 2016, 10: 795- 813

DOI:10.1007/s11785-015-0486-3      [本文引用: 1]

Wang C , Xu T Z .

Hyers-Ulam stability of a class of fractional linear differential equations

Kodai Math J, 2015, 38: 510- 520

DOI:10.2996/kmj/1446210592      [本文引用: 1]

Wang C , Xu T Z .

Stability of the nonlinear fractional differential equations with the right-sided RiemannLiouville fractional derivative

Discrete Contin Dyn Syst Ser S, 2017, 10: 505- 521

URL     [本文引用: 1]

Xu T Z , Wang C , Rassias T M .

On the stability of multi-additive mappings in non-Archimedean normed spaces

J Comput Anal Appl, 2015, 18: 1102- 1110

URL     [本文引用: 1]

Xu T Z .

On the stability of multi-Jensen mappings in β-normed spaces

Appl Math Lett, 2012, 25: 1866- 1870

DOI:10.1016/j.aml.2012.02.049     

王春, 许天周.

拟Banach空间上含参数的二次-可加混合型函数方程的解和Hyers-Ulam-Rassias稳定性

数学物理学报, 2017, 37A (5): 846- 859

DOI:10.3969/j.issn.1003-3998.2017.05.006      [本文引用: 1]

Wang C , Xu T Z .

Solution and Hyers-Ulam-Rassias stability of a mixed type quadratic-additive functional equation with a parameter in quasi-Banach spaces

Acta Math Sci, 2017, 37A (5): 846- 859

DOI:10.3969/j.issn.1003-3998.2017.05.006      [本文引用: 1]

/