数学物理学报, 2019, 39(1): 38-48 doi:

论文

约束Hamilton系统的积分因子和守恒量及其在场论中的应用

周景润,1, 傅景礼,2

Integrating Factors and Conserved Quantities for Constrained Hamilton Systems and Its Applications in Field Theory

Zhou Jingrun,1, Fu Jingli,2

通讯作者: 傅景礼, E-mail: sqfujignli@163.com

收稿日期: 2017-10-10  

基金资助: 国家自然科学基金.  11472247
国家自然科学基金.  12722287
国家自然科学基金.  11872335
浙江省科技创新团队项目.  2013TD18

Received: 2017-10-10  

Fund supported: 国家自然科学基金.  11472247
国家自然科学基金.  12722287
国家自然科学基金.  11872335
浙江省科技创新团队项目.  2013TD18

作者简介 About authors

周景润,E-mail:869569521@qq.com , E-mail:869569521@qq.com

摘要

在约束Hamilton系统的研究中,场论系统一直是重要且难度大的一部分.近年来,场论系统已经成为一个热门的研究领域.论文基于积分因子方法给出了构造场论系统守恒量的一般性方法.首先,构造了约束Hamilton系统的广义Hamilton正则方程;其次,给出了场论系统积分因子的定义和守恒定理;然后,建立了场论系统的广义Killing方程,从而导出系统的积分因子和守恒量;最后,给出了几个场论中的例子以说明这种方法的可行性和有效性.显然,与Noether对称性理论和Lie对称性理论相比较,这种方法具有步骤清晰,计算简便,限制条件少等优点.

关键词: 场论系统 ; 约束Hamilton系统 ; 积分因子 ; 自对偶场

Abstract

Field theory is the most important and difficult part in the study of constrained Hamiltonian systems. In recent years, it has became a hot research area. In this paper, a general method that to construct the conservation laws of field theory system based on the integral factor method is presented. Firstly, the general Hamilton canonical equation of constrained Hamiltonian system is structured. Secondly, the definition about integrating factors is given and the conservation theorem for constrained Hamiltonian systems is established. Thirdly, the general Killing equation of constrained Hamiltonian system is deduced, then the integrating factors of constrained Hamiltonian systems are obtained. Finally, two examples are used to demonstrate the effectiveness of this method. Obviously, compared with Noether symmetry method and Lie symmetry method, the integrating factor method of constrained Hamiltonian system has the advantages of clearing calculation step, lessening restrictive conditions and simplifying operation and so on.

Keywords: Field theory system ; Constrained Hamilton system ; Integrating factor ; Self couple field

PDF (405KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

周景润, 傅景礼. 约束Hamilton系统的积分因子和守恒量及其在场论中的应用. 数学物理学报[J], 2019, 39(1): 38-48 doi:

Zhou Jingrun, Fu Jingli. Integrating Factors and Conserved Quantities for Constrained Hamilton Systems and Its Applications in Field Theory. Acta Mathematica Scientia[J], 2019, 39(1): 38-48 doi:

1 引言

自然界中的四个基本相互作用,即量子电动力学(QED);量子味动力学(QFD);量子色动力学(QCD)以及广义相对论(GR)都是由奇异Lagrange量描述的系统.然而在相空间描述时它们都可以归结为约束Hamilton系统.即在相空间中正则变量之间存在着关系.因此,在对系统进行正则量子化的过程中如何恰当地处理这些约束成为了众多科学家研究的中心问题.关于约束Hamilton系统的基本理论在近代物理中发挥着重要作用,尤其在量子场论的研究中[1].量子场论是量子力学和经典场论的结合,已经广泛的应用到粒子物理和凝聚态物理中.量子场论的实用理论也与2013年度诺贝尔奖授予的希格斯粒子场的微观量子粒子有关.非相对论量子理论主要应用于凝聚态物理,如BCS超导理论,而相对论量子场论则是粒子物理学中不可缺少的一部分.量子场论仍然是解决粒子物理学的理论基础和有力工具.在统计物理、凝聚态理论和核理论的研究中,我们常用的方法有量子场论、格林函数和费曼微扰理论,它们已成为这些物理分支的重要研究方法.李子平[2-4]和王永龙等人[5]研究了场论系统的Noether对称性,如积分路径的量子化、量子电动力学中格林函数的生成函数、Yang Mills场的积分路径等.

众所周知,约束力学系统有两种情况,一种是由常规Lagrange量描述的常规系统,如果系统存在约束,那么必定是外界施加的力,如$G_{s}=0$.另一种则是由奇异Lagrange量[6]描述的奇异系统,即在相空间中称为约束Hamilton系统,其中的约束是指由位形空间过渡到相空间时系统存在的的固有约束.因此,约束哈密顿系统的正则量子化[7]成为研究的主要内容.唐贻发等人[8-10]研究了磁场中导心系统的正则化和辛模拟.

在力学领域研究中寻求动力学系统的守恒量是很重要的,尤其在系统的运动微分方程很难求解的情况下,寻求系统的守恒量就十分必要.因为我们可以通过系统存在的守恒量探索系统的局部性质和状态.显然,在近代分析力学中对于守恒量的探寻已经成为一个热门的研究领域.另外,寻求系统守恒量的方法主要包括Noether对称性方法[11]和Lie对称性方法[12].现在这两种方法都已经得到相当可观的发展[13-37].

另外,近年来.乔永芬等人[38]应用积分因子方法研究了变质量非完整Vacco动力系统、具有单面约束的非完整动力学系统、非保守动力学系统的Raitzin正则方程的守恒量.张毅和葛伟宽[39]应用积分因子方法研究了非完整动力学系统、Brikhoffian系统以及时间空间中的Birkhoffian系统的守恒量.束方平[40]应用积分因子的方法研究了基于分数阶模型的Lagrange系统的以及广义Brikhoffian系统的守恒量.张耀良和郑世旺[41]利用积分因子方法研究了变质量非完整动力学系统的正则Hamilton方程以及准坐标下广义非保守系统的Lagrange方程的守恒量.然而,关于约束Hamilton系统的积分因子和守恒量的研究还没有人涉及.因此,这篇论文基于积分因子方法[42-45]研究了约束Hamilton系统的守恒量,并且给出了其在场论中的应用,得到了规范不变自对藕场的守恒量.这种方法具有限制条件少、易于计算、应用广泛的优点.

论文可以归纳如下.第二节,讨论了奇异系统的Lagrange约束以及给出了系统的正则Hamilton方程.第三节,介绍了约束Hamilton系统积分因子的定义和守恒定理.第四节,构建了约束Hamilton系统的广义Killing方程.第五节给了场论中的两个例子以及在第六节对论文做了总结和展望.

2 场论系统的正则Hamilton方程及其固有约束

考虑有限维自由度的系统,场系统的Lagrange量密度(不显含时间)为

场系统的Lagrange量为

由Legendre变换引入正则动量

$ \begin{eqnarray}\pi_a=\frac{\delta L}{\delta {\dot{\varphi}}^a}=\frac{\partial {\cal L}}{\partial {\dot{\varphi}}^a}, \end{eqnarray}$

引入Hess矩阵

$\begin{eqnarray}H_{\alpha\beta}(\varphi, {\dot{\varphi}})=\frac{\partial^2 L} {\partial \dot{\varphi}^\alpha \partial \dot{\varphi}^{\beta}} \;\;(\alpha, \beta=1, 2, \cdots, n). \end{eqnarray} $

系统的Euler-Lagrange方程可表示为

$ \begin{eqnarray}H_{\alpha\beta}(\varphi, {\dot{\varphi}}) \ddot{\varphi}^\beta=\frac{\partial L}{\partial \varphi^\alpha}-\frac{\partial^2 L}{\partial \dot{\varphi}^{\alpha}\partial \varphi^\beta}\dot{\varphi}^{\beta}=a_\alpha(\varphi, {\dot{\varphi}}), \;\;(\alpha=1, 2, \cdots, n), \end{eqnarray}$

显然,当

$ \begin{eqnarray}\det H_{\alpha\beta}(\varphi, {\dot{\varphi}})\neq0, \end{eqnarray} $

从(2.3)式可以得到关于$\ddot{\varphi}$的所有的解.此时,系统Lagrange函数的Hess矩阵为非退化的,称相应的系统称为常规系统.

在这篇文章中,仅仅考虑系统Hess矩阵退化的情况,即

$ \begin{eqnarray}\det{H_{\alpha\beta}(\varphi, {\dot{\varphi}})}=0, \end{eqnarray} $

当系统转化到相空间Hamilton描述时,广义动量坐标的定义为

$\begin{eqnarray}\pi_\alpha=\frac{\partial L}{\partial \dot{\varphi}^{\alpha}}\;\; (\alpha=1, 2, \cdots, n), \end{eqnarray} $

当系统的Hess矩阵非退化的时候,通过(2.3)和(2.6)式可以得到所有的$\ddot{\varphi}^{\alpha}$,其中$\ddot{\varphi}^{\alpha}$是作为$\varphi$$\pi$的函数.反之,当Hess矩阵退化的时候就不能解出所有的$\ddot{\varphi}^{\alpha}$.因此就必须考虑系统的内在约束.系统的Hess矩阵行列式为零,设奇异系统Hess矩阵的秩为$R(<n)$,则从(2.3)式可以计算出系统的正则变量$\varphi$${\dot{\varphi}}$之间存在着$ n-R$个关系式

$ \begin{eqnarray}\xi_\alpha^i(\varphi, {\dot{\varphi}})=0\;\; (\alpha=1, 2, \cdots, n-R), \end{eqnarray} $

我们称这些关系式为系统的Lagrange约束,即是固有约束,为了避免这些约束会产生进一步的自洽性情况,则把约束分为以下两类

$\begin{eqnarray} \left\{\begin{array}{ll}A: A_\alpha(\varphi)=0, \\B: B_\lambda(\varphi, {\dot{\varphi}})=0. \end{array} \right. \end{eqnarray}$

2.1 约束Hamilton系统的广义正则方程

假设Hess矩阵的秩为$R(R<n)$,则我们可以得到$R$${\dot{\varphi}}^\alpha$作为函数$\pi_a, \varphi^\alpha$和剩余的${\dot{\varphi}}^\rho$的函数.

$\begin{eqnarray}\dot{\varphi}^{\sigma}=f^\sigma(\varphi, \pi_a, \dot{\varphi}^{\rho}), \end{eqnarray}$

其中$\sigma=1, 2, \cdots, n, $$\rho=R+1, \cdots, n$, $a=1, 2, \cdots, R$,然后把(2.5)式带入到(2.7)式中可以得到

$\begin{equation}\pi_i=g_i(\varphi, \pi_a, {\dot{\varphi}}^\rho), \end{equation}$

$i=1, 2, \cdots, R$时,方程(2.10)将是一个恒等式,当$i=\rho$时,剩余的$n-R$$g_\rho$将不再依赖于${\dot{\varphi}}^\rho$.因此,可以得到$n-R$个广义坐标和正则动量之间的关系式.

$\begin{equation}\phi^0_\alpha(\varphi, \pi)=\pi_\alpha-\varphi^\alpha(\varphi, \pi_\alpha), \;\; (\alpha=1, 2, \cdots, n-R), \end {equation}$

系统的运动Routh方程可以写为如下形式

$\begin{equation}\frac{\rm d}{{\rm d}t}\frac{\partial L}{\partial \dot{\varphi}^{\alpha}}-\frac{\partial L}{\partial \varphi^\alpha}=\Lambda_\alpha, \end{equation}$

其中$\Lambda_\alpha=-\lambda^\alpha\frac{\partial \phi^0_\beta}{\partial \pi_\alpha}$.

系统的Hamilton量为

$\begin{equation}H=\pi_\alpha\dot{\varphi}^{\alpha}-L, \end{equation}$

再引入Lagrange乘子$\lambda^\alpha(t)$,通过(2.12)和(2.13)式可以得到系统的Hamilton正则方程

$\begin{equation}{\dot{\varphi}}^\alpha=\frac{\partial H}{\partial \pi_\alpha}+\lambda^\alpha\frac{\partial \phi^o_\beta}{\partial \pi_\alpha}, \end{equation}$

$\begin{equation}\dot{\pi}_{\alpha}=-\frac{\partial H}{\partial \varphi^\alpha}-\lambda^\alpha\frac{\partial \phi^0_\beta}{\partial \varphi^\alpha}, \end{equation}$

其中$(\alpha=1, 2, \cdots, n), \phi^0_\alpha(\varphi, \pi)=0, (\beta=1, 2, \cdots, n-R)$.称方程(2.14), (2.15)为相应约束Hamilton系统的自由系统的正则运动方程.

3 约束Hamilton系统的积分因子和守恒量

首先给出约束Hamilton系统积分因子的定义,结合系统的正则运动方程(2.15),如果不变量$(\dot{\pi}_{\alpha}+\frac{\partial H}{\partial \varphi^\alpha}-\Lambda_i)G_\alpha$可以恒等地变为

$ \begin{eqnarray}(\dot{\pi}_{\alpha}+\frac{\partial H}{\partial \varphi^\alpha}-\Lambda_\alpha)G_\alpha\equiv\frac{\rm d}{{\rm d}t}(\pi_{\alpha}G_\alpha-HR-B)+\mu_\alpha(\dot{\pi}_{\alpha}+\frac{\partial H}{\partial \varphi^\alpha}-\Lambda_\alpha), \end{eqnarray}$

其中$R, B $$G_\alpha$都是关于$t, \varphi, \pi $的函数,称$G_\alpha=G_\alpha(t, \varphi, \pi)$为系统正则方程(2.14)的积分因子.

然后,通过以下的步骤可以得到守恒量的定义.合并(2.15)和(3.1)式可以得到

$ \begin{eqnarray}\frac{\rm d}{{\rm d}t}(\pi_{\alpha}G_\alpha-HR-B)=-\mu_\alpha(\dot{\pi}_\alpha+\frac{\partial H}{\partial \varphi^\alpha}-\Lambda_\alpha), \end{eqnarray} $

如果函数$G_\alpha$是方程(3.1)的积分因子,则相应约束Hamilton系统的自由系统(2.14), (2.15)具有如下的守恒量(第一积分)

$ \begin{eqnarray}D=\pi_\alpha G_\alpha-HR-B, \end{eqnarray}$

对于给定系统,如果函数$G_\alpha$是方程(3.1)的积分因子,则每一组函数$G_\alpha, R, B $$\mu_\alpha$都必须满足条件(3.1),可以进一步把条件写为

$ \begin{eqnarray}-R\frac{\partial H}{\partial t}+\tilde{\Lambda}^\alpha(G_\alpha-R\frac{\partial H}{\partial \pi_\alpha})+\pi_\alpha\dot{G}_{\alpha}-\frac{\partial H}{\partial \varphi^\alpha}-H\dot{R}-\dot{B}+I=0, \end{eqnarray} $

其中由(2.14)和(2.15)式计算出$\dot{H}$,有

$ \begin{eqnarray}I=\mu_\alpha(\dot{\pi}+\frac{\partial H}{\partial \varphi^\alpha}-\Lambda_\alpha), \end{eqnarray}$

如果函数$G_\alpha, R, B$$\mu_\alpha$满足必要条件(3.4),而且(3.3)式右侧是一个常数,然后将得到奇异函数组$G_\alpha, R, B$$\mu_\alpha$.对于每一个满足必要条件(3.4)的奇异函数群$G_\alpha, R, B$$\mu_\alpha$,它都会存在一个相应于正规系统的约束Hamilton系统的守恒量(3.3).对方程(3.4)进行积分运算,然后就会导出一个守恒量的非奇异函数群$G_\alpha, R, B$$\mu_\alpha$.任何情况下,假如我们得到一个不包含任何积分常数的方程(3.4)的任意解,则可以称之为方程(3.4)的函数解.当然后再把上述的非奇异解代入到(3.3)式中,随即就可以导出动力系统的第一积分,这里的$D$作为唯一的积分常数.根据方程的完全解(其包含的积分常数充足),最后,可以得到运动方程(2.14), (2.15)的精确解.

显然地需要指出的是这里的d/dt必须理解为$t, \varphi^\alpha$$\pi_\alpha$,的函数,可记为以下的形式

$ \begin{eqnarray}\frac{\rm d}{{\rm d}t}=\frac{\partial}{\partial t}+\dot{\varphi}^{\alpha}\frac{\partial}{\partial \varphi^\alpha}+\dot{\pi}_{\alpha}\frac{\partial}{\partial \pi_\alpha}=\frac{\partial}{\partial t}+\frac{\partial H}{\partial \pi_\alpha}\frac{\partial}{\partial \varphi^\alpha}+\dot{\pi}_{\alpha}\frac{\partial}{\partial \pi_\alpha}. \end{eqnarray}$

4 约束Hamilton系统的广义Killing方程

显然,寻找系统的守恒量的关键就在于解出函数$G_\alpha=G_\alpha(t, \varphi, \pi), R=(t, \varphi, \pi)$$B=(t, \varphi, \pi)$.一般地,首先展开必要条件(3.4),并且将其分解为关于$G_\alpha$, $R$$B$的微分方程.这个偏微分方程就称为约束Hamilton系统的广义Killing方程.然后就可以通过解广义Killing得到上述所说的未知函数以及积分因子.

现在先展开方程(3.4),然后把(3.5)和(3.6)式分成两部分,一部分含有$\dot{\pi}_{\alpha}$的项,另一部分不包含$\dot{\pi}_{\alpha}$的项,最后令这两部分都等于零,可以得到

$ \begin{eqnarray}& &-R\frac{\partial H}{\partial t}+(\Lambda_\alpha)(G_\alpha-R\frac{\partial H}{\partial \pi_\alpha})+p_\alpha(\frac{\partial G_\alpha}{\partial t}+\frac{\partial G_\alpha}{\partial \varphi^\beta}\frac{\partial H}{\partial \pi_\beta})-\frac{\partial H}{\partial \varphi^\alpha}G_\alpha\nonumber\\& &-H(\frac{\partial R}{\partial t}+\frac{\partial R}{\partial \varphi^\beta}\frac{\partial H}{\partial \pi_\beta})-\frac{\partial B}{\partial t}-\frac{\partial B}{\partial \varphi^\beta}\frac{\partial H}{\partial \pi_\beta}+\mu_\alpha(\frac{\partial H}{\partial \pi_\beta}-\Lambda_\beta)=0, \end{eqnarray}$

$\begin{equation}\pi_\alpha\frac{\partial G_\alpha}{\partial \pi_\beta}-H\frac{\partial R}{\partial \pi_\beta}-\frac{\partial B}{\partial \pi_\beta}+\mu_\alpha=0, \end{equation}$

易知,上式是一个含有$(n+1)$个线性偏微分方程组.通常情况下,此方程组里含有未知函数的个数为$2(n+1)$,所以,方程组的解法有着最大的自由度,一般我们先指定$(n+1)$个函数,然后再对其余$(n+1)$个未知函数组进行求解,为了方便,我们通常指定函数是$B$$\mu_\alpha$.

将(4.2)式中$\mu_\alpha$的表达式带入到(4.1)式中,可以得到

$\begin{eqnarray}& &-R\frac{\partial H}{\partial t}+(\Lambda_\alpha)(G_\alpha-R\frac{\partial H}{\partial \pi_\alpha})+\pi_\alpha(\frac{\partial G_\alpha}{\partial t}+\frac{\partial G_\alpha}{\partial \varphi^\beta}\frac{\partial H}{\partial \pi_\beta})-\frac{\partial H}{\partial \varphi^\alpha}G_\alpha-H(\frac{\partial R}{\partial t}+\frac{\partial R}{\partial \varphi^\beta}\frac{\partial H}{\partial \pi_\beta})\nonumber\\&&-\frac{\partial B}{\partial t}-\frac{\partial B}{\partial \varphi^\beta}\frac{\partial H}{\partial \pi_\beta}+(\pi_\alpha\frac{\partial G_\alpha}{\partial \pi_\beta}-H\frac{\partial R}{\partial \pi_\beta}-\frac{\partial B}{\partial \pi_\beta})(\Lambda_\beta-\frac{\partial H}{\partial \pi_\beta})=0. \end{eqnarray}$

这是线性偏微分方程,一般情况下,任意在$n+2$个函数$R, B$$G_\alpha$中选取一个视为未知的函数,则对$R, B $$G_\alpha$的任何非奇异解,方程(4.3)就会导出一个首次积分.

5 算例

5.1 例1

考虑一个奇异系统的Lagrange量为

试图找出系统的守恒量

第一步,判断系统的奇异性,并且找到其内在约束.显然系统Lagrange量的Hess矩阵为

易知$\det\left(H_{\alpha\beta}\right)=0$,表明了Hess矩阵是退化的(因为在$L$中缺少动能项$\varphi^2$).现在开始寻找系统的内在约束.通过系统的Euler-Lagrange方程,可以得到

$\begin{equation}E_1=\varphi^1-\varphi^2-{\dot{\varphi}}^1-\ddot{\varphi}^2=0, \end{equation}$

$\begin{equation}E_2=\dot{\varphi}^{1}-(\varphi^1-\varphi^2)=0, \end{equation}$

显然在(5.1)式中含有加速度,所以它是系统的真实运动方程,所以(5.2)式是内在约束,从(2.8)式可以看出这是$B$约束.

第二步,引入Hamilton正则方程,由(2.12)式可以得到下面方程

经过计算,得到$\Lambda_1=\lambda=-(\varphi^1-\varphi^2), \Lambda_2=0$.

另外,通过(2.6)式可以得到

$\begin{equation}p_1={\dot{\varphi}}^1+\varphi^2, \end{equation}$

$\begin{equation}\pi_2=0.\end{equation}$

通过(2.13), (5.3)和(5.4)式可以得到系统的Hamilton函数为

$\begin{eqnarray}H=\frac{1}{2}\pi_1^2+\varphi^1\varphi^2-\frac{1}{2}(\varphi^1)^2-\pi_1\varphi^2.\end{eqnarray}$

有Hamilton正则方程(2.15)可得

$\begin{eqnarray}\left\{\begin{array}{ll} \dot{\pi}_{1}=-\frac{\partial H}{\partial \varphi^1}+\Lambda_1=2(\varphi^2-\varphi^1), \\ \dot{\pi}_{2}=-\frac{\partial H}{\partial \varphi^2}+\Lambda_2=\varphi^1-\varphi^2.\end{array}\right.\end{eqnarray}$

第三步,建立系统的killing方程.

通过方程(4.3)可得

$ \begin{eqnarray} &&(\varphi^1-\varphi^2)[G_1-R(\pi_1-\varphi^2)]+\pi_1[\frac{\partial G_1}{\partial t}+\frac{\partial G_1}{\partial \varphi^1}(\pi_1-\varphi^2)]-(\varphi^2-\varphi^1)G_1-(\varphi^1-\pi_1)G_2\nonumber\\ &&-(\frac{1}{2}\pi_1^2+\varphi^1\varphi^2-\frac{1}{2}(\varphi^1)^2-\pi_1\varphi^2)(\frac{\partial R}{\partial t}+\frac{\partial R}{\partial \varphi^1}(\pi_1-\pi_2))-\frac{\partial B}{\partial t}-\frac{\partial B}{\partial \varphi^1}(\pi_1-\varphi^2)\nonumber\\ &&+[\pi_1\frac{\partial G_1}{\partial \pi_1}-(\frac{1}{2}\pi_1^2+\varphi^1\varphi^2-\frac{1}{2}(\varphi^1)^2-\pi_1\varphi^2)\frac{\partial R}{\partial \pi_1}-\frac{\partial B}{\partial \pi_1}](2\varphi^2-2\varphi^1)=0, \end{eqnarray} $

(5.7)式的解为

$\begin{eqnarray} R=0, G_2=0, G_1=1/\varphi^2, B=0/\varphi^2, \end{eqnarray} $

积分因子$G_1, G_2$和函数$R, B$都满足必要条件(5.8),因此,通过上述守恒定理,可以得到系统的守恒量如下

$ \begin{equation}D_1={\dot{\varphi}}^1 \varphi^2+(\varphi^2)^2-\varphi^2={\rm const, }\end{equation}$

$\begin{equation}D_2=\dot{\varphi}^{1}\varphi^2+(\varphi^2)^2={\rm const. }\end{equation}$

5.2 例2

规范不变自对偶场,关于自对偶场的正则量子化和弦论相关,当今人们对自对偶场的关注度日益上升,假设$(1+1) $维的自对偶场(自由场)的Lagrange函数为

其中$\dot{\phi}$表示$\phi$对时间的微分, $\phi'$表示$\phi$对空间的微分.设1维的自由电磁场的Lagrange量为

现在考虑${\cal L}_0$${\cal L}_{sm}$相互作用的模型,其中一个规范不变场的Lagrange函数为

$ \begin{equation}{\cal L}=\dot{\phi}\phi'-(\phi')^2+\frac{1}{2}(\dot{A}_1-A'_0)^2+c\phi'(A_0-A_1)-\frac{1}{2}c^2A_1^2-\dot{\theta}\theta'-(\theta')^2+c\theta'(A_0+A_1), \end{equation}$

通过定义(5.11)可以得到场$A_0, A_1, \phi$$\theta$的正则共轭动量

$ \begin{eqnarray}&& \pi^0=\frac{\partial {\cal L}}{\partial \dot{A}_0}=0\nonumber, \;\;\;\;\;\;\;\;\pi^1=\frac{\partial {\cal L}}{\partial \dot{A}_1}=\dot{A}_1-A'_0\nonumber, \\&& \pi_\phi=\frac{\partial {\cal L}}{\partial \dot{\phi}}=\phi', \;\;\;\;\;\;\;\; \pi_\theta=\frac{\partial {\cal L}}{\partial \dot{\theta}}=-\theta'. \end{eqnarray}$

另外,引入Hamilton密度函数,通过(2.13), (5.11)和(5.12)式可以得到

$\begin{eqnarray}{\cal H}=\frac{1}{2}(\pi^1)^2+\pi^1 A'_0+(\phi')^2-c\phi'(A_0-A_1)+\frac{1}{2}c^2 A^2_1+(\theta')^2-c\theta'(A_0-A_1), \end{eqnarray}$

系统的Hamilton正则方程为

$\begin{eqnarray}\left\{\begin{array}{ll}\dot{\phi}^a=\frac{\partial H_T}{\partial \pi_a}=\frac{\partial H_c}{\partial \pi_a}+\frac{\partial H_1}{\partial \pi_a}, \\[3mm]\dot{\pi}_a=-\frac{\partial H_T}{\partial \varphi_a}=-\frac{\partial H_c}{\partial \varphi^a}-\frac{\partial H_1}{\partial \varphi^a}.\end{array}\right.\end{eqnarray}$

其中$a=1, 2, 3, 4.$$ \pi_1=\pi_\phi, \pi_2=\pi^1, \pi_3=\pi^0, \pi_4=\pi_\theta. \varphi^1=\phi, \varphi^2=A_1, \varphi^3=A_0, \varphi^4=\theta$. $H_T$为Hamilton总量

$\begin{eqnarray}H_T=H_c+H_1=\int_v{\rm d}^3x({\cal H}_c+\lambda_i\Omega_i), \end{eqnarray}$

其中

可以得到

$\begin{eqnarray}\Lambda_a=-\frac{\partial H_1}{\partial \varphi^a}=-\frac{\partial \int_a{\rm d}^3x(\lambda^i\Omega_i)}{\partial \varphi^a}, \end{eqnarray}$

因此系统的内在约束为

可以从(2.12), (5.15)和(5.16)式得到以下结果

然后通过Hamilton正则方程(2.15)可以得到

$\begin{eqnarray}\left\{\begin{array}{ll}\dot{\pi}_\phi=-\frac{\partial H_T}{\partial \phi_1}=-\int_v{\rm d}^3x(0)+\Lambda_1, \\\dot{\pi}_{A_1}=-\frac{\partial H_T}{\partial A_1}=-\int_v{\rm d}^3x(c\phi'+c^2q_2-c\theta')+\Lambda_2, \\[4mm]\dot{\pi}_{A_0}=-\frac{\partial H_T}{\partial A_0}=-\int_v{\rm d}^3x(-c\phi'-c\theta')+\Lambda_3, \\[4mm]\dot{\pi}_\theta=-\frac{\partial H_T}{\partial \theta}=-\int_v{\rm d}^3x(0)+\Lambda_4.\end{array}\right.\end{eqnarray}$

下一步建立系统的广义Killing方程并且求解.

通过方程(4.3)可以得到

$\begin{eqnarray}&&\Lambda_2[G_2-R\int_v{\rm d}^3x(p_2+A'_0)]+\Lambda_3(G_3-0)\\&&+\pi_\phi\bigg[\frac{\partial G_1}{\partial t}+\frac{\partial G_1}{\partial A_1}\bigg(\int_v{\rm d}^3x(\pi^1+A'_0)\bigg)+0+0\bigg]\\&&+\pi^1\bigg(\frac{\partial G_2}{\partial t}+0+0+0\bigg)+0+\pi_\theta\bigg[\frac{\partial G_4}{\partial t}+0+\frac{\partial G_4}{\partial A_1}\bigg(\int_v{\rm d}^3x(\pi^1+A'_0)\bigg)+0\bigg]\\&&-0-\bigg[\int_v{\rm d}^3xc(c\phi'+c^2A_1-c\theta')\bigg]G_2-\bigg[\int_v{\rm d}^3xc(-c\phi'-c\theta')\bigg]G_3\\&&-H\bigg[\frac{\partial R}{\partial t}+0+\frac{\partial R}{\partial q_2}\bigg(\int_v{\rm d}^3x(\pi^1+A'_0)\bigg)\bigg]+0+0-\frac{\partial B}{\partial A_1}\bigg(\int_v{\rm d}^3x(\pi^1+A'_0)\bigg)\\&&-0+\bigg[\pi_\phi\frac{\partial G_1}{\partial \pi_1}-H\frac{\partial R}{\partial \pi_1}-\frac{\partial B}{\partial \pi_1}\bigg]\bigg[\Lambda_2-\int_v{\rm d}^3x(-c\phi'+c^2A_1-c\theta')\bigg]\\&&+\bigg[\pi_\phi\frac{\partial G_1}{\partial \pi_0}-H\frac{\partial R}{\partial \pi_0}-\frac{\partial B}{\partial \pi_0}\bigg]\bigg[\Lambda_3+\int_v{\rm d}^3x(c\phi'+c\theta)\bigg]\nonumber\\&&+0+0+\bigg[p_2\frac{\partial G_2}{\partial \pi_0}-H\frac{\partial R}{\partial \pi_0}-\frac{\partial B}{\partial \pi_0}\bigg]\bigg[\Lambda_3-\int_v{\rm d}^3x(-c\phi'+c\theta)\bigg]\nonumber\\&&+0+0\bigg[-H\frac{\partial R}{\partial \pi_1}-\frac{\partial B}{\partial \pi_1}\bigg]\bigg[\Lambda_2-\int_v{\rm d}^3x(-c\phi'+c^2A_1-c\theta')\bigg]\\&&+0+\bigg[\pi_\theta\frac{\partial G_4}{\partial \pi_\phi}-H\frac{\partial R}{\partial \phi}-\frac{\partial B}{\partial \pi_\phi}\bigg]0\nonumber\\&&\bigg[\pi_\theta\frac{\partial G_4}{\partial \pi^1}-H\frac{\partial R}{\partial \pi^1}-\frac{\partial B}{\partial \pi^1}\bigg]\bigg[\Lambda_2-\int_v{\rm d}^3x(-c\phi'+c^2A_1-c\theta')\bigg]\nonumber\\&&+\bigg[\pi_\theta\frac{\partial G_4}{\partial \pi^0}-H\frac{\partial R}{\partial \pi^0}-\frac{\partial B}{\partial \pi^0}\bigg]\bigg[\Lambda_3-\int_v{\rm d}^3x(-c\phi'-c\theta')\bigg]=0.\end{eqnarray}$

(5.18)式的解为

$\begin{eqnarray}G_1=\phi/A_1/\theta, G_2=0, G_3=0, G_4=\phi/A_0/\theta, R=0, B=\phi/A_0/\theta, \end{eqnarray}$

可见,积分因子$G_1, G_2, G_3, G_4$和函数$R, B$都满足必要条件(5.18),通过上述守恒定理,可以得到系统的守恒量为

$\begin{eqnarray}&&D=\phi'\varphi^\alpha-\varphi^\beta, (\alpha=1, 3, 4, \beta=1, 3, 4)\nonumber, \\&&D=-\theta \varphi^\alpha-\varphi^\beta, (\alpha=1, 3, 4, \beta=1, 3, 4).\end{eqnarray}$

6 结论

论文主要的目的就是提出了寻求系统守恒量的一般性方法.研究了约束Hamilton系统的积分因子和守恒量,并且将这种方法应用到场论系统中,给出了规范不变自对偶场的积分因子和守恒量.一方面把场论系统归结为约束Hamilton系统来进行讨论;另一方面给出了约束Hamilton系统的积分因子方法,并得到了系统的守恒量.从而通过守恒量来观察系统的局部特征以及某些性质.

实际上,有很多量子力学和经典场论中的系统都是由奇异Lagrange量描述的,如电磁场,规范场和非规范场,阿贝尔场和非阿贝尔场,导心系统以及等离子体理论等等.将会沿着这个课题对上述内容做进一步的研究.然而,如果系统含有较大的自由度,那么对于系统广义Killing方程的计算就有很高的要求.这也给积分因子方法带来了巨大的挑战.这一点,将采用MATLAB软件和辛几何算法进行数值模拟.这样将会大大提高计算精确度以及计算结果可信度.

参考文献

Wilczek F .

Quantum field theory

Review of Modern Physics, 1999, 71: S85- S95

DOI:10.1103/RevModPhys.71.S85      [本文引用: 1]

Li Z P . Constrained Hamiltonian Systems and Their Symmetric Properties. Beijing: Beijing University of Technology Press, 1999

[本文引用: 1]

Li Z P .

Symmetry in field theory for singular Lagrange with Derivatives of higher order

Acta Mathematica Scientia, 1994, 14 (S1): 30- 39

Li Z P .

The symmetry transformation of the constrained system with high-order derivatives

Acta Mathematica Scientia, 1985, 5 (4): 30- 39

URL     [本文引用: 1]

Wang Y L , Zhao D Y . The Symmetry of Constrained Hamilton System and Its Application. Jinan: Shandong People Press, 2012

[本文引用: 1]

Zhang R L , Liu J D , Tang Y F , et al.

Canonicalization and symplectic simulation of gyrocenter dynamics in time-independent magnetic fields

Phys of Plasma, 2014, 21: 2445- 2458

URL     [本文引用: 1]

Tang Y , Long Y .

Formal energy of a symplectic scheme for Hamiltonian systems and its applications

Computers and Mathematics with Applications, 1994, 27: 31- 39

URL     [本文引用: 1]

Zhang R L , Zhu B B , Tu X B , Zhao Y .

Convergence analysis of the formal energies of symplctic methods for Hamiltonian systems

Science China, 2016, 59: 1- 18

URL     [本文引用: 1]

Xu J K , Tan Z .

Classfication of solutions for a class of singular integral system

Acta Mathematica Scientia, 2011, 31 (4): 1449- 1456

DOI:10.1016/S0252-9602(11)60330-5     

Chen X L , Yang J F .

Regularity and symmetry of solutions of integral system

Acta Mathematica Scientia, 2012, 32 (5): 1759- 1780

DOI:10.1016/S0252-9602(12)60139-8      [本文引用: 1]

Qiao Y F , Yue Q W , Dong Y A .

Noether conservation laws of holonomic nonconservative dynamical systems in generalized mechanics

Applied Mathematics and Mechanics, 1994, 15: 877- 883

DOI:10.1007/BF02451637      [本文引用: 1]

Utzky M .

Dynamical symmetries and conserved quantities

J Phy A Math Gen, 1979, 12: 973- 981

DOI:10.1088/0305-4470/12/7/012      [本文引用: 1]

Mei F X , Wu R H , Zhang Y F .

Lie symmetries and conserved quantities of nonholonomic systems of non chetaev type

Chinese Journal of Theoretical and Applied Mechanics, 1988, 23: 71- 75

URL     [本文引用: 1]

Liu R W , Fu J L .

Lie symmetries and conserved quantities of non-conservative

Chinese Journal of Theoretical and Applied Mechanics, 1989, 20: 597- 601

URL    

Han G C , Zhang Y L .

Energy equation of generalized mechanical system

Journal of Harbin Engineering University, 2001, 22: 69- 71

URL    

Zhao Y Y , Mei F X .

One symmetry and invariant of dynamical systems

Advances Mechanics, 1993, 23: 360- 372

Mei F X . Nonholonomic Mechanics Foundation. Beijing: Beijing Institute of Technology Press, 1985

Liu R .

Nothers theorem and its inverse of nonholonomic nonconservative dynamical systems

Science in China, 1991, 34A: 37- 47

URL    

Mei F X . The Application of Ordinary Group and Ordinary Algebra to Constrained Mechanical Systems. Beijing: Science Press, 1999

Bluman G W , Kumei S . Symmetries and Differential Equations. Berlin: Springer, 1989

Olver P J . Applications of Lie Group to Differential Equations. Berlin: Springer, 2000

Olver P J . Equivalence, Invariants and Symmetry. Cambridge: Cambridge University Press, 1995

MacCallum M . Differential Equations:Their Solution Using Symmetries. Cambridge: Cambridge University Press, 1989

Ovsiannikov L V . Group Analysis of Differential Equations. New York: Academic Press, 1982

Gorringe V M , Leach P G L .

Lie point symmetries for systems of second order linear ordinary differential equations

Quaestiones Mathematicae, 1988, 11: 95- 117

DOI:10.1080/16073606.1988.9631946     

Cheh J , Olver P J , Pohjanpelto J .

Algorithms for differential invariants of symmetry groups of differential equations

Foundations of Computational Mathematics, 2008, 8: 501- 532

DOI:10.1007/s10208-005-0206-x     

Olver P J , Pohjanpelto J .

Moving frames for Lie pseudo-groups

Canadian Journal of Mathematics, 2008, 60: 1336- 1386

URL    

Mei J Q , Wang H Y .

The generating set of the differential invariant algebra and Maurer-Cartan equations of A (2+1)-dimensional Burgers equation

Journal of Systems Science and Complexity, 2013, 26: 281- 290

DOI:10.1007/s11424-013-2031-7     

Beffa G .

Poisson geometry of differential invariants of curves in some nonsemisimple homogeneous spaces

Proceedings of the American Mathematical Society, 2006, 134: 779- 791

DOI:10.1090/S0002-9939-05-07998-0     

Olver P J , Pohjanpelto J .

Differential invariant algebras of Lie pseudo-groups

Advances in Mathematics, 2009, 222: 1746- 1792

DOI:10.1016/j.aim.2009.06.016     

Lisle G I , Reid G J .

Symmetry classification using noncommutative invariant differential operators

Foundations of Computational Mathematics, 2006, 6: 353- 386

DOI:10.1007/s10208-005-0186-x     

Zhao Y Y .

Lie symmetries and conserved quantities of non-conservative mechanical system (in Chinese)

Chinese Journal of Theoretical and Applied Mechanics, 1994, 26: 380- 384

URL    

Mei F X . Applications of Lie Groups and Lie Algebras to Constrained Mechanical Systems. Beijing: Science Press, 1999

Mei F X .

Lie symmetries and conserved quantities of constrained mechanical systems

Acta Mechanica, 2000, 141: 135- 148

DOI:10.1007/BF01268673     

Zhang H B .

Lie symmetries and conserved quantities of non-holonomic mechanical systems with unilateral Vacco constraints

Chinese Physics, 2002, 11: 1- 4

DOI:10.1088/1009-1963/11/1/301     

Mei F X . Symmetry and Conserved Quantity of Constrained Mechanical System. Beijing: Beijing Institute of Technology Press, 2004

Chen X W , Chang L , Mei F X .

Conformal invariance and Hojman conserved quantities of first order Lagrange systems

Chinese Physics B, 2008, 17: 3180- 3184

DOI:10.1088/1674-1056/17/9/004      [本文引用: 1]

Qiao Y F , Zhang Y L , Zhao S H .

Integrating factors and conservation laws for the Raitzins canonical equations of motion of non-conservative dynamical systems

Acta Physica Sinica, 2008, 51: 1661- 1665

URL     [本文引用: 1]

Zhang Y , Ge W K .

Integrating factors and conservation laws for non-holonomic dynamical systems

Acta Physica Sinica, 2003, 52: 2364- 2367

URL     [本文引用: 1]

Shu F P , Zhang Y .

Integrating factors and conservation laws for a generalized Birkhoffian systems

Journal of Huazhong Normal University (Nat Sci), 2014, 48: 42- 45

URL     [本文引用: 1]

Zheng S W , Qiao Y F .

Integrating factors and conservation theorems of Lagrange equations for generalized non-conservative systems in terms of quasi-coordinates

Acta Physica Sinica-China Edition, 2006, 55: 3241- 3245

URL     [本文引用: 1]

Ibragimov N H .

Integrating factors, adjoint equations and Lagrangians

Journal of Mathematical Analysis and Applications, 2006, 318: 742- 757

DOI:10.1016/j.jmaa.2005.11.012      [本文引用: 1]

Anco S C , Bluman G .

Integrating factors and first integrals for ordinary differential equations

European Journal of Applied Mathematics, 1998, 9: 245- 259

DOI:10.1017/S0956792598003477     

Muriel C , Romeroj I L .

First integrals, integrating factors and symmetries of second order differential equation

Journal of Physics A Mathematical and Theoretical, 2009, 42: 2285- 2289

URL    

Choudhury A G , Guha G , Khanra B .

On the Jacobi last multiplier, integrating factors and the Lagrangian formulation of differential equations of the Painlece-Gambler classification

Journal of Mathematical Analysis and Applications, 2009, 360: 651- 664

DOI:10.1016/j.jmaa.2009.06.052      [本文引用: 1]

/