数学物理学报, 2019, 39(1): 200-208 doi:

论文

流行性病毒传播生态动力学系统

韩祥临,1, 汪维刚2, 莫嘉琪3

Bionomics Dynamic System for Epidemic Virus Transmission

Han Xianglin,1, Wang Weigang2, Mo Jiaqi3

收稿日期: 2017-10-8  

基金资助: 国家自然科学基金.  11771005
浙江省自然科学基金.  LY13A010005
安徽省高校自然科学研究重点项目.  KJ2017A901
安徽省教育科学规划课题.  JG10068

Received: 2017-10-8  

Fund supported: the NSFC.  11771005
the Natural Science Foundation of Zhejiang Province.  LY13A010005
the Natural Science Foundation of the Education Department of Anhui Province.  KJ2017A901
the Education Science Programming Foundation of Anhui Province.  JG10068

作者简介 About authors

韩祥临,E-mail:xlhan@zjhu.edu.cn , E-mail:xlhan@zjhu.edu.cn

摘要

利用近代数学物理的渐近理论,研究了一类流行性传染病传播非线性动力学系统.首先,提出了流行性传染病传播微分动力学模型.其次,引入一组泛函分析同伦映射,将动力学系统的解展为由一个人工参数的幂级数.然后,逐次地求出该动力学系统的各次渐近解析解.最后,阐述了动力学模型解的意义.

关键词: 动力学系统 ; 流行性传染病模型 ; HIV病毒

Abstract

A nonlinear dynamic system of the epidemic contagion transmission is studied by using the asymptotic theory in modern mathematical physics. Firstly, a dynamic model of the epidemic contagion transmission is established, which is a system of differential equation. Next, a set of functional analytic homotopic mapping is led. Then the solution of dynamic system model for a power series with a artificial parameter is substituted. Their asymptotic solutions of the dynamic system are solved successively. Finely, the importance of solution for the original dynamic model is related.

Keywords: Dynamic system ; Epidemic contagion model ; HIV virus

PDF (368KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

韩祥临, 汪维刚, 莫嘉琪. 流行性病毒传播生态动力学系统. 数学物理学报[J], 2019, 39(1): 200-208 doi:

Han Xianglin, Wang Weigang, Mo Jiaqi. Bionomics Dynamic System for Epidemic Virus Transmission. Acta Mathematica Scientia[J], 2019, 39(1): 200-208 doi:

1 引言

流行性传染病的传播是医学界、生物学界、生态环境学界十分关注的对象.特别是非典病毒、埃博拉病毒、艾滋病毒等.这些病毒在人类和生物界的传播,值得人们广泛地重视.它对人类健康和生态环境带来了严重的威胁.关于病毒传播的研究,最初局限于采用一些观察和简单的数据统计来分析与推断.但它不能较有效的反映病毒传播的本质.近来,对流行性传染病病毒的传播研究和讨论,在国内、外学术界已经将它们归纳转化为数学物理动力学研究的方法[1-8].即归纳为一个能反映它的基本规律的数学物理非线性微分方程动力学系统模型,然后利用数学物理的解析方法来求出相应动力学系统的解.将求得的结果作为依据,结合医学、生态、生物、数学物理等交叉学科理论,来综合研究它们的动态规律.最后对有关生态物理量预测.本文就是以相应的一个非线性动力学的系统模型为基础,用近代数学物理中的理论工具,从生态医学的观点来讨论流行性传染病的传播规律.

非线性渐近理论和方法在国内、外学术界是一个十分重视和活跃的对象.近来,许多理论和实际工作者都做了大量的工作[9-17].莫嘉琪、韩祥临等人也研究了不同情形下的非线性数学物理问题[18-30].本文就是利用一个有效的泛函分析的同伦映射方法来得到一类流行性传染病人群中的数学物理非线性动力学系统的渐近解.

2 流行性病传播动力学系统模型

考虑如下流行性病传播人群生态动力学的数学物理系统模型

$\frac{{\rm d}u}{{\rm d}t}=auv-buv^{2}-cu, $

$\frac{{\rm d}v}{{\rm d}t}=-a_{1}uv-b_{1}u^{2}v-c_{1}u+d, $

其中$u(t)$$v(t)$分别表示在流行性病传播区域内的感染者人数和易感者人数, $t$为时间变量, $d\geq 0$表示易感者出生率, $a, a_{1}, b, b_{1}, c, c_{1}$均为常数.在数学物理动力学系统(2.1), (2.2)中, $auv$项表示由感染者与易感者因"交感"而造成的患者增加速度, $-buv^{2}$项表示由于采取防疫措施后使得患者而减少的速度, $-cu$项表示由于患者死亡而引起的患者减少速度, $-a_{1}uv$项表示感染者与易感者"交感"易感者变为患者后使得易感者所减少的速度, $-b_{1}u^{2}v$项表示采取防疫措施后使得易感者所减少的速度, $c_{1}u$项表示患者增多时易感者的增加速度.系统(2.1), (2.2)是一个典型的在患区人群的流行性病传播的数学物理生态动力学系统模型.由于系统(2.1), (2.2)是非线性动力学系统,它一般不能得到系统的初等函数的精确解.故我们将得求数学物理动力学系统(2.1), (2.2)解的渐近表达式,从而可将得的表示式来定性地研究流行性病的传播性态和规律.

3 泛函分析同伦映射

为了使用泛函映射方法得到流行性病传播人群的生态动力学微分系统的模型(2.1), (2.2)的渐近解,令

$U=\sum\limits_{i=0}^{\infty }u_{i}p^{i}, \ \V=\sum\limits_{i=0}^{\infty }v_{i}p^{i}, $

其中$p\in[0, 1]$为人工参数[31, 32].现引入一组泛函分析同伦映射$H_{i}(u, v, p), \ \mathbb{R}^{2}\times I\rightarrow \mathbb{R}, \ i=1, 2$,即

$H_{1}(u, v, p)=L_{1}(u, v)-L_{1}(u_{0}, v_{0})+p[L_{1}(u_{0}, v_{0})-auv+buv^{2}], $

$H_{2}(u, v, p)=L_{2}(u, v)-L_{2}(u_{0}, v_{0})+p[L_{2}(u_{0}, v_{0})-a_{1}uv+b_{1}uv^{2}-d], $

其中$I=[0.1], \ \mathbb{R}=(-\infty, +\infty), \ (u_{0}, v_{0})$,为生态动力学数学物理系统(2.1), (2.2)的初始函数,线性算子$L_{i}\ (i=1, 2)$

$L_{1}(u, v)\equiv\frac{{\rm d}u}{{\rm d}t}+cu, $

$L_{2}(u, v)\equiv\frac{{\rm d}v}{{\rm d}t}-c_{1}u.$

显然,由(3.2)-(3.3)式知, $H_{i}(u, v, 1)=0\ (i=1, 2)$就是流行性病传播人群的生态动力学数学物理系统(2.1), (2.2).故系统(2.1), (2.2)的解$(u(t), v(t))$就是系统$H_{i}(u, v, p)=0$$(i=1, 2)$的解当$p\rightarrow 1$的极限.

首先选取原动力学系统(2.1), (2.2)的初始函数$(\overline{u}(t), \overline{v}(t))$为系统

$\frac{{\rm d}u}{{\rm d}t}+cu=0, $

$\frac{{\rm d}v}{{\rm d}t}=-a_{1}uv-b_{1}u^{2}v+c_{1}u+d $

的解.且由(3.6)和(3.7)式,初始值为$u(0)=A_{1}, v(0)=A_{2}$的解,不难可得到

$\overline{u}(t)=A_{1}\exp(-ct), $

$\begin{array}[b]{rl}\overline{v}(t)=& A_{2}\exp\bigg[\frac{2a_{1}A_{1}+b_{1}A^{2}_{2}}{2c}-(\frac{a_{1}A_{1}}{c}\exp(-ct)+\frac{b_{1}A^{2}_{1}}{2c}\exp(-2ct))\bigg]\\[3mm]&+\int^{t}_{0}(c_{1}A_{1}\exp(-c\tau)+d)\exp\bigg[\frac{a_{1}A_{1}}{c}\exp(c(\tau-t))+\frac{b_{1}A^{2}_{1}}{2c}\\&\exp(2c(\tau-t))\bigg]{\rm d}\tau.\end{array}$

给定流行性病传播人群的生态动力学微分系统(2.1), (2.2)一组无量纲的参数: $c=c_{1}=d=1$和初始值: $A_{1}=1\ (i=1, 2)$.这时由(3.8)和(3.9)式,可得生态动力学微分系统(2.1), (2.2)的泛函分析同伦映射的初始函数$(\overline{u}, \overline{v})$.利用数值模拟的方法可分别画出$(\overline{u}, \overline{v})=(u, v)$的曲线如图 1图 2所示.

图 1

图 1   泛函分析同伦映射初始函数$u$曲线


图 2

图 2   泛函分析同伦映射初始函数$v$曲线


4 动力学模型渐近解

将(3.1)式代入(3.2)和(3.3)式,展开非线性项关于$p$的幂级数,比较等式两边$p$的同次幂项的系数.由$p$的零次幂的系数可得

$\begin{equation}L_{i}(u_{0}, v_{0})=L_{i}(\overline{u}_{0}, \overline{v}_{0}), \ \i=1, 2.\end{equation}$

显然,我们可取$u_{0}(t)=\overline{u}_{0}(t), v_{0}(t)=\overline{v}_{0}(t)$.故由(4.1)式,生态动力学微分系统模型(2.1), (2.2)的零次渐近解$U_{0}, V_{0}$

$\begin{equation}U_{0}(t)=u_{0}(t)=A_{1}\exp(-ct), \end{equation}$

$\begin{eqnarray}V_{0}(t)=v_{0}(t)=A_{2}\exp\\\bigg[\frac{2a_{1}A_{1}+b_{1}A^{2}_{2}}{2c}-(\frac{a_{1}A_{1}}{c}\exp(-ct)+\frac{b_{1}A^{2}_{1}}{2c}\exp(-2ct))\bigg] \\+\int^{t}_{0}(c_{1}A_{1}\exp(-c\tau)+d)\\\exp\bigg[\frac{a_{1}A_{1}}{c}\exp(c(\tau-t))+\frac{b_{1}A^{2}_{1}}{2c}\exp(2c(\tau-t))\bigg]{\rm d}\tau. \end{eqnarray}$

由动力学模型(2.1), (2.2)解的零次近似(4.2), (4.3)及泛函分析同伦映射(3.2), (3.3)可得

$\begin{equation}L_{1}(u_{1}, v_{1})=au_{0}v_{0}-bu_{0}v^{2}_{0}, \end{equation}$

$\begin{equation}L_{2}(u_{1}, v_{1})=-au_{0}v_{0}-bu^{2}_{0}v_{0}-d, \end{equation}$

其中$u_{0}, v_{0}$分别为(4.2), (4.3)式,不难看出,系统(4.4), (4.5)且在零初始条件$(u_{1}(0), v_{1}(0)=(0, 0))$下的解为

$\begin{equation}u_{1}(t)=\int^{t}_{0}(au_{0}v_{0}-bu_{0}v^{2}_{0})\exp(c(\tau-t)){\rm d}\tau, \end{equation}$

$\begin{equation}v_{1}(t)=-\int^{t}_{0}(au_{0}v_{0}+bu^{2}_{0}v_{0}+d)\exp(-c_{1}(\tau-t)){\rm d}\tau.\end{equation}$

由(3.1), (4.2), (4.3), (4.6), (4.7)式知,令$p=1$,流行性病传播人群的生态动力学微分系统(2.1), (2.2)的一次函数$(U_{1}, V_{1})$

$\begin{equation}U_{1}(t)=A_{1}\exp(-ct)+\int^{t}_{0}(au_{0}v_{0}-bu_{0}v^{2}_{0})\exp(c(\tau-t)){\rm d}\tau, \end{equation}$

$\begin{eqnarray}V_{1}(t)&=&A_{2}\exp\bigg[\frac{2a_{1}A_{1}+b_{1}A^{2}_{2}}{2c}-(\frac{a_{1}A_{1}}{c}\exp(-ct)+\frac{b_{1}A^{2}_{1}}{2c}\exp(-2ct))\bigg] \\&&-\int^{t}_{0}(au_{0}v_{0}+bu^{2}_{0}v_{0}-d)\exp(-c_{1}(\tau-t)){\rm d}\tau.\end{eqnarray}$

由动力学系统模型(2.1), (2.2)解的零次近似(4.2), (4.3)及(4.6), (4.7)式和泛函分析同伦映射(3.2), (3.3)可得

$\begin{equation}L_{1}(u_{2}, v_{2})=a(u_{0}v_{1}+u_{1}v_{0})-b(2u_{0}v_{0}v_{1}+u_{1}v^{2}_{1}), \end{equation}$

$\begin{equation}L_{2}(u_{2}, v_{2})=-a(u_{0}v_{1}+u_{1}v_{0})-b_{1}(2u_{0}v_{0}v_{1}+u_{1}v^{2}_{0}), \end{equation}$

其中$u_{i}, v_{i}\ (i=1, 2)$分别为(4.2), (4.3), (4.6), (4.7)式.不难看出,动力学系统(4.10), (4.11)且在零初始条件$(u_{2}(0), v_{2}(0))=(0, 0)$下的解为

$\begin{equation}u_{2}(t)=\int^{t}_{0}((au_{0}v_{1}+u_{1}v_{0})-b(2u_{0}v_{0}v_{1}))\exp(c(\tau-t)){\rm d}\tau, \end{equation}$

$\begin{equation}v_{2}(t)=-\int^{t}_{0}(au_{0}v_{0}+bu^{2}_{0}v_{0}+b_{1}(2u_{0}v_{0}v_{1}-u_{1}v^{2}_{0}))\exp(-c_{1}(\tau-t)){\rm d}\tau.\end{equation}$

由(3.1), (4.2), (4.3), (4.6), (4.7), (4.12), (4, 13)式知,令$p=1$,流行性病传播人群的生态动力学微分系统(2.1), (2.2)的二次函数$(U_{2}, V_{2})$

同样可得流行性病传播人群的生态动力学微分系统(2.1), (2.2)解的$n$次函数$(U_{n}, V_{n})$$ (n=3, 4, \cdots)$.

能够用泛函分析不动点原理和逼近理论证明[31-33]:由(3.1)式表示的

在相应的条件下,关于$p$$[0, 1]$上是一致收敛的.故令$p=1$得到的

就是生态动力学微分系统(2.1), (2.2)的一组精确解$(U(t), V(t))$.因而,函数

就是非线性微分动力学系统(2.1), (2.2)的一组第$n$次近似的渐近解.

5 动力学系统模型解的讨论

为了简单起见,设流行性病传播人群的生态动力学微分系统(2.1), (2.2)的无量刚参数为$a_{i}=b_{i}=c_{i}=\frac{1}{10}\ (i=1, 2)), d=0$及初始条件$A_{1}=A_{2}=1$.微分动力学系统模型(2.1), (2.2)为

$\begin{equation}\frac{{\rm d}u}{{\rm d}t}=\frac{1}{10}(uv-uv^{2}-u), \end{equation}$

$\begin{equation}\frac{{\rm d}v}{{\rm d}t}=\frac{1}{10}(-uv-u^{2}v+u).\end{equation}$

利用泛函分析同伦映射(3.2), (3.3)和关系式(3.1),可得

$\begin{equation}u_{0}(t)=\exp(-\frac{1}{10}t), \end{equation}$

$\begin{eqnarray}v_{0}(t)&=&\exp\bigg[\frac{3}{2}-\exp(-\frac{t}{10})-\frac{1}{2}\exp(-\frac{t}{5})\bigg] \\&&+\frac{1}{10}\int^{t}_{0}\exp\bigg[-\exp(\tau-t)-\exp(2(\tau-t))-\frac{\tau}{10}\bigg]{\rm d}\tau, \end{eqnarray}$

$\begin{equation}u_{1}(t)=\frac{1}{10}\int^{t}_{0}(u_{0}v_{0}-u_{0}v^{2}_{0})\exp(\frac{\tau-t}{10}){\rm d}\tau, \end{equation}$

$\begin{equation}v_{1}(t)=\frac{1}{10}\int^{t}_{0}(u_{0}v_{0}+u_{0}v^{2}_{0})\exp(-\frac{\tau-t}{10}){\rm d}\tau, \end{equation}$

$\begin{equation}u_{2}(t)=\frac{1}{10}\int^{t}_{0}((u_{0}v_{1}-u_{1}v_{0})-(2u_{0}v_{1}+u_{1}v^{2}_{1}))\exp(\frac{\tau-t}{10}){\rm d}\tau, \end{equation}$

$\begin{equation}v_{2}(t)=\frac{1}{10}\int^{t}_{0}((u_{0}v_{1}+u_{0}v_{0})-(2u_{0}v_{0}v^{2}_{0}))\exp(-\frac{\tau-t}{10}){\rm d}\tau, \end{equation}$

其中$u_{0}, v_{0}$由(5.3), (5.4)式决定, $u_{1}, v_{1}$由(5.5), (5.6)式决定.

所以由(3.1)和(5.3)-(5.8)式,可得到生态动力学微分系统(5.1), (5.2)的零次,一次,二次渐近解$(U_{i}, V_{i})$

$\begin{equation}U_{0}(t)=\exp(-\frac{1}{10}t), \end{equation}$

$\begin{eqnarray}V_{0}(t)&=&\frac{1}{2}\exp\bigg[\frac{3}{2}-\exp(-\frac{t}{10})-\frac{1}{2}\exp(-\frac{t}{5})\bigg] \\&&+\frac{1}{10}\int^{t}_{0}\bigg[\exp\bigg[-\exp(\tau-t)-\exp(2(\tau-t))-\frac{\tau}{10}\bigg] \\&&\exp(-\frac{\tau-t}{10})\bigg]{\rm d}\tau. \end{eqnarray}$

$\begin{equation}U_{1}(t)=\exp(-\frac{1}{10}t)+\frac{1}{10}\int^{t}_{0}(u_{0}v_{0}-u_{0}v^{2}_{0})\exp(\frac{\tau-t}{10}){\rm d}\tau, \end{equation}$

$\begin{eqnarray}V_{1}(t)&=&\exp\bigg[\frac{3}{2}-\exp(-\frac{t}{10})-\frac{1}{2}\exp(-\frac{t}{5})\bigg] \\&&+\frac{1}{10}\int^{t}_{0}\bigg[\exp\bigg[-\exp(\tau-t)-\exp(2(\tau-t))-\frac{\tau}{10}\bigg] \\&&-(u_{0}v_{0}+u_{0}v^{2}_{0})\exp(-\frac{\tau-t}{10})\bigg]{\rm d}\tau, \end{eqnarray}$

$\begin{equation}U_{2}(t)=\exp(-\frac{1}{10}t)+\frac{1}{10}\int^{t}_{0}(u_{0}v_{0}-u_{0}v^{2}_{0})\exp(\frac{\tau-t}{10}){\rm d}\tau, \end{equation}$

$\begin{eqnarray}V_{2}(t)&=&\exp\bigg[\frac{3}{2}-\exp(-\frac{t}{10})-\frac{1}{2}\exp(-\frac{t}{5})\bigg] \\&&+\frac{1}{10}\int^{t}_{0}\bigg[\exp\bigg[-\exp(\tau-t)-\exp(2(\tau-t))-\frac{\tau}{10}\bigg] \\&&-(u_{0}v_{0}+u_{0}v^{2}_{0})(u_{0}v_{0}+u_{0}v^{2}_{0})\bigg]\exp(\frac{\tau+t}{10}){\rm d}\tau, \end{eqnarray}$

上述$u_{i}, v_{i} (i=0, 1)$由(5.9)-(5.12)式决定.

由(5.9)-(5.14)式,可得到生态动力学微分系统(5.1), (5.2)的泛函分析同伦映射零次、一次、二次渐近解$(U_{i}, V_{i}) (i=0.1, 2)$的曲线与系统(5.1), (5.2)的精确解的精度比较图形如图 3, 图 4所示.

图 3

图 3   动力学系统渐近解$U_{i}\ (i=0, 1, 2)$ (虚线)与精确解$U_{exa}$ (实线)的比较


图 4

图 4   动力学系统渐近解$V_{i}\ i=0, 1, 2)$ (虚线)与精确解$V_{exa}$ (实线)的比较


图 3, 图 4可以看出生态动力学微分系统(5.1), (5.2)的泛函分析同伦映射零次、一次、二次渐近解$(U_{i}, V_{i})\ (i=0, 1, 2)$的曲线逼近到精确解的情况.还可以看出,当次数$n$越大,渐近解$(U_{n}, V_{n})$越接近于精确解$(U, Y)$.

6 动力学系统模型解的意义与结论

(1)流行性病传播人群的生态系统是一个相当复杂的现象.把它简化为数学物理的动力学模型,然后用非线性近代数学物理学的处理方法来得到足够精度的渐近解.这是研究流行性病传播人群的传播问题的一个有效的途径.

(2)从数学理论来看,泛函分析同伦映射方法是一个数学物理的解析方法.它不同于通常的数值求解,更不是一个简单的模拟方法.由本方法得到解的解析表示式,还能继续进行解析运算.我们还能对得到的渐近解析表示式进一步进行定性和定量的研究.例如,可用微分的方法算出感染者和易感染者数量的变化速度、画出上述两者的变化曲线,从中发现其变化规律,并预报出感染者和易感染者在一定时期内的数量和发展趋向等规律.又譬如,我们还可以从足够精度的渐近表示式出发,分别对模型参数$a, a_{1}, b, b_{1}, c, c_{1}, d$进行各种运算研究,从而寻求各个参数的规律和作用,来控制流行性病毒的传播等等.但是,利用数值解法单纯地模拟是很难更深入的讨论.关于这方面的研究,在本文中不再予以进一步的讨论.

参考文献

May R M .

Will a large complex system be stable

Nature, 1972, 238: 413- 414

DOI:10.1038/238413a0      [本文引用: 1]

May R M .

Biological populations with nonoverlapping generations:stable point, stable cycles and chaos

Science, 1974, 186: 645- 647

DOI:10.1126/science.186.4164.645     

de Ruiter P C , Neutel A M , Moorre J C .

Energetics, patterns of interaction strengths and stability in real ecosystems

Science, 1995, 269: 1257- 1260

DOI:10.1126/science.269.5228.1257     

Hethcote H W , Vanark J W . Modelling HIV Transmission and AIDS in the United States. Berlin: SpringerVerlag, 1992

Griffiths J , Lowrie D , Willi J .

An age-structured model for the AIDS epidemic

European J Operational Research, 2000, 124: 1- 24

DOI:10.1016/S0377-2217(99)00288-X     

Hyman J M , Li Jia , Stanley E A .

The differential infectivity and staged progression models for the transmission of HIV

Math Biosciences, 1999, 155 (1): 77- 109

URL    

Griffiths J L , Wrie D , Williams J .

An age-structured model for the AIDS epidemic

European J Operational Research, 2000, 124 (1): 1- 24

URL    

Liu Maoxing , Ruan Yuhua , Han Litao , Zhou Yicang .

The summary of dynamic models for HIV transmission

J Biomath, 2004, 19 (5): 551- 560

[本文引用: 1]

Bell D C , Deng B .

Singular perturbation of N-front traveling waves in the Fitzhugh-Nagumo equations

Nonlinear Anal Real World Appl, 2003, 3 (4): 515- 541

URL     [本文引用: 1]

Hwangm S .

Kinetic decomposition for singularly perturbed higher order partial differential equations

J Diff Eqns, 2004, 200 (2): 191- 205

DOI:10.1016/j.jde.2003.12.001     

Zhang F .

Coexistence of a pulse and multiple spikes and transition layers in the standing waves of a reaction-diffusion system

J Diff Eqns, 2004, 205 (1): 77- 155

DOI:10.1016/j.jde.2004.06.017     

Barbu L , Morosanu G . Singularly Perturbed Boundary-Value Problems. Basel: Birkhauser, 2007

Bartier J P .

Global behavior of solutions of a reactio n-diffusion equation with gradient bsorption in unbounded domains

Asymptotic Anal, 2006, 46 (3/4): 325- 347

Llibre J , da Silva P R , Teixeira M A .

Regularization of discontinuous vector fields on R3 via singular perturbation

J Dyn Differ Equations, 2007, 19 (2): 309- 331

DOI:10.1007/s10884-006-9057-7     

Duehring D , Huang Wenzhang .

Periodic traveling waves for diffusion equations with time delayed and non-local responding reaction

J Dyn Differ Eqns, 2007, 19 (2): 457- 477

DOI:10.1007/s10884-006-9048-8     

Guarguaglini F R , Natalini R .

Fast reaction limit and large time behavior of solutions to a nonlinear model of sulphation phenomena

Commun Partial Differ Equations, 2007, 32 (2): 163- 189

URL    

Alvarez-Dios J A , Chipot M , Garcia J , Muiz M C .

On a singular perturbation problem for a class of variational inequalities

Zeitschrift fur Anal Und Ihre Anwendungen, 2008, 27 (1): 79- 94

URL     [本文引用: 1]

Mo Jiaqi , Chen Huijun .

The corner layer solution of Robin problem for semilinear equation

Math Appl, 2012, 25 (1): 1- 4

URL     [本文引用: 1]

Mo Jiaqi , Chen Xianfeng .

Homotopic mapping method of solitary wave solutions for generalized complex Burgers equation

Chin Phys B, 2010, 10 (10): 100203

URL    

Mo Jiaqi , Lin Wantao .

A class of nonlinear singularly perturbed problems for reaction diffusion equations with boundary perturbation

Acta Math Appl Sinica, 2006, 22 (1): 27- 32

URL    

Mo Jiaqi , Han Xianglin , Chen Songlin .

The singularly perturbed nonlocal reaction diffusion system

Acta Math Sci, 2002, 22B (4): 549- 556

URL    

Mo Jiaqi .

A class of singularly perturbed differential-difference reaction diffusion equation

Adv Math, 2009, 38 (2): 227- 231

URL    

Mo Jiaqi .

Homotopiv mapping solving method for gain fluency of a laser pulse amplifier

Science in China Ser G, 2009, 52 (7): 1007- 1070

DOI:10.1007/s11433-009-0146-6     

Mo Jiaqi .

Approximate solution of homotopic mapping to solitary wave for generalized nomlinear KdV system

Chin Phys Lett, 2009, 26 (1): 010204

DOI:10.1088/0256-307X/26/1/010204     

Mo Jiaqi .

Singularly perturbed reaction diffusion problem for nonlinear boundary condition with two parameters

Chin Phys, 2010, 19 (1): 010203

DOI:10.1088/1674-1056/19/1/010203     

莫嘉琪, 陈贤峰.

一类广义非线性扰动色散方程孤立波的近似解

物理学报, 2010, 50 (3): 1403- 1406

URL    

Mo Jiaqi , Chen Xianfeng .

Approximate analytic solution of solitary wave for a class of nonlinear disturbed Nizhnik-Novikov-Veselov system

Acta Phys Sin, 2010, 50 (3): 1403- 1406

URL    

韩祥临, 石兰芳, 莫嘉琪.

双参数非线性非局部奇摄动问题的广义解

数学进展, 2016, 45 (1): 95- 101

URL    

Han Xianlin , Shi Lanfang , Mo Jiaqi .

Generalized solution of nonlinear nonloacl singularly perturbed problems with two parameters

Adv Math, 2016, 45 (1): 95- 101

URL    

韩祥临, 石兰芳, 许永红, 莫嘉琪.

分数阶双参数奇摄动非线性微分方程的渐近解

应用数学学报, 2015, 38 (4): 721- 729

URL    

Han Xianglin , Shi Lanfang , Xu Yonghong , Mo Jiaqi .

Asymptotic solution for the fractional order singularly perturbed nonlinear differential equation with two parameters

Acta Math Appl Sin, 2015, 38 (4): 721- 729

URL    

韩祥临, 石兰芳, 莫嘉琪.

一类海-气振子模型的微扰解

物理学报, 2014, 63 (6): 060205

URL    

Han Xianglin , Shi Lanfang , Mo Jiaqi .

Small perturbed solution for a class of the sea-air oscillator

Acta Phys Sin, 2014, 63 (6): 060205

URL    

韩祥临, 陈贤峰, 莫嘉琪.

一类量子等离子体类孤波的近似解析解

物理学报, 2014, 63 (3): 030202

URL     [本文引用: 1]

Han Xianglin , Chen Xianfeng , Mo Jiaqi .

Approximate analytic solution of solitary-like waves in a class of quantum plasma

Acta Phys Sin, 2014, 63 (3): 030202

URL     [本文引用: 1]

Liao Shijun . Beyond Perturbation:Introduction to the Homotopy Analysis Method. New York: CRC Press, 2004

[本文引用: 2]

He Jihuan .

An elementary introduction to recently developed asymptotic methodsand nanomechanics in textile engineering

Int J Mod Phys B, 2008, 22: 3487- 3578

DOI:10.1142/S0217979208048668      [本文引用: 1]

De Jager E M , Jiang Furu . The Theory of Singular Perturbation. Amsterdam: North-Holland Publishing, 1996

[本文引用: 1]

/