数学物理学报, 2019, 39(1): 184-199 doi:

论文

折射Lévy风险过程的Parisian破产问题

张万路, 赵翔华,

On the Parisian Ruin Probability in a Refracted Lévy Process

Zhang Wanlu, Zhao Xianghua,

通讯作者: 赵翔华, E-mail: qfzxh@163.com

收稿日期: 2017-10-26  

基金资助: 国家自然科学基金.  11571198
国家自然科学基金.  11701319
山东省自然科学基金.  ZR2014AM021

Received: 2017-10-26  

Fund supported: the NSFC.  11571198
the NSFC.  11701319
the Natural Science Funndation of Shandong Province.  ZR2014AM021

摘要

该文主要讨论了折射Lévy风险过程(Refracted Lévy risk processes)的Parisian破产问题.折射Lévy风险过程可以看作一个保费可作调整的风险过程.该文借助Lévy过程的尺度函数(scale function)以及波动性理论(fluctuation)给出了折射Lévy风险过程的Parisian破产概率的确切表达式.

关键词: 折射Lévy风险过程 ; Parisian延迟 ; Parisian破产概率 ; 尺度函数

Abstract

In this paper, we investigate the Parisian ruin probability for a refracted Lévy process with b ≥ 0 and derive the explicit formulas for Parisian ruin probability. Our methodology use fluctuation theory and the theory of scale functions for spectrally negative Lévy processes. Two examples are provided.

Keywords: Refracted Lévy processes ; Parisian delay ; Parisian ruin probabiliry ; Scale function

PDF (394KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

张万路, 赵翔华. 折射Lévy风险过程的Parisian破产问题. 数学物理学报[J], 2019, 39(1): 184-199 doi:

Zhang Wanlu, Zhao Xianghua. On the Parisian Ruin Probability in a Refracted Lévy Process. Acta Mathematica Scientia[J], 2019, 39(1): 184-199 doi:

1 绪论及模型介绍

近十几年, Parisian破产问题受到了越来越多的风险领域专家学者的关注. Parisian破产是在经典破产问题中引入了金融领域的Parisian延迟概念.即当股票价格连续地位于一个特定水平以上或以下的时间超过特定时间才做出决策.如在风险模型中,盈余过程持续位于0水平下的连续时间超过长度$X$时,才做出破产的决策. Dassios和Wu(2008)[1]首次在保险风险模型中介绍了Parisian延迟,并且定义Parisian破产时间为盈余过程在第一次位于0水平下的连续时间超过长度$r\, (>0)$的时刻. Parisian延迟有两种情况:一种是延迟期为确定,即延迟期$X=r(>0)$为一非负常数. Czarna和Palmowski(2011)[2], Loeffen等(2013)[3], Wong和Cheung(2015)[4]等研究均是这种类型的Parisian破产问题;另一种是延迟期为一非负的随机变量,即$X$为非负的随机变量. Baurdoux等(2015)[5], Landrianlt等(2011, 2014)[6-7]讨论的就是这种随机延迟的情形. Parisian破产时间被广泛认可是因为:现实中的破产概率通常很小,即使盈余为负值,公司也可以运行一段时间,且很大可能会迅速恢复到正盈余水平.因此,它比经典破产更具有应用价值.同时,可以将Parisian延迟期看作公司的负盈余水平的恢复期. Parisian延迟的引入可以在企业偿付能力与收益性之间找到一个平衡.

本文研究的折射Lévy风险过程是一个保费根据公司的经营状况作出调整的风险过程.即,当公司的盈余值超过某一个临界值$b$时,公司可以对保费进行调整,降低保费率;但一旦公司的盈余值回到临界值以下,公司保费的收取就会回到原来水平.这种现象就是常见的折射.本文研究的风险过程就是具有确定Parisian延迟($r>0$)的折射Lévy风险过程.

假设$b\ (\geq0)$是临界值,当公司盈余值超过$b$时,保费就会做出调整,若公司盈余值回到了$b$以下时保费会恢复到原水平.

在本文中,令$U=\{U_t, t \geq 0\}$表示公司的盈余过程,其满足下面的随机微分方程

${\rm d}U_t={\rm d}X_t-\delta I_{\{U_t>b\}}{\rm d}t, \qquad t\geq0, \quad \delta\geq0.$

其中,过程$X=\{X_t, t \geq0\}$为一谱负Lévy过程,其Laplace指数为

$\gamma$为谱负Lévy过程$X$的漂移系数; $\sigma\geq0$为扩散系数;测度$\pi$是在$(0, \infty)$上的$\sigma$有限测度,满足

$\sigma=0$, $\int_0^{\infty}z\pi({\rm d}z)<\infty, $谱负Lévy过程$\{X_t:t\geq0\}$为有界变差过程,可简记为$X_t=ct-S_t.$其中, $c:=\gamma+\int_0^{\infty}z\pi({\rm d}z)$称为$X$的漂移系数, $S_t=\{S(t), t\geq0\}$为复合泊松过程.为了保证风险过程正的保费收入,假定

谱负Lévy过程$X$刻画了在临界水平$b$下方公司盈余值变化;令$Y_t=X_t-\delta t, \ \ t\geq0, $则过程$Y=\{Y_t, t \geq 0\}$也是谱负Lévy过程,它刻画了在临界水平$b$上方公司盈余的变化.即,当公司状况良好,其盈余超过临界水平$b$时,公司保费率减少$\delta.$为了模型中安全负荷为正,要求$E[U_1]>0$$E[Y_1]>0.$

在本文中,主要研究了Parisian破产时刻$k_r^U:$

其中, $g_t^U=\sup\{0\leq s\leq t:U_s\geq 0\}.$许多学者研究过不同风险模型的Parisian破产问题.如, Dassios和Wu(2008)[1]研究了经典复合Poisson风险模型的Parisian破产时间的Laplace变换; Czarna和Palmowski(2011)[2]和Loeffen等(2013)[3]在谱负Lévy风险模型下研究了Parisian破产时间的Laplace变换; Wong和Cheung(2015)[4]讨论了对偶风险模型的Parisian破产问题. Lkabous等(2017)[8]讨论了在$0$水平折射的Lévy风险过程的Parisian破产问题.本文推广了Lkabous等(2017)[8]的模型,风险过程的折射水平由$0$变为任意的有限非负数$b\ (\geq0).$在本文中,给出了Parisian破产概率的表达式.

本文结构如下:在第二章中,介绍了本文所涉及到的谱负Lévy过程的尺度函数(scale function)概念及波动性(fluctuation)理论;第三章给出了本文的主要定理及其证明;在第四章中,给出了两个例子.

2 尺度函数及波动理论

尺度函数是Lévy过程中一个强有力的工具,在本节中主要介绍了相关知识.对于谱负Lévy过程$X$,其$q$-尺度函数$W^{(q)}(x)$的定义为: $W^{(q)}(x)$为定义在$[0, +\infty)$上的连续函数,其拉普拉斯变换为

$\begin{equation}\int_0^{\infty}{\rm e}^{-\lambda y}W^{(q)}(y){\rm d}y=\frac{1}{\Psi(\lambda)-q}, \ \ \lambda>\Phi(q), \ \ q\geq0, \end{equation}$

其中, $\Psi$$X$的Laplace指数; $\Phi(q)=\sup\{s\geq0\mid\Psi(s)=q\}.$显然, $\Psi(\Phi(q))=q.$由Lévy过程的理论可知,尺度函数$W^{(q)}(x)$为关于$x$单调不减的非负函数且关于参数$q\, (\geq0)$也连续.当$x<0$时,令$W^{(q)}(x)=0, $$W^{(q)}(x)$的定义域变为整个实数域${\Bbb R}.$由谱负Lévy过程的理论可知

除了$q$-尺度函数$W^{(q)}(x)$以外,尺度函数$Z^{(q)}(x)$也是非常重要的,其定义为

$\begin{equation}Z^{(q)}(x)=1+q\int_0^xW^{(q)}(y){\rm d}y, \ \ x\geq 0.\end{equation}$

类似地,对于谱负Lévy过程$Y=\{Y_t=X_t-\delta t, t\geq0\}, $可以给出其相应的尺度函数, ${\Bbb W}^{(q)}$${\Bbb Z}^{(q)}$:

$\begin{equation}\int_0^{\infty}{\rm e}^{-\lambday}{\Bbb W}^{(q)}(y){\rm d}y=\frac{1}{\Psi(\lambda)-\delta \lambda-q}, \\\lambda>\varphi(q), \label{2.3}\end{equation}$

$\begin{equation}{\Bbb Z}^{(q)}(x)=1+q\int_0^x{\Bbb W}^{(q)}(y){\rm d}y, \\ x\geq0.\label{2.4}\end{equation}$

其中, $\varphi(q)=\sup\{\lambda \geq 0:\Psi(\lambda)-\delta \lambda=q\}.$

对于折射谱负Lévy过程$U$定义$w^{(q)}$$z^{(q)}$:

$\begin{equation}w^{(q)}(x;z)=W^{(q)}(x-z)+\delta I_{\{x\geq b\}}\int_b^x{\Bbb W}^{(q)}(x-y)W^{(q)'}(y-z){\rm d}y, \label{2.5}\end{equation}$

$\begin{equation}z^{(q)}(x;z)=Z^{(q)}(x-z)+\delta qI_{\{x\geq b\}}\int_b^x{\Bbb W}^{(q)}(x-y)W^{(q)}(y-z){\rm d}y, \label{2.6}\end{equation}$

其中, $W^{(q)'}(x)$为尺度函数$W^{(q)}(x)$的关于$x$的导函数. (2.1)-(2.6)式可参见文献Kyprianou和Loeffen(2010)[9], Lkabous等(2017)[8]或Renaud(2013)[10].

注2.1  当$x<b$时, $w^{(q)}(x;z)=W^{(q)}(x-z);\ \ \ z^{(q)}(x;z)=Z^{(q)}(x-z).$

注2.2  当$q=0$时,记$W^{(0)}(x)=W(x), \ \ {\Bbb W}^{(0)}(x)={\Bbb W}(x), \ \ w^{(0)}(x;z)=w(x;z)$.

下面给出谱负Lévy过程$X, Y$以及折射谱负Lévy过程溢出时的定义及相关结论.对任意的常数$a, c\in {\Bbb R}$,令

在本文以后的部分,令$P_x$表示过程的初始值为$x$时相对应的概率测度, $E_x$表示过程的初始值为$x$时相对应的数学期望.若$x=0$时,分别利用$P, \ E$表示概率测度和数学期望.谱负Lévy过程$X, \ Y$$U$的双边溢出问题已经被许多学者研究讨论过,如Kyprianou(2006)[11], Kyprianou和Loeffen(2010)[9].以下的结论在这些论文中均可找到.设$a\leq x \leq c$,则有

$\begin{equation}E_x[{\rm e}^{-q\tau_c^+};\tau_c^+<\tau_a^-]=\frac{W^{(q)}(x-a)}{W^{(q)}(c-a)}, \label{2.7}\end{equation}$

$\begin{equation}E_x[{\rm e}^{-q\tau_a^-};\tau_a^-<\tau_c^+]=Z^{(q)}(x-a)-\frac{Z^{(q)}(c-a)}{W^{(q)}(c-a)}W^{(q)}(x-a), \label{2.8}\end{equation}$

$\begin{equation}E_x[{\rm e}^{-q\nu_c^+};\nu_c^+<\nu_a^-]=\frac{{\Bbb W}^{(q)}(x-a)}{{\Bbb W}^{(q)}(c-a)}, \label{2.9}\end{equation}$

$\begin{equation}E_x[{\rm e}^{-qk_c^+};k_c^+<k_a^-]=\frac{w^{(q)}(x;a)}{w^{(q)}(c;a)}, \label{2.10}\end{equation}$

$\begin{equation}E_x[{\rm e}^{-qk_a^-};k_a^-<k_c^+]=z^{(q)}(x;a)-\frac{z^{(q)}(c;a)}{w^{(q)}(c;a)}w^{(q)}(x;a).\label{2.11}\end{equation}$

在本节最后我们给出论文后半部分涉及到的关于谱负Lévy过程相关结论.谱负Lévy过程$X$的相关量如前所示.

命题2.1[11]  对于$x\leq a, \lambda\geq0, $

$\begin{equation}E_x[{\rm e}^{-\lambda\tau_a^+}]={\rm e}^{\Phi(\lambda)(x-a)}, \end{equation}$

其中, $\Phi(\lambda)=\sup\{s\geq0\mid\Psi(s)=\lambda\}.$

命题2.2[7]  对任意的$0<x\leq a$,有

$\begin{eqnarray}E_x\big[{\rm e}^{-q\tau_0^-+\alphaX_{\tau_0^-}}I_{\{\tau_0^-\tau_a^+\}}\big] ={\rm e}^{\alphax}+\big(q-\Psi(\alpha)\big){\rm e}^{\alpha x}\int_0^x{\rm e}^{-\alphaz}W^{(q)}(z){\rm d}z\nonumber\\-\frac{W^{(q)}(x)}{W^{(q)}(a)}\Big({\rm e}^{\alpha a}+\big(q-\Psi(\alpha)\big){\rm e}^{\alphaa}\int_0^a{\rm e}^{-\alpha z}W^{(q)}(z){\rm d}z\Big).\label{2.13} \end{eqnarray}$

命题2.3[12]  对于$p, q\geq0, \ y\leq a\leq x\leq b$,有

$\begin{eqnarray}&& E_x\big[{\rm e}^{-p\tau_a^-}W^{(q)}(X_{\tau_a^-}-y)I_{\{\tau_a^-<\tau_b^+\}}\big]\\ &=&W^{(q)}(x-y)-(q-p)\int_a^xW^{(p)}(x-z)W^{(q)}(z-y){\rm d}z\\ &&-\frac{W^{(p)}(x-a)}{W^{(p)}(b-a)}\Big(W^{(q)}(b-y)-(q-p)\int_a^bW^{(p)}(b-z)W^{(q)}(z-y){\rm d}z\Big).\label{2.14}\end{eqnarray}$

命题2.4[3]  对于$\lambda>0, \ y\geq0, $

$\begin{equation}\int_0^\infty {\rm e}^{-\lambdar}\int_y^\infty\frac{z}{r}P(X_r\in{\rm d}z){\rm d}r=\frac{1}{\Phi(\lambda)}{\rm e}^{-\Phi(\lambda)y}, \label{2.15}\end{equation}$

$\begin{equation}\int_0^\infty{\rm e}^{-\lambda r}\int_0^\infty W^{(q)}(z-y)\frac{z}{r}P(X_r\in{\rm d}z){\rm d}r=\frac{{\rm e}^{-\Phi(\lambda)y}}{\lambda-q}, \label{2.16}\end{equation}$

其中, $\Phi(\lambda)=\sup\{s\geq0\mid\Psi(s)=\lambda\}.$

由命题2.4易得下面结论

$\int_0^\infty W^{(q)}(z)\frac{z}{r}P(X_r\in{\rm d}z)={\rm e}^{q\, r}.$

对于谱负Lévy过程$X, \ Y, $由论文Loeffen等(2014)[12]可得如下命题.

命题2.5[12]  对任意的$p, q\geq0, \ b\leq x\leq c$,有

$\begin{equation}E_x\big[{\rm e}^{-p\nu_b^-}W^{(q)}(Y_{\nu_b^-})I_{\{\nu_b^-<\nu_c^+\}}\big]=\\W^{(q)}(x)-{\cal H}(x) -\frac{{\Bbb W}^{(p)}(x-b)}{{\Bbb W}^{(p)}(c-b)}\Big( W^{(q)}(c)-{\cal H}(c)\Big), \label{2.18}\end{equation}$

其中, ${\cal H}(x)=\int_0^{x-b}\Big((q-p)W^{(q)}(x-z)-\delta W^{(q)'}(x-z)\Big){\Bbb W}^{(p)}(z){\rm d}z.$

注2.3  当$p=q$时, $E_x\big[{\rm e}^{-q\nu_b^-}W^{(q)}(Y_{\nu_b^-})I_{\{\nu_b^-<\nu_c^+\}}\big]=w(x;0)-\frac{{\Bbb W}^{(q)}(x-b)}{{\Bbb W}^{(q)}(c-b)}w(c;0).$

3 Parisian破产概率

在本节中,借助尺度函数以及谱负Lévy过程的波动性理论,给出折射Lévy风险过程的Parisian破产概率表达式.

定理3.1  折射谱负Lévy风险过程$U$的Parisian破产概率具有如下的表达式

$\begin{eqnarray}P_x(k_r^U<\infty)=1-(E[X_1]-\delta)_+\frac{\int_0^\infty w(x;-z)zP(X_r\in{\rm d}z)}{\int_0^\infty \big(1-\delta W(b+z)\big)zP(X_r\in{\rm d}z)}, \ \ x\in{\Bbb R}.\end{eqnarray}$

注3.1  在折射谱负Lévy风险过程$U$中,若令$\delta=0$,则过程$U$就变为非折射的谱负Lévy风险过程, (3.1)式和Loeffen等(2013)[3]的定理1的(2)式相同;若$b=0, $ (3.1)式和Lkabous等(2017)[8]的定理2的(14)式一样.

为了证明我们的定理3.1,首先证明以下引理.

引理3.1  对于任意的$x\in {\Bbb R}, \ \ 0\leq b<c, $

$\begin{equation}E_x\Big[P_{X_{\tau_0^-}}(\tau_0^+\leq r)I_{\{\tau_0^-<\tau_b^+\}}\Big]=\int_0^\infty\Big(W(x+z)-\frac{W(x)}{W(b)}W(b+z)\Big)\frac{z}{r}P(X_r\in{\rm d}z), \label{3.2}\end{equation}$

$\begin{equation}E_x\Big[P_{Y_{\nu_b^-}}(k_0^-\geq k_b^+)I_{\{\nu_b^-<\infty\}}\Big]=\frac{w(x;0)-{\Bbb W}(x-b)(1-\delta W(b))}{W(b)}.\label{3.3}\end{equation}$

  由Fubini定理,空间时齐性以及(2.14)式可得

$\begin{eqnarray}&&E_x\Big[{\rm e}^{-q\tau_0^-}E_{X_{\tau_0^-}}[{\rm e}^{-q\tau_0^+} I_{\{\tau_0^+\leq r\}}]I_{\{\tau_0^-<\tau_b^+\}}\Big]\nonumber\\ &=&E_x\Big[{\rm e}^{-q\tau_0^-}\int_0^\infty {\rm e}^{-qr}W^{(q)}(X_{\tau_0^-}+z)\frac{z}{r}P(X_r\in{\rm d}z)I_{\{\tau_0^-<\tau_b^+\}}\Big]\nonumber\\ &=&\int_0^\infty {\rm e}^{-qr}E_x \Big[{\rm e}^{-q\tau_0^-}W^{(q)}(X_{\tau_0^-}+z)I_{\{\tau_0^-<\tau_b^+\}}\Big]\frac{z}{r}P(X_r\in{\rm d}z)\nonumber\\ &=&\int_0^\infty {\rm e}^{-qr}E_{x+z} \Big[{\rm e}^{-q\tau_z^-}W^{(q)}(X_{\tau_z^-}+z)I_{\{\tau_z^-<\tau_{b+z}^+\}}\Big]\frac{z}{r}P(X_r\in{\rm d}z)\nonumber\\ &=&\int_0^\infty {\rm e}^{-qr}\Big(W^{(q)}(x+z)-\frac{W^{(q)}(x)}{W^{(q)}(b)}W^{(q)}(b+z)\Big)\frac{z}{r}P(X_r\in{\rm d}z), \label{3.4}\end{eqnarray}$

其中

可详见Lkabous等(2017)[8]的引理8.而

所以, (3.2)式成立.下证(3.3)式成立.由(2.5), (2.10)及(2.18)式可得

$\begin{eqnarray}E_x\Big[{\rm e}^{-q\nu_b^-}E_{Y_{\nu_b^-}}[{\rm e}^{-qk_b^+}I_{\{k_b^+\leqk_0^-\}}]I_{\{\nu_b^-<\nu_c^+\}}\Big]&=&E_x\left[{\rm e}^{-q\nu_b^-}\frac{w^{(q)}(Y_{\nu_b^-};0)}{w^{(q)}(b;0)}I_{\{\nu_b^-<\nu_c^+\}}\right]\nonumber\\&=&\frac{E_x[{\rm e}^{-q\nu_b^-}W^{(q)}(Y_{\nu_b^-})I_{\{\nu_b^-<\nu_c^+\}}]}{W^{(q)}(b)}\nonumber\\&=&\frac{w^{(q)}(x;0)-\frac{{\Bbb W}^{(q)}(x-b)}{{\Bbb W}^{(q)}(c-b)}w^{(q)}(c;0)}{W^{(q)}(b)}.\label{3.5}\end{eqnarray}$

又因为

所以

$\begin{eqnarray}&&\lim\limits_{q \to 0}\lim\limits_{c \to\infty}\frac{w^{(q)}(c;0)}{{\Bbb W}^{(q)}(c-b)}=\lim\limits_{q \to 0}\lim\limits_{c \to \infty}\frac{W^{(q)}(c)+\delta\int_b^c {\Bbb W}^{(q)}(c-y)W^{(q)'}(y){\rm d}y}{{\Bbb W}^{(q)}(c-b)}\nonumber\\&=&\lim\limits_{q \to 0}-\delta W^{(q)}(b)+\delta {\rm e}^{\varphi(q)(b)}\bigg(\frac{1}{\delta}-\varphi(q)\int_{0}^{b}{\rm e}^{-\varphi(q)(y)}W^{(q)}(y){\rm d}y\bigg)\nonumber\\&=&1-\delta W(b).\label{3.6}\end{eqnarray}$

借助(3.6)式,在(3.5)式中分别令$c\to\infty, \ \ q\to0$立得(3.3)式.

引理3.2  对任意的$x\in {\Bbb R}, \ \ b\geq0, $

$\begin{eqnarray}&&E_x\Big[E_{Y_{\nu_b^-}}[P_{X_{\tau_0^-}}(\tau_0^+\leq r)I_{\{\tau_0^-<\tau_b^+\}}]I_{\{\nu_b^-<\infty\}}\Big]\nonumber\\&=&\int_0^\infty \Big[w(x;-z)-{\Bbb W}(x-b)\big(1-\delta W(b+z)\big)\Big]\frac{z}{r}P(X_r\in{\rm d}z)\nonumber\\ &&-\int_0^\infty \Big[w(x;0)-{\Bbb W}(x-b)\big(1-\delta W(b)\big)\Big]\frac{W(b+z)}{W(b)}\frac{z}{r}P(X_r\in{\rm d}z).\label{3.7}\end{eqnarray}$

  为证明(3.7)式,首先需要计算下面的极限

$\begin{eqnarray}&&E_x\Big[E_{Y_{\nu_b^-}}[P_{X_{\tau_0^-}}(\tau_0^+\leq r)I_{\{\tau_0^-<\tau_b^+\}}]I_{\{\nu_b^-<\infty\}}\Big]\nonumber\\&=&\lim\limits_{q \to 0}\lim\limits_{c \to \infty}{\rm e}^{qr}E_x\bigg[{\rm e}^{-q\nu_b^-}E_{Y_{\nu_b^-}}\Big[{\rm e}^{-q\tau_0^-}E_{X_{\tau_0^-}}[{\rm e}^{-q\tau_0^+}I_{\{\tau_0^+\leqr\}}]I_{\{\tau_0^-<\tau_b^+\}}\Big]I_{\{\nu_b^-<\nu_c^+\}}\bigg].\label{3.8}\end{eqnarray}$

利用(3.4)式,空间时齐性及(2.18)式可得

$\begin{eqnarray}&&E_x\bigg[{\rm e}^{-q\nu_b^-}E_{Y_{\nu_b^-}}\Big[{\rm e}^{-q\tau_0^-}E_{X_{\tau_0^-}}[{\rm e}^{-q\tau_0^+}I_{\{\tau_0^+\leq r\}}]I_{\{\tau_0^-<\tau_b^+\}}\Big]I_{\{\nu_b^-<\nu_c^+\}}\bigg]\nonumber\\&=&E_x\bigg[{\rm e}^{-q\nu_b^-}\int_0^\infty {\rm e}^{-qr}\Big(W^{(q)}(Y_{\nu_b^-}+z)\\&&-\frac{W^{(q)}(Y_{\nu_b^-})}{W^{(q)}(b)}W^{(q)}(b+z)\Big)\frac{z}{r}P(X_r\in{\rm d}z)I_{\{\nu_b^-<\nu_c^+\}}\bigg]\nonumber\\&=&\int_0^\infty {\rm e}^{-qr} E_{x+z}\Big[{\rm e}^{-q\nu_{b+z}^-}W^{(q)}(Y_{\nu_{b+z}^-})I_{\{\nu_{b+z}^-<\nu_{c+z}^+\}}\Big]\frac{z}{r}P(X_r\in{\rm d}z)\nonumber\\&&-\int_0^\infty {\rm e}^{-qr} E_x\Big[{\rm e}^{-q\nu_b^-}W^{(q)}(Y_{\nu_b^-})I_{\{\nu_b^-<\nu_c^+\}}\Big]\frac{W^{(q)}(b+z)}{W^{(q)}(b)}\frac{z}{r}P(X_r\in{\rm d}z)\nonumber\\&=&\int_0^\infty {\rm e}^{-qr}\Big(w^{(q)}(x;-z)-\frac{{\Bbb W}^{(q)}(x-b)}{{\Bbb W}^{(q)}(c-b)}w^{(q)}(c;-z)\Big)\frac{z}{r}P(X_r\in{\rm d}z)\nonumber\\&&-\int_0^\infty{\rm e}^{-qr}\Big(w^{(q)}(x;0)-\frac{{\Bbb W}^{(q)}(x-b)}{{\Bbb W}^{(q)}(c-b)}w^{(q)}(c;0)\Big)\\&&\frac{W^{(q)}(b+z)}{W^{(q)}(b)}\frac{z}{r}P(X_r\in{\rm d}z).\label{3.9}\end{eqnarray}$

借助于极限

可得

$\begin{eqnarray}&&\lim\limits_{q \to 0}\lim\limits_{c \to\infty}\frac{w^{(q)}(c;-z)}{{\Bbb W}^{(q)}(c-b)}\\&=&\lim\limits_{q \to 0}\lim\limits_{c \to \infty}\frac{W^{(q)}(c+z)+\delta\int_b^c {\Bbb W}^{(q)}(c-y)W^{(q)'}(y+z){\rm d}y}{{\Bbb W}^{(q)}(c-b)}\nonumber\\&=&\lim\limits_{q \to 0}-\delta W^{(q)}(b+z)+\delta {\rm e}^{-\varphi(q)(z+b)}\Big(\frac{1}{\delta}-\varphi(q)\int_{0}^{b+z}{\rm e}^{-\varphi(q)(y)}W^{(q)}(y){\rm d}y\Big)\nonumber\\&=&1-\delta W(b+z).\label{3.10}\end{eqnarray}$

将(3.9)及(3.10)式代入(3.8)式即可得结论(3.7).

引理3.3  对任意的$x\in {\Bbb R}, \ b\geq0$$\epsilon>0, $

$\begin{equation}E_x[P_{X_{\tau_0^-}}(\tau_\epsilon^+\leq r)I_{\{\tau_0^-<\tau_{b+\epsilon}^+\}}]=\\\int_\epsilon^\infty\Big(W(z+x-\epsilon)-W(x)\frac{W(z+b)}{W(b+\epsilon)}\Big)\frac{z}{r}P(X_r\in{\rm d}z), \label{3.11}\end{equation}$

$\begin{equation}E_x[P_{Y_{\nu_b^-}}(k_0^->k_{b+\epsilon}^+)I_{\{\nu_b^-<\infty\}}]=\frac{w(x;0)-{\Bbb W}(x-b)(1-\deltaW(b))}{w(b+\epsilon;0)}.\label{3.12}\end{equation}$

  由(2.12), (2.13)及(2.15)式,同时利用Fubini定理和分部积分可得下面的Laplace变换

所以,由上式及Laplace变换的性质可得

下证(3.12)式.由(2.10)式及命题2.5可得

证毕.

引理3.4  对于任意的$x\in {\Bbb R}, \ 0\leq b<c$$\epsilon>0, $

$\begin{eqnarray}&&E_x\Big[E_{Y_{\nu_b^-}}[P_{X_{\tau_0^-}}(\tau_\epsilon^+\leq r)I_{\{\tau_0^-<\tau_{b+\epsilon}^+\}}]I_{\{\nu_b^-<\infty\}}\Big]\nonumber\\&=&\int_\epsilon^\infty\Big(w(x;-z+\epsilon)-{\Bbb W}(x-b)\big(1-\delta W(b+z-\epsilon)\big)\Big) \frac{z}{r}P(X_r\in{\rm d}z)\nonumber\\&&-\int_\epsilon^\infty \Big(w(x;0)-{\Bbb W}(x-b)\big(1-\deltaW(b)\big)\Big) \frac{W(z+b)}{W(b+\epsilon)}\frac{z}{r}P(X_r\in{\rm d}z).\label{3.13}\end{eqnarray}$

  根据(3.11)式且利用空间齐次性和命题2.5可得

证毕.

定理3.1的证明  只要求Parisian破产时刻等于无穷的概率$P_x(k_r^U=\infty), $$P_x(k_r^U<\infty)=1-P_x(k_r^U=\infty)$立得(3.1)式.设$x$为过程的出发位置,则

(Ⅰ)当$x<0$时,因为谱负Lévy过程只有负的跳跃,所以$U_{k_0^+}=0, $再由强马氏性可得

又由于在$x<0$条件下, $\{X_t, t<\tau_b^+\}$$\{U_t, t<k_b^+\}$$P_x$下有相同的分布.所以

$\begin{eqnarray}P_x(k_r^U=\infty)=P_x(\tau_0^+\leq r)\, P_0(k_r^U=\infty).\end{eqnarray}$

(Ⅱ)当$0\leq x<b$时, $\{X_t, t<\tau_b^+\}$$\{U_t, t<k_b^+\}$$P_x$下有相同的分布.由强马氏性及(3.14)式,可得

$\begin{eqnarray}P_x(k_r^U=\infty)&=&P_x(k_r^U=\infty, k_0^-> k_b^+)+P_x(k_r^U=\infty, k_0^-<k_b^+)\nonumber\\&=&E_x[P_b(k_r^U=\infty)I_{\{k_0^-> k_b^+\}}]+E_x[P_{U_{k_0^-}}(k_r^U=\infty)I_{\{k_0^-< k_b^+\}}]\nonumber\\&=&P_x(k_0^->k_b^+)P_b(k_r^U=\infty)+P_0(k_r^U=\infty)\\&&E_x[P_{X_{\tau_0^-}}(\tau_0^+\leqr)I_{\{\tau_0^-< \tau_b^+\}}].\label{3.15} \end{eqnarray}$

同时,可以得到(3.15)式在$x<0$时恰为(3.14)式.

(Ⅲ)当$x\geq b$时, $\{Y_t, t<\nu_b^-\}$$\{U_t, t<k_b^-\}$$P_x$下有相同的分布.同样利用强马氏性,双期望公式及(3.15)式,可得

$\begin{eqnarray}P_x(k_r^U=\infty)&=&P_x(k_b^-=\infty)+E_x[P_x(k_r^U=\infty |{\cal F}_{k_b^-})I_{\{k_b^-<\infty\}}]\nonumber\\&=&P_x(\nu_b^-=\infty)+P_b(k_r^U=\infty)E_x[P_{Y_{\nu_b^-}}(k_0^-> k_b^+)I_{\{\nu_b^-<\infty\}}]\nonumber\\&&+P_0(k_r^U=\infty)E_x[E_{Y_{\nu_b^-}}[P_{X_{\tau_0^-}}(\tau_0^+\leq r)I_{\{\tau_0^-<\tau_b^+\}}]I_{\{\nu_b^-< \infty\}}]. \label{3.16}\end{eqnarray}$

与(Ⅱ)中一样, (3.16)式在$x<b$时与(3.14)和(3.15)式相同.

下面将分两种情形来证明定理3.1.

(Pi) 假设谱负Lévy过程$X$具有有界变差(BV)的样本轨道.在(3.14)式中令$x=0$,可得

$\begin{equation}P_0(k_r^U=\infty)=\frac{P_0(k_0^-> k_b^+)P_b(k_r^U=\infty)}{1-E_0[P_{X_{\tau_0^-}}(\tau_0^+\leq r)I_{\{\tau_0^-<\tau_b^+\}}]}.\end{equation}$

同样在(3.16)式中令$x=b$,可得

$\begin{equation}P_b(k_r^U=\infty)=\frac{P_b(\nu_b^-=\infty)+P_0(k_r^U=\infty)E_b\Big[E_{Y_{\nu_b^-}}[P_{X_{\tau_0^-}}(\tau_0^+\leqr)I_{\{\tau_0^-< \tau_b^+\}}]I_{\{\nu_b^-< \infty\}}\Big]}{1-E_b\Big[P_{Y_{\nu_b^-}}(k_0^->k_b^+)I_{\{\nu_b^-<\infty\}}\Big]}. \end{equation}$

联立(3.17)及(3.18)式可解得

$\begin{equation}P_0(k_r^U=\infty)=P_b(\nu_b^-=\infty)P_0(k_0->k_b^+){\cal J}^{-1}_{0, b}, \label{3.19}\end{equation}$

$\begin{equation}P_b(k_r^U=\infty)=P_b(\nu_b^-=\infty)\big(1-E_0[P_{X_{\tau_0^-}}(\tau_0^+\leqr)I_{\{\tau_0^-\!<\tau_b^+\}}]\big){\cal J}^{-1}_{0, b}, \label{3.20}\end{equation}$

其中

对于谱负Lévy风险过程$Y, $由Kyprianou(2006)[11]中的(8.7)式,可知

$\begin{equation}P_x(\nu_0^-<\infty)=1-(E[X_1]-\delta)_+{\Bbb W}(x), \ \ x\geq0.\end{equation}$

由上式及空间齐次性可得

$\begin{equation}P_b(\nu_b^-=\infty)=P_0(\nu_0^-=\infty)=(E[X_1]-\delta)_+{\Bbb W}(0).\end{equation}$

在(3.2)式中令$x=0$,得到

$\begin{equation}E_0[P_{X_{\tau_0^-}}(\tau_0^+\leq r)I_{\{\tau_0^-<\tau_b^+\}}]=1-\frac{W(0)}{W(b)}\int_0^\infty W(b+z)\frac{z}{r}P(X_r\in{\rm d}z).\end{equation}$

同样,在(3.3)和(3.7)式中,令$x=b$可得

$\begin{equation}E_b\left[P_{Y_{\nu_b^-}}(k_0^-> k_b^+)I_{\{\nu_b^-<\infty\}}\right]=1-{\Bbb W}(0)\left(\frac{1}{W(b)}-\delta\right), \label{3.24}\end{equation}$

$\begin{equation}E_b\Big[E_{Y_{\nu_b^-}}[P_{X_{\tau_0^-}}(\tau_0^+\leqr)I_{\{\tau_0^-<\tau_b^+\}}]I_{\{\nu_b^-<\infty\}}\Big]=\\{\Bbb W}(0)\int_0^\infty\Big(\frac{W(b+z)}{W(b)}-1\Big)\frac{z}{r}P(X_r\in{\rm d}z).\label{3.25}\end{equation}$

在(2.10)式中令$q=0, \ a=0, \ c=b, \ x=0$,可得

$\begin{equation}P_0(k_0^-> k_b^+)=\frac{W(0)}{W(b)}.\end{equation}$

将(3.22)-(3.26)式分别代入(3.19)及(3.20)式,化简可得

$\begin{equation}P_b(k_r^U=\infty)=\frac{(E[X_1]-\delta)_+\int_0^\inftyW(b+z)\frac{z}{r}P(X_r\in{\rm d}z)} {\int_0^\infty \big(1-\deltaW(b+z)\big)\frac{z}{r}P(X_r\in{\rm d}z)}, \label{3.27}\end{equation}$

$\begin{equation}P_0(k_r^U=\infty)=\frac{(E[X_1]-\delta)_+} {\int_0^\infty\big(1-\delta W(b+z)\big)\frac{z}{r}P(X_r\in{\rm d}z)}.\label{3.28}\end{equation}$

(Pⅱ)假设谱负Lévy风险过程$X$是无界变差过程(UBV).本部分利用与Loeffen等(2013)[3]类似的逼近方法来研究相关问题.为此,引入停时$k_{r, \epsilon}^U.$对任意的$\epsilon\geq0, $

其中, $g_t^\epsilon=\sup\{0\leq s\leq t:U_s\geq\epsilon\}.$停时$k_{r, \epsilon}^U$表示过程$U$从零水平下方出发到首次回到$\epsilon$水平上方这段时间大于$r$的停时.类似于有界变差,有

(Ⅳ)当$x<0$时,有

$\begin{equation}P_x(k_{r, \epsilon}^U=\infty)=P_x(\tau_\epsilon^+\leq r)P_\epsilon(k_{r, \epsilon}^U=\infty).\end{equation}$

(Ⅴ)当$0\leq x<b$时,有

$\begin{eqnarray}P_x(k_{r, \epsilon}^U=\infty)&=&P_x(k_0^-> k_{b+\epsilon}^+)P_{b+\epsilon}(k_{r, \epsilon}^U=\infty)\nonumber\\&&+P_\epsilon(k_{r, \epsilon}^U=\infty)E_x[P_{X_{\tau_0^-}}(\tau_\epsilon^+\leqr)I_{\{\tau_0^-< \tau_{b+\epsilon}^+\}}].\label{3.30}\end{eqnarray}$

(Ⅵ)当$x\geq b$时,有

$\begin{eqnarray}P_x(k_{r, \epsilon}^U=\infty)&=&P_x(\nu_b^-=\infty)+P_{b+\epsilon}(k_{r, \epsilon}^U=\infty)E_x[P_{Y_{\nu_b^-}}(k_0^-> k_{b+\epsilon}^+)I_{\{\nu_b^-<\infty\}}]\nonumber\\&&+P_\epsilon(k_{r, \epsilon}^U=\infty)E_x\Big[E_{Y_{\nu_b^-}}[P_{X_{\tau_0^-}}(\tau_\epsilon^+\leqr)I_{\{\tau_0^-<\tau_{b+\epsilon}^+\}}]I_{\{\nu_b^-<\infty\}}\Big].\label{3.31}\end{eqnarray}$

分别在(3.30)及(3.31)式中令$x=\epsilon, \ \ x=b+\epsilon$,可得

$\begin{equation}P_\epsilon(k_{r, \epsilon}^U=\infty)=\frac{P_\epsilon(k_0^->k_{b+\epsilon}^+)P_{b+\epsilon}(k_{r, \epsilon}^U=\infty)}{1-E_\epsilon[P_{X_{\tau_0^-}}(\tau_\epsilon^+\leqr)I_{\{\tau_0^-<\tau_{b+\epsilon}^+\}}]}, \label{3.32}\end{equation}$

$\begin{eqnarray}&&P_{b+\epsilon}(k_{r, \epsilon}^U=\infty)=\\&&\frac{P_{b+\epsilon}(\nu_b^-=\infty)+P_\epsilon(k_{r, \epsilon}^U=\infty)E_{b+\epsilon}[E_{Y_{\nu_b^-}}[P_{X_{\tau_0^-}}(\tau_\epsilon^+\leqr)I_{\{\tau_0^-< \tau_{b+\epsilon}^+\}}]I_{\{\nu_b^-< \infty\}}]}{1-E_{b+\epsilon}[P_{Y_{\nu_b^-}}(k_0^->k_{b+\epsilon}^+)I_{\{\nu_b^-<\infty\}}]}.\label{3.33}\end{eqnarray}$

联立(3.32)及(3.33)式,可解得

$\begin{equation}P_{b+\epsilon}(k_{r, \epsilon}^U=\infty)=P_{b+\epsilon}(\nu_b^-=\infty)\big(1-E_\epsilon[P_{X_{\tau_0^-}}(\tau_\varepsilon^+\leqr)I_{\{\tau_0^-< \tau_{b+\epsilon}^+\}}]\big){\cal J}^{-1}_{\epsilon, b}, \label{3.34}\end{equation}$

$\begin{equation}P_\epsilon(k_{r, \epsilon}^U=\infty)=P_{b+\epsilon}(\nu_b^-=\infty)P_\epsilon(k_0^->k_{b+\epsilon}^+){\cal J}^{-1}_{\epsilon, b}, \label{3.35}\end{equation}$

其中

为了求解(3.34)和(3.35)式,首先来计算以下几个式子.由空间齐次性及(3.21)式,可得

$\begin{equation}P_{b+\epsilon}(\nu_b^-=\infty)=P_{\epsilon}(\nu_0^-=\infty)=(E[X_1]-\delta)_+{\Bbb W}(\epsilon).\end{equation}$

分别在(3.11)-(3.13)及(2.10)式中,令$x=\epsilon, \ x=b+\epsilon, \ x=b+\epsilon$$q=\epsilon, a=0, $$ c=b+\epsilon, $$ x=\epsilon, $可得

$\begin{equation}E_\epsilon [P_{X_{\tau_0^-}}(\tau_\epsilon^+\leq r)I_{\{\tau_0^-<\tau_{b+\epsilon}^+\}}]=\int_\epsilon^\infty\Big(W(z)-W(\epsilon)\frac{W(z+b)}{W(b+\epsilon)}\Big)\frac{z}{r}P(X_r\in{\rm d}z), \label{3.37}\end{equation}$

$\begin{equation}E_{b+\epsilon}[P_{Y_{\nu_b^-}}(k_0^->k_{b+\epsilon}^+)I_{\{\nu_b^-<\infty\}}]=1-\frac{{\Bbb W}(\epsilon)(1-\deltaW(b))}{w(b+\epsilon;0)}, \label{3.38}\end{equation}$

$\begin{eqnarray}&&E_{b+\epsilon}\Big[E_{Y_{\nu_b^-}}[P_{X_{\tau_0^-}}(\tau_\epsilon^+\leq r)I_{\{\tau_0^-<\tau_{b+\epsilon}^+\}}]I_{\{\nu_b^-<\infty\}}\Big]\nonumber\\&=&\int_\epsilon^\infty\Big(w(b+\epsilon;-z+\epsilon)-{\Bbb W}(\epsilon)\big(1-\delta W(b+z-\epsilon)\big)\Big) \frac{z}{r}P(X_r\in{\rm d}z)\nonumber\\&&-\int_\epsilon^\infty\Big(w(b+\epsilon;0)-{\Bbb W}(\epsilon)\big(1-\deltaW(b)\big)\Big) \frac{W(z+b)}{W(b+\epsilon)}\frac{z}{r}P(X_r\in{\rm d}z), \label{3.39}\end{eqnarray}$

$\begin{equation}P_\epsilon (k_0^->k_{b+\epsilon}^+)=\frac{W(\epsilon)}{w(b+\epsilon;0)}.\label{3.40}\end{equation}$

将(3.36)-(3.40)式代入(3.35)式,化简可得

$\begin{equation}P_\epsilon (k_{r, \epsilon}^U=\infty)={\cal M}^{-1}_{\epsilon, 0}(E[X_1]-\delta)_+\; , \end{equation}$

其中

类似地,将(3.36)-(3.40)式代入(3.34)式,化简可得

$\begin{eqnarray}P_{b+\epsilon}(k_{r, \epsilon}^U=\infty)&=&{\cal M}^{-1}_{\epsilon, b}\, (E[X_1]-\delta)_+\nonumber\\&&\times\Big[\frac{W(b+\epsilon)}{W(\epsilon)}\int_0^\epsilon W(z)\frac{z}{r}P(X_r\in{\rm d}z)\\&&+\int_\epsilon^\infty W(z+b)\frac{z}{r}P(X_r\in{\rm d}z)\Big], \label{3.42} \end{eqnarray}$

其中

为了求出$P_0(k_r^U=\infty)$$P_b(k_r^U=\infty)$的表达式,引入与$k_{r, \epsilon}^U$类似的停时$\tilde{k}_{r, \epsilon}^U.$对任意的$\epsilon\geq0, $

其中, $g_t=\sup\{0\leq s\leq t:U_{s}\geq0\}.$

对任意的$0<\epsilon'<\epsilon$,显然有, $\{\tilde{k}_{r, \epsilon}^U<\infty\}\subset\{\tilde{k}_{r, \epsilon'}^U<\infty\}$$\cup_{\epsilon>0}\{\tilde{k}_{r, \epsilon}^U<\infty\}=\{k_{r}^U<\infty\}, $由谱负Lévy过程的空间时齐性,可得

所以只要在(3.41)及(3.42)式两边同时令$\epsilon \to 0$即得$P_0(k_r^U=\infty)$$P_b(k_r^U=\infty)$的表达式.而

$\begin{eqnarray}0\leq \lim\limits_{\epsilon \to0}\frac{1}{W(\epsilon)}\left(1-\int_\epsilon^\inftyW(z)\frac{z}{r}P(X_r\in{\rm d}z)\right)\leq\lim\limits_{\epsilon \to0}\int_0^\epsilon \frac{z}{r}P(X_r\in{\rm d}z)=0, \label{3.43}\end{eqnarray}$

$\begin{eqnarray}\lim\limits_{\epsilon \to 0}\int_\epsilon^\infty\big(1-\deltaW(b+z-\epsilon)\big)\frac{z}{r}P(X_r\in{\rm d}z)=\\\int_0^\infty\big(1-\delta W(b+z)\big)\frac{z}{r}P(X_r\in{\rm d}z).\label{3.44}\end{eqnarray}$

对任意$z\in(\epsilon, \infty), y\in(b, b+\epsilon), $利用尺度函数的单调性及非负性,可得

所以

$\begin{eqnarray}0&\leq& \lim\limits_{\epsilon \to0}\frac{1}{{\Bbb W}(\epsilon)}\int_\epsilon^\infty\left(w(b+\epsilon;0)\frac{W(z+b)}{W(b+\epsilon)}-w(b+\epsilon;-z+\epsilon)\right)\frac{z}{r}P(X_r\in{\rm d}z)\nonumber\\&=&\frac{\delta}{{\Bbb W}(\epsilon)}\int_\epsilon^\infty\int_b^{b+\epsilon}{\Bbb W}(b+\epsilon-y)\\&&\bigg(W'(y)\frac{W(z+b)}{W(b+\epsilon)}-W'(y+z-\epsilon)\bigg){\rm d}y\frac{z}{r}\, P(X_r\in{\rm d}z)\nonumber\\&\leq&\lim\limits_{\epsilon \to 0}\delta \int_\epsilon^\infty\Big(W(b+\epsilon)-\\&&W(b)-W(b+z)+W(b+z-\epsilon)\Big)\frac{z}{r}P(X_r\in{\rm d}z)=0.\label{3.45}\end{eqnarray}$

在(3.41)式两边同时令$\epsilon \to 0, $同时借助(3.43)-(3.45)式,可得

对任意的$y\in(b, b+\epsilon)$,有

所以

$\begin{equation}0\leq\lim\limits_{\epsilon \to0}\int_\epsilon^\infty\int_b^{b+\epsilon}\frac{{\Bbb W}(b+\epsilon-y)W'(y+z-\epsilon)}{{\Bbb W}(\epsilon)}{\rm d}y\frac{z}{r}P(X_r\in{\rm d}z)\leq0.\label{3.46}\end{equation}$

其次对任意的$y\in(b, b+\epsilon)$,有

$\begin{equation}0\leq\lim\limits_{\epsilon \to 0}\frac{\int_b^{b+\epsilon}{\Bbb W}(b+\epsilon-y)W'(y){\rm d}y}{{\Bbb W}(\epsilon)}\leq\lim\limits_{\epsilon \to 0}W(b+\epsilon)-W(b)=0.\end{equation}$

另外

$\begin{equation}\lim\limits_{\epsilon \to 0}\int_\epsilon^\infty\frac{W(b+\epsilon)(1-\delta W(b+z-\epsilon))}{w(b+\epsilon;0)}\frac{z}{r}P(X_r\in{\rm d}z)=\\\int_0^\infty \big(1-\delta W(b+z)\big)\frac{z}{r}P(X_r\in{\rm d}z).\end{equation}$

在(3.42)式两边同时令$\epsilon \to 0, $同时借助(3.46)-(3.48)式,可得

$P_0(k_r^U=\infty)$$P_b(k_r^U=\infty)$的表达式和有界变差的情形具有相同的表达形式.

最后,无论谱负Lévy过程的样本路径是有界变差(BV)还是无界变差(UBV),均可化简(3.16)式.由谱负Lévy过程的空间时齐性及(3.21)式可得

$P_x(\nu_b^-=\infty)=P_{x-b}(\nu_0^-=\infty)=(E[X_1]-\delta)^+{\Bbb W}(x-b).$

将(3.3), (3.7), (3.27), (3.28)及(3.49)式代入(3.16)式中,便得到结论(3.1)式.

4 例子

本节对两个特殊谱负Lévy风险过程,给出了Parisian破产概率的解析表达式.

4.1 带有指数索赔的Cramer-Lundberg风险过程

假设$X$$Y$都是带有指数索赔的Cramer-Lundberg风险过程,它们的数学表达式分别为

其中$N=\{N_t, t\geq0\}$是强度为$\lambda$的泊松过程; $\{C_1, C_2, C_3, \cdots\}$是相互独立且同分布的随机变量,服从参数为$\alpha$的指数分布; $N$$C_i$是相互独立的.在这种情况下$X$的拉普拉斯指数为

安全负荷为正的条件用数学表达为

过程$X$的尺度函数为

过程$Y$的尺度函数为

$U$的尺度函数为

其中

Loeffen等(2013)[3]给出了下式

其中, $\delta_0({\rm d}y)$是在零点的狄拉克函数

其中, $\Gamma(a, x)=\int_0^x{\rm e}^{-t}t^{a-1}{\rm d}t$是下不完全伽马函数.另外

将上述式子代入(3.1)式,可得

$\begin{eqnarray} P_x (k_r^U<\infty)&=&1-\left(c-\delta-\frac{\lambda}{\alpha}\right)\\&&\left[\frac{{\cal N}_1} {c-\lambda/\alpha-\alpha+\frac{\lambda}{c}{\rm e}^{(\lambda/c-\alpha)b}}+{\cal N}_1 \times{\cal N}_2^{-1}\frac{\lambda r}{c}{\rm e}^{(\lambda/c-\alpha)b+\lambda r}\right] \nonumber\\& &-\left(c-\delta-\frac{\lambda}{\alpha}\right)\\&& \left(\frac{\lambda}{c^2\alpha-c\lambda}{\rm e}^{(\lambda/c-\alpha)x}-K(x, \delta, \alpha, \lambda, c, b)\right) r{\rm e}^{\lambda r}\times{\cal N}_3^{-1}, \label{4.1}\end{eqnarray}$

其中

4.2 Brownian风险过程

假设$X$$Y$都是Brownian风险过程,则

其中$c, \sigma>0, B=\{B_t, t\geq0\}$为标准布朗运动.则$X$的拉普拉斯指数为

过程$X, \ Y$的尺度函数分别为

并且有

其中

由Loeffen等(2013)[3]可知

其中${\cal N}$是标准正态分布的分布函数.

将以上式子代入(3.1)式可得

$\begin{eqnarray} P_x(k_r^U<\infty)&=&1-(c-\alpha)\frac{1-{\rm e}^{\frac{-2c}{\sigma^2}x}+cM(x, \delta, \sigma, c, b)}{c-\delta+\delta {\rm e}^{\frac{-2cb}{\sigma^2}}} \\& &-\frac{c-\delta}{c}\frac{\delta r{\rm e}^{-\frac{2cb}{\sigma^2}}(1-{\rm e}^{\frac{-2c}{\sigma^2}x}+cM(x, \delta, \sigma, c, b))} {(1-\delta/c+\delta/c {\rm e}^{\frac{-2cb}{\sigma^2}})^2 (\frac{\sigma\sqrt{r}}{\sqrt{2\pi}}{\rm e}^{-c^2r/(2\sigma^2)}+cr{\cal N}(\frac{c\sqrt{r}}{\sigma}))}\\&&-\frac{\frac{(c-\delta)^2r}{c}( {\rm e}^{\frac{-2cb}{\sigma^2}}-c M(x, \delta, \sigma, c, b) )} {(1-\delta/c+\delta/c {\rm e}^{\frac{-2cb}{\sigma^2}}) (\frac{\sigma\sqrt{r}}{\sqrt{2\pi}}{\rm e}^{-c^2r/(2\sigma^2)}+cr{\cal N}(\frac{c\sqrt{r}}{\sigma}))-\delta r{\rm e}^{\frac{-2cb}{\sigma^2}}}.\label{4.2}\end{eqnarray}$

注4.1  令$b=0$, (4.1)式与(4.2)式分别与Lkabous等(2017)[8]中的例4.1以及例4.2中的$P_x (k_r^U<\infty)$表达式相同.

参考文献

Dassios A, Wu S. Parisian ruin with exponential claims. 2008, http://eprints.lse.ac.uk/32033/

[本文引用: 2]

Czarna I , Palmowski Z .

Ruin probability with Parisian delay for a spectrally negative Lévy risk process

Journal of Applied Probability, 2011, 48 (4): 984- 1002

DOI:10.1239/jap/1324046014      [本文引用: 2]

Loeffen R L , Czarna I , Palmowski Z .

Parisian ruin probability for spectrally negative Lévy processes

Bernoulli, 2013, 19 (2): 599- 609

DOI:10.3150/11-BEJ404      [本文引用: 7]

Wong J T Y , Cheung E C K .

On the time value of Parisian ruin in (dual) renewal risk processes with exponential jumps

Insurance Mathematics and Economics, 2015, 65 (2): 280- 290

URL     [本文引用: 2]

Baurdoux E J , Pardo J C , Pérez J L .

Gerber-Shiu distribution at Parisian ruin for Lévy insurance risk process

Journal of Applied Probability, 2015, 53 (2): 572- 584

[本文引用: 1]

Landrianlt D , Renaud J F , Zhou X .

Occupation times of spectrally negative Lévy processes with applications

Stochastic Processes and Their Applications, 2011, 121 (11): 2629- 2641

DOI:10.1016/j.spa.2011.07.008      [本文引用: 1]

Landrianlt D , Renaud J F , Zhou X .

An insurance risk model with Parisian implementation delays

Methodology and Computing in Applied Probability, 2014, 16 (3): 583- 607

DOI:10.1007/s11009-012-9317-4      [本文引用: 2]

Lkabous M A , Czarna I , Renaud J F .

Parisian ruin for a refracted Lévy process

Insurance Mathematics and Economics, 2017, 74: 153- 163

DOI:10.1016/j.insmatheco.2017.03.005      [本文引用: 6]

Kyprianou A E , Loeffen R L .

Refracted Lévy processes

Ann Inst H Poincaré Probab Statist, 2010, 46 (1): 24- 44

DOI:10.1214/08-AIHP307      [本文引用: 2]

Renaud J F .

On the time spent in the red by a refracted Lévy risk process

Journal of Applied Probability, 2013, 51 (4): 1171- 1181

URL     [本文引用: 1]

Kyprianou A E . Introductory Lectures on Fluctuations of Lévy Processes with Applications. Berlin: Springer, 2006, 42 (4): 37- 57

[本文引用: 3]

Loeffen R L , Renaud J F , Zhou X .

Occupation times of intervals untill first passage times for spectrally negative Lévy processes with applications

Stochastic Processes and Their Applications, 2014, 124 (3): 1408- 1435

DOI:10.1016/j.spa.2013.11.005      [本文引用: 3]

/