Processing math: 9%

数学物理学报, 2019, 39(1): 15-28 doi:

论文

从混合模空间到Zygmund-型空间的一些积型算子

刘永民,1, 于燕燕,2

On Some Product-Type Operators From Mixed Norm Space to Zygmund-Type Spaces

Liu Yongmin,1, Yu Yanyan,2

通讯作者: 于燕燕, E-mail: minliu@jsnu.edu.cn

收稿日期: 2017-10-25  

基金资助: 国家自然科学基金.  11771184
国家自然科学基金.  11771188
江苏省基础研究计划.  BK20161158

Received: 2017-10-25  

Fund supported: 国家自然科学基金.  11771184
国家自然科学基金.  11771188
江苏省基础研究计划.  BK20161158

作者简介 About authors

刘永民,E-mail:minliu@jsnu.edu.cn , E-mail:minliu@jsnu.edu.cn

摘要

D={zC:|z|<1}是复平面上的单位圆盘, H(D)表示D上的所有解析函数的集合, ψ1,ψ2H(D),n是一个非负整数, φDD的一个解析自映射, μ是一个权函数.研究从混合模空间到Zygmund-型空间的积型算子Tnψ1,ψ2,φ的有界性和紧性特征,其中

Tnψ1,ψ2,φf(z)=ψ1(z)f(n)(φ(z))+ψ2(z)f(n+1)(φ(z)),fH(D).

关键词: 积型算子 ; 混合模空间 ; Zygmund-型空间 ; 克兰姆法则

Abstract

Let H(D) denote the space of all analytic functions on the unit disk D in the complex plane C, ψ1,ψ2H(D),n be a nonnegative integer, φ an analytic self-map of D and μ a weight. We study the boundedness and compactness of a product-type operator which is defined by

Tnψ1,ψ2,φf(z)=ψ1(z)f(n)(φ(z))+ψ2(z)f(n+1)(φ(z)),fH(D),

from the mixed norm space to Zygmund-type spaces.

Keywords: Product-type operator ; Mixed norm space ; Zygmund-type space ; Cramer's Rule

PDF (345KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

刘永民, 于燕燕. 从混合模空间到Zygmund-型空间的一些积型算子. 数学物理学报[J], 2019, 39(1): 15-28 doi:

Liu Yongmin, Yu Yanyan. On Some Product-Type Operators From Mixed Norm Space to Zygmund-Type Spaces. Acta Mathematica Scientia[J], 2019, 39(1): 15-28 doi:

1 引言

D={zC:|z|<1}是复平面上的单位圆盘, H(D)表示D上的所有解析函数的集合, φDD的一个解析自映射.

如果存在正数a, b (0<a<b)t0[0,1)满足

ϕ(r)(1r)a [t0,1)上单调递减且 lim

则称[0, 1)上的正连续函数\phi是一个正规函数.

对于p, \, q\in (0, \infty)及正规函数\phi,令

\|f\|_{p, \, q, \, \phi}=\left(\int_{0}^{1}M^{p}_{q}(f, r)\frac{\phi^{p}(r)}{1-r}r{\rm d}r\right)^{1/p},

其中

M_q(f, r)=\left(\frac{1}{2\pi}\int_0^{2\pi}|f(r{\rm e}^{{\rm i}\theta})|^q{\rm d}\theta\right)^{1/q}, \quad 0\leq r<1.

L(p, \, q, \, \phi)表示{\Bbb D}上使得\|f\|_{p, \, q, \, \phi}<\infty的所有可测函数的集合称为混合模空间. H(p, \, q, \, \phi)=L(p, \, q, \, \phi)\cap H({\Bbb D}).1\leq p<\infty时, H(p, \, q, \, \phi)是以\|\cdot\|_{p, \, q, \, \phi}为范数的Banach空间;当0<p<1时, H(p, \, q, \, \phi)是以\|\cdot\|_{p, \, q, \, \phi}为半范数的Fréchet空间,但不是Banach空间.

\mu是一个权函数,即{\Bbb D}上的正连续函数.令

\|f\|_{{\cal Z}_{\mu}}=|f(0)|+|f'(0)|+\sup\limits_{z\in{\Bbb D}}\mu(z)|f''(z)|.

f\in H({\Bbb D})\|f\|_{{\cal Z}_{\mu}}<\infty,则称f属于Zygmund-型空间{{\mathcal Z}_\mu}. ({{\mathcal Z}_\mu}, \|\cdot\|_{{\cal Z}_{\mu}})也是一个Banach空间.如果\mu(z)=1-|z|^2, Zygmund-型空间{\cal Z}_{\mu}就是经典的Zygmund空间{\mathcal Z}.

近年来,人们在研究混合模空间与Zygmund-型空间之间某些算子的性质,参见论文[1-13]及它们中的参考文献.对于单位球上全纯函数空间上某些算子的研究参见文献[14-20].

最近, Stević, Sharma及Krishan在文献[21]中引入算子

T^n_{\psi_{1}, \psi_{2}, \varphi}f(z)=\psi_1(z)f^{(n)}(\varphi(z))+\psi_2(z)f^{(n+1)}(\varphi(z)), f\in H({\Bbb D}),

其中\psi_1, \psi_2\in H({\Bbb D}), n是非负整数, \varphi{\Bbb D}{\Bbb D}的一个解析自映射.他们研究了从一般空间到Bloch-型空间T^n_{\psi_{1}, \psi_{2}, \varphi}的有界性与紧性.对\psi_2\equiv0,可以得到加权微分复合算子,它的研究见论文[22-28].当n=0时, T^n_{\psi_{1}, \psi_{2}, \varphi}=T_{\psi_{1}, \psi_{2}, \varphi},后者是由Stević等在文献[29]中引进的.

受论文[16, 21, 24, 26, 30-31]的启发,本文研究算子T^n_{\psi_{1}, \psi_{2}, \varphi}: H(p, q, \phi)\rightarrow{\cal Z}_{\mu}的有界性与紧性特征.

2 预备知识

先给出一些预备知识.

引理2.1[32]  设p, q \in (0, \infty), \phi是正规的且f\in H(p, q, \phi).则对于n\in{\mathbb N}_0,存在一个与f无关的常数C使得

|f^{(n)}(z)|\leq C\frac{\|f\|_{p, q, \phi}}{\phi(|z|)(1-|z|^2)^{1/q+n}}, z\in {\Bbb D}.

下面的紧性准则是有用的工具,它的证明可以参见文献[33]中的命题3.11.

引理2.2  设\psi_1, \psi_2\in H({\Bbb D}), n\in{\mathbb N}_0, \varphi{\Bbb D}{\Bbb D}的一个解析自映射, \mu是一个权函数.则T^n_{\psi_{1}, \psi_{2}, \varphi}:H(p, q, \phi)\rightarrow{\cal Z}_{\mu}是紧的充要条件T^n_{\psi_{1}, \psi_{2}, \varphi}: H(p, q, \phi)\rightarrow{\cal Z}_{\mu}是有界的且对于在{\Bbb D}的任意紧子集上一致收敛于零(k\rightarrow \infty)的有界序列\{f_k\}\subset H(p, q, \phi),有\|T^n_{\psi_{1}, \psi_{2}, \varphi}f_k\|_{{\cal Z}_{_{\mu}}}\rightarrow 0\ (k\rightarrow \infty).

引理2.3[34]  对任意的实数\beta,设

J_\beta(z)=\int_0^{2\pi}\frac{{\rm d}\theta}{|1-z{\rm e}^{-{\rm i}\theta}|^{1+\beta}}, \, z\in {\Bbb D},

J_\beta(z)\asymp \left\{\begin{array}{lll}1,& \beta<0, \\[2mm] \log\frac{1}{1-|z|^2}, ~~& \beta=0, \hspace{5mm} \ \ (\, |z|\rightarrow 1^-).\\[3mm] \frac{1}{(1-|z|^2)^\beta},& \beta>0, \end{array} \right.

引理2.4[35]  对于\beta>-1\gamma> 1+\beta,则

\int_0^1\frac{(1-r)^\beta}{(1-r\rho)^\gamma}{\rm d}r\leq C(1-\rho)^{1+\beta-\gamma}, \ 0<\rho<1.

3 算子T^n_{\psi_{1}, \psi_{2}, \varphi}:H(p, q, \phi)\rightarrow{\cal Z}_{\mu}的有界性与紧性

本节将给出我们的主要结果与证明.

定理3.1  设\psi_1, \psi_2\in H({\Bbb D}), n\in{\mathbb N}_0, \varphi{\Bbb D}{\Bbb D}的一个解析自映射, \mu是一个权函数.则T^n_{\psi_{1}, \psi_{2}, \varphi}:H(p, q, \phi)\rightarrow{\cal Z}_{\mu}是有界的充要条件

\begin{equation} \label{qwe1}\sup\limits_{z\in{\Bbb D}}\frac{\mu(z)|\psi_1''(z)|}{\phi(|\varphi(z)|)\left(1-\left|\varphi(z)\right|^{2}\right)^{1/q+n}}<\infty, \end{equation}
(3.1)

\begin{equation}\label{qwe2}\sup\limits_{z\in{\Bbb D}}\frac{\mu(z)|\psi_1(z)\varphi''(z)+2\psi_1'(z)\varphi'(z)+\psi_2''(z)|}{\phi(|\varphi(z)|)\left(1-\left|\varphi(z)\right|^{2}\right)^{1/q+n+1}}<\infty, \end{equation}
(3.2)

\begin{equation}\label{qwe3}\sup\limits_{z\in{\Bbb D}}\frac{\mu(z)|\psi_1(z)(\varphi'(z))^2+2\psi_2'(z)\varphi'(z)+\psi_2(z)\varphi''(z)|}{\phi(|\varphi(z)|)\left(1-\left|\varphi(z)\right|^{2}\right)^{1/q+n+2}}<\infty, \end{equation}
(3.3)

\begin{equation}\label{qwe3b}\sup\limits_{z\in{\Bbb D}}\frac{\mu(z)|\psi_2(z)||\varphi'(z)|^2}{\phi(|\varphi(z)|)\left(1-\left|\varphi(z)\right|^{2}\right)^{1/q+n+3}}<\infty.\end{equation}
(3.4)

  充分性.假设(3.1)-(3.4)式成立.由于

\begin{eqnarray*}\left(T^n_{\psi_{1}, \psi_{2}, \varphi}f\right)'(z)&=&\psi_1'(z)f^{(n)}(\varphi(z)) \\&& +\left(\psi_1(z)\varphi'(z)+\psi_2'(z)\right)f^{(n+1)}(\varphi(z)) +\psi_2(z)\varphi'(z)f^{(n+2)}(\varphi(z)), \end{eqnarray*}

因此对z\in{\Bbb D}f\in H(p, q, \phi),根据引理2.1,我们有

\begin{eqnarray}\label{qwe4} &&\mu(z)\left|\left(T^n_{\psi_{1}, \psi_{2}, \varphi}f\right)^{''}(z)\right|\nonumber\\&\leq&\mu(z)|\psi_1''(z)||f^{(n)}(\varphi(z))|+\mu(z)\left|\psi_1(z)\varphi''(z)+2\psi_1'(z)\varphi'(z)+\psi_2''(z)\right|\left|f^{(n+1)}(\varphi(z))\right|\nonumber\\&& +\mu(z)|\psi_1(z)(\varphi'(z))^2+2\psi_2'(z)\varphi'(z)+\psi_2(z)\varphi''(z)|\left|f^{(n+2)}(\varphi(z))\right|\nonumber\\&& +\mu(z)\left|\psi_2(z)(\varphi'(z))^2\right|\left|f^{(n+3)}(\varphi(z))\right|\nonumber\\&\leq& C\|f\|_{p, q, \phi}\frac{\mu(z)|\psi_1''(z)|}{\phi(|\varphi(z)|)\left(1-\left|\varphi(z)\right|^{2}\right)^{1/q+n}}+C\|f\|_{{\cal B}_{\log}}\frac{\mu(z)|\psi_1(z)\varphi''(z)+2\psi_1'(z)\varphi'(z)+\psi_2''(z)|}{\phi(|\varphi(z)|)\left(1-\left|\varphi(z)\right|^{2}\right)^{1/q+n+1}}\nonumber\\&& +C\|f\|_{p, q, \phi}\frac{\mu(z)\left|\psi_1(z)(\varphi'(z))^2+2\psi_2'(z)\varphi'(z)+\psi_2(z)\varphi''(z)\right|}{\phi(|\varphi(z)|)\left(1-\left|\varphi(z)\right|^{2}\right)^{1/q+n+2}}\nonumber\\&& +C\|f\|_{p, q, \phi}\frac{\mu(z)|\psi_2(z)||\varphi'(z)|^2}{\phi(|\varphi(z)|)\left(1-\left|\varphi(z)\right|^{2}\right)^{1/q+n+3}}\nonumber\\&\leq& C\|f\|_{p, q, \phi}.\end{eqnarray}
(3.5)

另一方面

\begin{eqnarray}\label{qwe5}\left|\left(T^n_{\psi_{1}, \psi_{2}, \varphi}f\right)(0)\right|&=&\left|\psi_1(0)f^{(n)}(\varphi(0))+\psi_2(0)f^{(n+1)}(\varphi(0))\right|\nonumber\\&\leq&C\frac{|\psi_1(0)|+|\psi_2(0)|}{\phi(|\varphi(0)|)\left(1-\left|\varphi(0)\right|^{2}\right)^{1/q+n+1}}\|f\|_{p, q, \phi}, \end{eqnarray}
(3.6)

\begin{eqnarray}\label{qwe6}&&\left|\left(T^n_{\psi_{1}, \psi_{2}, \varphi}f\right)'(0)\right|\nonumber\\&=&\left|\psi_1'(0)f^{(n)}(\varphi(0))+(\psi_1(0)\varphi'(0)+\psi_2'(0))f^{(n+1)}(\varphi(0))+\psi_2(0)\varphi'(0)f^{(n+2)}(\varphi(0))\right|\nonumber\\&\leq&C\frac{|\psi_1'(0)|+|\psi_1(0)\varphi'(0)+\psi_2'(0)|+|\psi_2(0)\varphi'(0)|}{\phi(|\varphi(0)|)\left(1-\left|\varphi(0)\right|^{2}\right)^{1/q+n+2}}\|f\|_{p, q, \phi}.\end{eqnarray}
(3.7)

利用(3.5), (3.6)及(3.7)式,我们得到算子T^n_{\psi_{1}, \psi_{2}, \varphi}:H(p, q, \phi)\rightarrow{\cal Z}_{\mu}是有界的.

必要性.设T^n_{\psi_{1}, \psi_{2}, \varphi}: H(p, q, \phi)\rightarrow\mathcal{Z}_{\mu} 是有界的,则存在常数C使得

\begin{equation}\label{qweyou}\|T^n_{\psi_{1}, \psi_{2}, \varphi}f\|_{{\cal Z}_{\mu}}\leq C\|f\|_{p, q, \phi}, \end{equation}
(3.8)

对任意f\in H(p, q, \phi).在(3.8)式中取f(z)=\frac{z^{n}}{n!} \in H(p, q, \phi),我们有

\begin{equation}\label{qwe7} K_{1}:=\sup\limits_{z\in{\Bbb D}}\mu(z)|\psi_1''(z)|<\infty.\end{equation}
(3.9)

在(3.8)式中取f(z)=\frac{z^{n+1}}{(n+1)!} \in H(p, q, \phi),可得

\begin{equation}\label{qwe8} \sup\limits_{z\in{\Bbb D}}\mu(z)|\psi_1''(z)\varphi(z)+\psi_1(z)\varphi''(z)+2\psi_1'(z)\varphi'(z)+\psi_2''(z)|<\infty.\end{equation}
(3.10)

由于(3.9)式, (3.10)式以及函数\varphi(z)是有界的,所以

\begin{equation}\label{qwe9} K_{2}:=\sup\limits_{z\in{\Bbb D}}\mu(z)|\psi_1(z)\varphi''(z)+2\psi_1'(z)\varphi'(z)+\psi_2''(z)|<\infty.\end{equation}
(3.11)

再在(3.8)式中取f(z)=\frac{z^{n+2}}{(n+2)!} \in H(p, q, \phi),又可得到

\begin{eqnarray}\label{qwe10} &&\sup\limits_{z\in{\Bbb D}}\mu(z)\Big|\frac{1}{2}\psi_1''(z)(\varphi(z))^2+(\psi_1(z)\varphi''(z)+2\psi_1'(z)\varphi'(z)+\psi_2''(z))\varphi(z)\nonumber\\&& +(\psi_1(z)(\varphi'(z))^2+2\psi_2'(z)\varphi'(z)+\psi_2(z)\varphi''(z)) \Big|<\infty.\end{eqnarray}
(3.12)

利用(3.9), (3.11)和(3.12)式及\varphi(z)的有界性,最后得到

\begin{equation}\label{qwe11} K_{3}:=\sup\limits_{z\in{\Bbb D}}\mu(z)\left|\psi_1(z)(\varphi'(z))^2+2\psi_2'(z)\varphi'(z)+\psi_2(z)\varphi''(z)\right|<\infty.\end{equation}
(3.13)

类似可得

\begin{equation} \label{qwe11b} K_{4}:=\sup\limits_{z\in{\Bbb D}}\mu(z)|\psi_2(z)||\varphi'(z)|^2<\infty.\end{equation}
(3.14)

对固定的w\in{\Bbb D}以及常数A, B, C,令

\begin{equation}\label{qwe12} f_{w}(z)=\frac{(1-|w|^2)^{b+1}}{\phi(|w|)}\left(\frac{1}{(1-\overline{w}z)^{\alpha}}+A\frac{(1-|w|^2)}{(1-\overline{w}z)^{\alpha+1}}+ B\frac{(1-|w|^2)^2}{(1-\overline{w}z)^{\alpha+2}} +C\frac{(1-|w|^2)^3}{(1-\overline{w}z)^{\alpha+3}}\right), \end{equation}
(3.15)

其中b由函数\phi确定且\alpha=1/q+b+1.简单计算可得

\begin{eqnarray}\label{qwe13}f^{(n)}_{w}(z)&=&\frac{(1-|w|^2)^{b+4}(\overline{w})^n}{\phi(|w|)(1-\overline{w}z)^{\alpha+n}}\left(\frac{\alpha\cdots(\alpha+n-1)}{(1-|w|^2)^3}+\frac{A(\alpha+1)\cdots(\alpha+n)}{(1-|w|^2)^2(1-\overline{w}z)}\right.\nonumber\\&&+\left.\frac{B(\alpha+2)\cdots(\alpha+n+1)}{(1-|w|^2)(1-\overline{w}z)^2} +\frac{C(\alpha+3)\cdots(\alpha+n+2)}{(1-\overline{w}z)^3}\right);\end{eqnarray}
(3.16)

\begin{eqnarray}\label{qwe14}f^{(n+1)}_{w}(z)&=&\frac{(1-|w|^2)^{b+4}(\overline{w})^{n+1}}{\phi(|w|)(1-\overline{w}z)^{\alpha+n+1}}\left(\frac{\alpha\cdots(\alpha+n)}{(1-|w|^2)^3}+\frac{A(\alpha+1)\cdots(\alpha+n+1)}{(1-|w|^2)^2(1-\overline{w}z)}\right.\nonumber\\&&+\left.\frac{B(\alpha+2)\cdots(\alpha+n+2)}{(1-|w|^2)(1-\overline{w}z)^2} +\frac{C(\alpha+3)\cdots(\alpha+n+3)}{(1-\overline{w}z)^3}\right);\end{eqnarray}
(3.17)

\begin{eqnarray}\label{qwe15}f^{(n+2)}_{w}(z)&=&\frac{(1-|w|^2)^{b+4}(\overline{w})^{n+2}}{\phi(|w|)(1-\overline{w}z)^{\alpha+n+2}}\left(\frac{\alpha\cdots(\alpha+n+1)}{(1-|w|^2)^3}+\frac{A(\alpha+1)\cdots(\alpha+n+2)}{(1-|w|^2)^2(1-\overline{w}z)}\right.\nonumber\\&&+\left.\frac{B(\alpha+2)\cdots(\alpha+n+3)}{(1-|w|^2)(1-\overline{w}z)^2} +\frac{C(\alpha+3)\cdots(\alpha+n+4)}{(1-\overline{w}z)^3}\right);\end{eqnarray}
(3.18)

\begin{eqnarray} \label{qwe15b}f^{(n+3)}_{w}(z)&=&\frac{(1-|w|^2)^{b+4}(\overline{w})^{n+3}}{\phi(|w|)(1-\overline{w}z)^{\alpha+n+3}}\left(\frac{\alpha\cdots(\alpha+n+2)}{(1-|w|^2)^3}+\frac{A(\alpha+1)\cdots(\alpha+n+3)}{(1-|w|^2)^2(1-\overline{w}z)}\right.\nonumber\\&&+\left.\frac{B(\alpha+2)\cdots(\alpha+n+4)}{(1-|w|^2)(1-\overline{w}z)^2} +\frac{C(\alpha+3)\cdots(\alpha+n+5)}{(1-\overline{w}z)^3}\right);\end{eqnarray}
(3.19)

利用引理2.3,可得

\begin{eqnarray}\label{qwee123} &&M_q(f_w, r)\leq C\frac{(1-|w|^2)^{b+1}}{\phi(|w|)(1-r|w|)^{b+1}}. \end{eqnarray}
(3.20)

根据\phi的正规性及引理2.4,可得(参见文献[26, 32])

\begin{eqnarray}\label{eq10} \sup\limits_{w\in \rm {\Bbb D}}\|f_w\|_{p, q, \phi}\leq C.\end{eqnarray}
(3.21)

为证明我们的结果,首先考察方程组

\begin{eqnarray}\label{sys1} && \alpha\cdots(\alpha+n) +A(\alpha+1)\cdots(\alpha+n+1)\nonumber \\ &&+B(\alpha+2)\cdots(\alpha+n+2)+C(\alpha+3)\cdots(\alpha+n+3)=0, \nonumber \\ && \alpha\cdots(\alpha+n+1) +A(\alpha+1)\cdots(\alpha+n+2)\nonumber \\ &&+B(\alpha+2)\cdots(\alpha+n+3)+C(\alpha+3)\cdots(\alpha+n+4)=0, \\ && \alpha\cdots(\alpha+n+2) +A(\alpha+1)\cdots(\alpha+n+3)\nonumber \\ &&+B(\alpha+2)\cdots(\alpha+n+4)+C(\alpha+3)\cdots(\alpha+n+5)=0.\nonumber\end{eqnarray}
(3.22)

方程组(3.22)变形为

\begin{eqnarray} \label{sys2} && \alpha(\alpha+1)(\alpha+2) +A(\alpha+1)(\alpha+2)(\alpha+n+1)\nonumber \\ &&+B(\alpha+2)(\alpha+n+1)(\alpha+n+2)+C(\alpha+n+1)(\alpha+n+2)(\alpha+n+3)=0, \nonumber \\ && \alpha(\alpha+1)(\alpha+2) +A(\alpha+1)(\alpha+2)(\alpha+n+2)\nonumber \\ &&+B(\alpha+2)(\alpha+n+2)(\alpha+n+3)+C(\alpha+n+2)(\alpha+n+3)(\alpha+n+4)=0, \\ && \alpha(\alpha+1)(\alpha+2) +A(\alpha+1)(\alpha+2)(\alpha+n+3)\nonumber \\ &&+B(\alpha+2)(\alpha+n+3)(\alpha+n+4)+C(\alpha+n+3)(\alpha+n+4)(\alpha+n+5)=0.\nonumber\end{eqnarray}
(3.23)

由于方程组(3.23)的系数行列式

\begin{eqnarray*} &&\left| \begin{array}{ccc} (\alpha+1)(\alpha+2)(\alpha+n+1)&(\alpha+2)(\alpha+n+1)(\alpha+n+2)&(\alpha+n+1)(\alpha+n+2)(\alpha+n+3) \\ (\alpha+1)(\alpha+2)(\alpha+n+2)&(\alpha+2)(\alpha+n+2)(\alpha+n+3)&(\alpha+n+2)(\alpha+n+3)(\alpha+n+4) \\ (\alpha+1)(\alpha+2)(\alpha+n+3)&(\alpha+2)(\alpha+n+3)(\alpha+n+4)&(\alpha+n+3)(\alpha+n+4)(\alpha+n+5) \\ \end{array} \right|\\&&=(\alpha+1)(\alpha+2)^2(\alpha+n+1)(\alpha+n+2)(\alpha+n+3)\left| \begin{array}{ccc} 1&(\alpha+n+2)&(\alpha+n+2)(\alpha+n+3) \\ 1&(\alpha+n+3)&(\alpha+n+3)(\alpha+n+4) \\ 1&(\alpha+n+4)&(\alpha+n+4)(\alpha+n+5) \\ \end{array} \right|\\&&=2(\alpha+1)(\alpha+2)^2(\alpha+n+1)(\alpha+n+2)(\alpha+n+3)\neq 0, \end{eqnarray*}

根据克兰姆法则,方程组(3.23)有非零解.由(3.16)-(3.19)式,存在常数A, B, C使得f_{w}^{(n+1)}(w)=f_{w}^{(n+2)}(w)=f_{w}^{(n+3)}(w)=0

f^{(n)}_{w}(w)=C_1(A, B, C, \alpha, n)\frac{\left(\overline{w}\right)^{n}}{\phi(|w|)(1-|w|^2)^{1/q+n}},

其中C_1(A, B, C, \alpha, n)=\alpha\cdots(\alpha+n-1) +A(\alpha+1)\cdots(\alpha+n) +B(\alpha+2)\cdots(\alpha+n+1)+C(\alpha+3)\cdots(\alpha+n+2)\neq 0.因此对\omega\in {\Bbb D}\varphi(\omega)\neq 0,取检验函数f_{\varphi(\omega)},我们得到

\begin{eqnarray}\label{qwe16}C&\geq&\|T^n_{\psi_{1}, \psi_{2}, \varphi}f_{\varphi(\omega)}\|_{{\cal Z}_{\mu}}\geq \mu(\omega)\left|\psi_1''(\omega)f^{(n)}_{\varphi(\omega)}(\varphi(\omega))\right|\nonumber\\&=&|C_1(A, B, C, \alpha, n)|\frac{\mu(\omega)|\psi_1''(\omega)|\left|\overline{\varphi(\omega)}\right|^{n}}{\phi(|\varphi(\omega)|)\left(1-\left|\varphi(\omega)\right|^{2}\right)^{1/q+n}}.\end{eqnarray}
(3.24)

由(3.24)式,对r\in(t_0, 1),有

\begin{eqnarray}\label{qwe18}\sup\limits_{r<|\varphi(\omega)|<1}\frac{\mu(\omega)|\psi_1''(\omega)|}{\phi(|\varphi(\omega)|)\left(1-\left|\varphi(\omega)\right|^{2}\right)^{1/q+n}}&\leq& \frac{1}{r^n}\sup\limits_{r<|\varphi(\omega)|<1}\frac{\mu(\omega)|\psi_1''(\omega)|\left|\overline{\varphi(\omega)}\right|^{n}}{\phi(|\varphi(\omega)|)\left(1-\left|\varphi(\omega)\right|^{2}\right)^{1/q+n}}\nonumber\\&\leq& \frac{1}{r^n}\sup\limits_{\omega\in{\Bbb D}}\frac{\mu(\omega)|\psi_1''(\omega)|\left|\overline{\varphi(\omega)}\right|^{n}}{\phi(|\varphi(\omega)|)\left(1-\left|\varphi(\omega)\right|^{2}\right)^{1/q+n}}\nonumber\\&\leq &C<\infty.\end{eqnarray}
(3.25)

又从(3.9)式可得

\begin{eqnarray}\label{qwe17}\sup\limits_{|\varphi(\omega)|\leq r}\frac{\mu(\omega)|\psi_1''(\omega)|}{\phi(|\varphi(\omega)|)\left(1-\left|\varphi(\omega)\right|^{2}\right)^{1/q+n}}\leq C\sup\limits_{|\varphi(\omega)|\leq r}\mu(\omega)|\psi_1''(\omega)|\leq CK_{1}<\infty.\end{eqnarray}
(3.26)

因此把(3.26)与(3.25)式结合起来可得(3.1)式成立.

其次考察方程组

\begin{eqnarray}\label{sys3} && \alpha(\alpha+1)(\alpha+2) +A(\alpha+1)(\alpha+2)(\alpha+n)\nonumber \\ &&+B(\alpha+2)(\alpha+n)(\alpha+n+1)+C(\alpha+n)(\alpha+n+1)(\alpha+n+2)=0, \nonumber \\ && \alpha(\alpha+1)(\alpha+2) +A(\alpha+1)(\alpha+2)(\alpha+n+2)\nonumber \\ &&+B(\alpha+2)(\alpha+n+2)(\alpha+n+3)+C(\alpha+n+2)(\alpha+n+3)(\alpha+n+4)=0, \\ && \alpha(\alpha+1)(\alpha+2) +A(\alpha+1)(\alpha+2)(\alpha+n+3)\nonumber \\ &&+B(\alpha+2)(\alpha+n+3)(\alpha+n+4)+C(\alpha+n+3)(\alpha+n+4)(\alpha+n+5)=0.\nonumber \end{eqnarray}
(3.27)

由于

\begin{eqnarray*}&&\left| \begin{array}{ccc} (\alpha+1)(\alpha+2)(\alpha+n)&(\alpha+2)(\alpha+n)(\alpha+n+1)&(\alpha+n)(\alpha+n+1)(\alpha+n+2) \\ (\alpha+1)(\alpha+2)(\alpha+n+2)&(\alpha+2)(\alpha+n+2)(\alpha+n+3)&(\alpha+n+2)(\alpha+n+3)(\alpha+n+4) \\ (\alpha+1)(\alpha+2)(\alpha+n+3)&(\alpha+2)(\alpha+n+3)(\alpha+n+4)&(\alpha+n+3)(\alpha+n+4)(\alpha+n+5) \\ \end{array} \right|\\&&=(\alpha+1)(\alpha+2)^2(\alpha+n)(\alpha+n+2)(\alpha+n+3)\left| \begin{array}{ccc} 1&(\alpha+n+1)&(\alpha+n+1)(\alpha+n+2) \\ 1&(\alpha+n+3)&(\alpha+n+3)(\alpha+n+4) \\ 1&(\alpha+n+4)&(\alpha+n+4)(\alpha+n+5) \\ \end{array} \right|\\&&=6(\alpha+1)(\alpha+2)^2(\alpha+n)(\alpha+n+2)(\alpha+n+3) \neq 0, \end{eqnarray*}

根据克兰姆法则,方程组(3.27)有非零解.由(3.16)-(3.19)式,知在(3.15)式中存在常数A, B, C使得g_{w}^{(n)}(w)=g_{w}^{(n+2)}(w)=g_{w}^{(n+3)}(w)=0

g^{(n+1)}_{w}(w)=C_2(A, B, C, \alpha, n)\frac{\left(\overline{w}\right)^{n+1}}{\phi(|\varphi(\omega)|)\left(1-\left|\varphi(\omega)\right|^{2}\right)^{1/q+n+1}},

其中C_2(A, B, C, \alpha, n)=\alpha\cdots(\alpha+n) +A(\alpha+1)\cdots(\alpha+n+1) +B(\alpha+2)\cdots(\alpha+n+2)+C(\alpha+3)\cdots(\alpha+n+3)\neq 0, g_{w}表示相应的函数.因此对\omega\in {\Bbb D}\varphi(\omega)\neq 0,考察检验函数g_{\varphi(\omega)},可得

\begin{eqnarray}\label{qwe23}C&\geq&\|T^n_{\psi_{1}, \psi_{2}, \varphi}g_{\varphi(\omega)}\|_{{\cal Z}_{\mu}}\nonumber\\&\geq&\mu(\omega)\left|\psi_1(\omega)\varphi''(\omega)+2\psi_1'(\omega)\varphi'(\omega)+\psi_2''(\omega)\right|\left|g^{(n+1)}_{\varphi(\omega)}(\varphi(\omega))\right|\nonumber\\&=&|C_2(A, B, C, \alpha, n)|\frac{\mu(\omega)\left|\psi_1(\omega)\varphi''(\omega)+2\psi_1'(\omega)\varphi'(\omega)+\psi_2''(\omega)\right|\left|\overline{\varphi(\omega)}\right|^{n+1}}{\phi(|\varphi(\omega)|)\left(1-\left|\varphi(\omega)\right|^{2}\right)^{1/q+n+1}}.\end{eqnarray}
(3.28)

利用(3.28)式有

\begin{eqnarray}\label{qwe24}&&\sup\limits_{r<|\varphi(\omega)|<1}\frac{\mu(\omega)|\psi_1(\omega)\varphi''(\omega)+2\psi_1'(\omega)\varphi'(\omega)+\psi_2''(\omega)|}{\phi(|\varphi(\omega)|)\left(1-\left|\varphi(\omega)\right|^{2}\right)^{1/q+n+1}}\nonumber\\&\leq &\frac{1}{r^{n+1}}\sup\limits_{r<|\varphi(\omega)|<1} \frac{\mu(\omega)|\psi_1(\omega)\varphi''(\omega)+2\psi_1'(\omega)\varphi'(\omega)+\psi_2''(\omega)|\left|\overline{\varphi(\omega)}\right|^{n+1}}{\phi(|\varphi(\omega)|)\left(1-\left|\varphi(\omega)\right|^{2}\right)^{1/q+n+1}}\nonumber\\&\leq &\frac{1}{r^{n+1}}\sup\limits_{\omega\in{\Bbb D}} \frac{\mu(\omega)|\psi_1(\omega)\varphi''(\omega)+2\psi_1'(\omega)\varphi'(\omega)+\psi_2''(\omega)|\left|\overline{\varphi(\omega)}\right|^{n+1}}{\phi(|\varphi(\omega)|)\left(1-\left|\varphi(\omega)\right|^{2}\right)^{1/q+n+1}}\nonumber\\ &\leq& C <\infty.\end{eqnarray}
(3.29)

根据(3.11)式,我们可得

\begin{eqnarray}\label{qwe25}&&\sup\limits_{|\varphi(\omega)|\leq r}\frac{\mu(\omega)|\psi_1(\omega)\varphi''(\omega)+2\psi_1'(\omega)\varphi'(\omega)+\psi_2''(\omega)|}{\phi(|\varphi(\omega)|)\left(1-\left|\varphi(\omega)\right|^{2}\right)^{1/q+n+1}}\nonumber\\&\leq &C\sup\limits_{|\varphi(\omega)|\leq r}\mu(\omega)|\psi_1(\omega)\varphi''(\omega)+2\psi_1'(\omega)\varphi'(\omega)+\psi_2''(\omega)|\nonumber\\&\leq& CK_{2}<\infty.\end{eqnarray}
(3.30)

由(3.29)及(3.30)式可得(3.2)式成立.

再次为了证明(3.3)式,可考察方程组

\begin{eqnarray}\label{sys4}&& \alpha(\alpha+1)(\alpha+2) +A(\alpha+1)(\alpha+2)(\alpha+n)\nonumber \\ &&+B(\alpha+2)(\alpha+n)(\alpha+n+1)+C(\alpha+n)(\alpha+n+1)(\alpha+n+2)=0, \nonumber \\ && \alpha(\alpha+1)(\alpha+2) +A(\alpha+1)(\alpha+2)(\alpha+n+1)\nonumber \\ &&+B(\alpha+2)(\alpha+n+1)(\alpha+n+2)+C(\alpha+n+1)(\alpha+n+2)(\alpha+n+3)=0, \\ && \alpha(\alpha+1)(\alpha+2) +A(\alpha+1)(\alpha+2)(\alpha+n+3)\nonumber \\ &&+B(\alpha+2)(\alpha+n+3)(\alpha+n+4)+C(\alpha+n+3)(\alpha+n+4)(\alpha+n+5)=0.\nonumber \end{eqnarray}
(3.31)

由于

\begin{eqnarray*} &&\left| \begin{array}{ccc} (\alpha+1)(\alpha+2)(\alpha+n)&(\alpha+2)(\alpha+n)(\alpha+n+1)&(\alpha+n)(\alpha+n+1)(\alpha+n+2) \\ (\alpha+1)(\alpha+2)(\alpha+n+1)&(\alpha+2)(\alpha+n+1)(\alpha+n+2)&(\alpha+n+1)(\alpha+n+2)(\alpha+n+3) \\ (\alpha+1)(\alpha+2)(\alpha+n+3)&(\alpha+2)(\alpha+n+3)(\alpha+n+4)&(\alpha+n+3)(\alpha+n+4)(\alpha+n+5) \\ \end{array} \right|\\&&=(\alpha+1)(\alpha+2)^2(\alpha+n)(\alpha+n+1)(\alpha+n+3)\left| \begin{array}{ccc} 1&(\alpha+n+1)&(\alpha+n+1)(\alpha+n+2) \\ 1&(\alpha+n+2)&(\alpha+n+2)(\alpha+n+3) \\ 1&(\alpha+n+4)&(\alpha+n+4)(\alpha+n+5) \\ \end{array} \right|\\&&=8(\alpha+1)(\alpha+2)^2(\alpha+n)(\alpha+n+1)(\alpha+n+3)\neq 0, \end{eqnarray*}

由(3.16)-(3.19)式可知,存在(3.15)式中的常数A, B, C使得h_{w}^{(n)}(w)=h_{w}^{(n+1)}(w)=h_{w}^{(n+3)}(w)=0

h^{(n+2)}_{w}(w)=C_3(A, B, C, \alpha, n)\frac{\left(\overline{w}\right)^{n+2}}{\phi(|\varphi(\omega)|)\left(1-\left|\varphi(\omega)\right|^{2}\right)^{1/q+n+2}},

这里C_3(A, B, C, \alpha, n)=\alpha\cdots(\alpha+n+1) +A(\alpha+1)\cdots(\alpha+n+2) +B(\alpha+2)\cdots(\alpha+n+3)+C(\alpha+3)\cdots(\alpha+n+4)\neq 0, h_{w}表示相应的函数.因此对\omega\in {\Bbb D}\varphi(\omega)\neq 0,考察检验函数h_{\varphi(\omega)},可得

\begin{eqnarray}\label{qwe30}C&\geq&\|T^n_{\psi_{1}, \psi_{2}, \varphi}h_{\varphi(\omega)}\|_{{\cal Z}_{\mu}}\nonumber\\&\geq&\mu(\omega)|\psi_1(\omega)(\varphi'(\omega))^2+2\psi_2'(\omega)\varphi'(\omega)+\psi_2(\omega)\varphi''(\omega)|\left|h^{(n+2)}_{\varphi(\omega)}(\varphi(\omega))\right|\nonumber\\&=&|C_4(A, B, C, \alpha, n)|\frac{\mu(\omega)|\psi_1(\omega)(\varphi'(\omega))^2+2\psi_2'(\omega)\varphi'(\omega)+\psi_2(\omega)\varphi''(\omega)|\left|\overline{\varphi(\omega)}\right|^{n+2}}{\phi(|\varphi(\omega)|)\left(1-\left|\varphi(\omega)\right|^{2}\right)^{1/q+n+2}}.\nonumber\\\end{eqnarray}
(3.32)

利用(3.32)式,对r\in(t_0, 1),有

\begin{eqnarray}\label{qwe31}&&\sup\limits_{r<|\varphi(\omega)|<1}\frac{\mu(\omega)\left|\psi_1(\omega)(\varphi'(\omega))^2+2\psi_2'(\omega)\varphi'(\omega)+\psi_2(\omega)\varphi''(\omega)\right|}{\phi(|\varphi(\omega)|)\left(1-\left|\varphi(\omega)\right|^{2}\right)^{1/q+n+2}}\nonumber\\&\leq&\frac{1}{r^{n+2}}\sup\limits_{r<|\varphi(\omega)|<1}\frac{\mu(\omega)|\psi_1(\omega)(\varphi'(\omega))^2+2\psi_2'(\omega)\varphi'(\omega)+\psi_2(\omega)\varphi''(\omega)|\left|\overline{\varphi(\omega)}\right|^{n+2}}{\phi(|\varphi(\omega)|)\left(1-\left|\varphi(\omega)\right|^{2}\right)^{1/q+n+2}}\nonumber\\&\leq& \frac{1}{r^{n+2}}\sup\limits_{\omega\in{\Bbb D}}\frac{\mu(\omega)|\psi_1(\omega)(\varphi'(\omega))^2+2\psi_2'(\omega)\varphi'(\omega)+\psi_2(\omega)\varphi''(\omega)|\left|\overline{\varphi(\omega)}\right|^{n+2}}{\phi(|\varphi(\omega)|)\left(1-\left|\varphi(\omega)\right|^{2}\right)^{1/q+n+2}}\nonumber\\&\leq& C<\infty.\end{eqnarray}
(3.33)

使用(3.13)式,我们有

\begin{eqnarray}\label{qwe32}&&\sup\limits_{|\varphi(\omega)|\leq r}\frac{\mu(\omega)|\psi_1(\omega)(\varphi'(\omega))^2+2\psi_2'(\omega)\varphi'(\omega)+\psi_2(\omega)\varphi''(\omega)|}{\phi(|\varphi(\omega)|)\left(1-\left|\varphi(\omega)\right|^{2}\right)^{1/q+n+2}}\nonumber\\&\leq&\sup\limits_{|\varphi(\omega)|\leq r}\mu(\omega)|\psi_1(\omega)(\varphi'(\omega))^2+2\psi_2'(\omega)\varphi'(\omega)+\psi_2(\omega)\varphi''(\omega)|\nonumber\\&\leq& CK_{3}<\infty.\end{eqnarray}
(3.34)

依据(3.33)和(3.34)式, (3.3)式成立.

最后我们证明(3.4)式成立.为此考察下面的方程组

\begin{eqnarray} && \alpha(\alpha+1)(\alpha+2) +A(\alpha+1)(\alpha+2)(\alpha+n)\nonumber \\ &&+B(\alpha+2)(\alpha+n)(\alpha+n+1)+C(\alpha+n)(\alpha+n+1)(\alpha+n+2)=0, \nonumber \\ && \alpha(\alpha+1)(\alpha+2) +A(\alpha+1)(\alpha+2)(\alpha+n+1)\nonumber \\ &&+B(\alpha+2)(\alpha+n+1)(\alpha+n+2)+C(\alpha+n+1)(\alpha+n+2)(\alpha+n+3)=0, \\ && \alpha(\alpha+1)(\alpha+2) +A(\alpha+1)(\alpha+2)(\alpha+n+2)\nonumber \\ &&+B(\alpha+2)(\alpha+n+2)(\alpha+n+3)+C(\alpha+n+2)(\alpha+n+3)(\alpha+n+4)=0.\nonumber \end{eqnarray}
(3.35)

由于

\begin{eqnarray*}&&\left| \begin{array}{ccc} (\alpha+1)(\alpha+2)(\alpha+n)&(\alpha+2)(\alpha+n)(\alpha+n+1)&(\alpha+n)(\alpha+n+1)(\alpha+n+2) \\ (\alpha+1)(\alpha+2)(\alpha+n+1)&(\alpha+2)(\alpha+n+1)(\alpha+n+2)&(\alpha+n+1)(\alpha+n+2)(\alpha+n+3) \\ (\alpha+1)(\alpha+2)(\alpha+n+2)&(\alpha+2)(\alpha+n+2)(\alpha+n+3)&(\alpha+n+2)(\alpha+n+3)(\alpha+n+4) \\ \end{array} \right|\\&&=(\alpha+1)(\alpha+2)^2(\alpha+n)(\alpha+n+1)(\alpha+n+2)\left| \begin{array}{ccc} 1&(\alpha+n+1)&(\alpha+n+1)(\alpha+n+2) \\ 1&(\alpha+n+2)&(\alpha+n+2)(\alpha+n+3) \\ 1&(\alpha+n+3)&(\alpha+n+3)(\alpha+n+4) \\ \end{array} \right|\\&&=2(\alpha+1)(\alpha+2)^2(\alpha+n)(\alpha+n+1)(\alpha+n+2)\neq 0, \end{eqnarray*}

从(3.16)-(3.19)式,知在(3.15)式中一定存在A, B, C使得k_{w}^{(n)}(w)=k_{w}^{(n+1)}(w)=k_{w}^{(n+2)}(w)=0

k^{(n+3)}_{w}(w)=C_4(A, B, C, \alpha, n)\frac{\left(\overline{w}\right)^{n+3}}{\phi(|\varphi(\omega)|)\left(1-\left|\varphi(\omega)\right|^{2}\right)^{1/q+n+3}},

其中C_4(A, B, C, \alpha, n)=\alpha\cdots(\alpha+n+2) +A(\alpha+1)\cdots(\alpha+n+3) +B(\alpha+2)\cdots(\alpha+n+4)+C(\alpha+3)\cdots(\alpha+n+5)\neq 0, k_{w}表示相应的函数.因此对\omega\in {\Bbb D}\varphi(\omega)\neq 0,对检验函数k_{\varphi(\omega)},有

\begin{eqnarray}\label{qwe30b}C&\geq&\|T^n_{\psi_{1}, \psi_{2}, \varphi}k_{\varphi(\omega)}\|_{{\cal Z}_{\mu}}\nonumber\\&\geq&\mu(\omega)|\psi_2(\omega)||\varphi'(\omega)|^2\left|k^{(n+3)}_{\varphi(\omega)}(\varphi(\omega))\right|\nonumber\\&=&|C_4(A, B, C, \alpha, n)|\frac{\mu(\omega)|\psi_2(\omega)||\varphi'(\omega)|^2\left|\overline{\varphi(\omega)}\right|^{n+3}}{\phi(|\varphi(\omega)|)\left(1-\left|\varphi(\omega)\right|^{2}\right)^{1/q+n+3}}.\end{eqnarray}
(3.36)

由(3.36)式,得到

\begin{eqnarray}\label{qwe31b}\sup\limits_{r<|\varphi(\omega)|<1}\frac{\mu(\omega)|\psi_2(\omega)||\varphi'(\omega)|^2}{\phi(|\varphi(\omega)|)\left(1-\left|\varphi(\omega)\right|^{2}\right)^{1/q+n+3}}&\leq&\frac{1}{r^{n+3}}\sup\limits_{r<|\varphi(\omega)|<1}\frac{\mu(\omega)|\psi_2(\omega)||\varphi'(\omega)|^2\left|\overline{\varphi(\omega)}\right|^{n+3}}{\phi(|\varphi(\omega)|)\left(1-\left|\varphi(\omega)\right|^{2}\right)^{1/q+n+3}}\nonumber\\&\leq &\frac{1}{r^{n+3}}\sup\limits_{\omega\in{\Bbb D}}\frac{\mu(\omega)|\psi_2(\omega)||\varphi'(\omega)|^2\left|\overline{\varphi(\omega)}\right|^{n+3}}{\phi(|\varphi(\omega)|)\left(1-\left|\varphi(\omega)\right|^{2}\right)^{1/q+n+3}}\nonumber\\&\leq &C<\infty.\end{eqnarray}
(3.37)

另一方面由(3.14)式知

\begin{eqnarray}\label{qwe32b}\sup\limits_{|\varphi(\omega)|\leq r}\frac{\mu(\omega)|\psi_2(\omega)||\varphi'(\omega)|^2}{\phi(|\varphi(\omega)|)\left(1-\left|\varphi(\omega)\right|^{2}\right)^{1/q+n+3}}&\leq&\sup\limits_{|\varphi(\omega)|\leq r} C\mu(\omega)|\psi_2(\omega)||\varphi'(\omega)|^2\\&\leq& CK_{4}<\infty.\end{eqnarray}
(3.38)

结合(3.37)和(3.38)式即可推出(3.4)式成立,注意在我们的证明中,我们已经使用了以下事实:对固定的\omega\in{\Bbb D}\varphi(\omega)\neq 0,函数g_{\varphi(\omega)}, h_{\varphi(\omega)}, k_{\varphi(\omega)}\in H(p, q, \phi).证毕.

定理3.2  设\psi_1, \psi_2\in H({\Bbb D}), n\in{\mathbb N}_0, \varphi{\Bbb D}{\Bbb D}的一个解析自映射, \mu是一个权函数,则T^n_{\psi_{1}, \psi_{2}, \varphi}:H(p, q, \phi)\rightarrow{\cal Z}_{\mu}是紧的充要条件T^n_{\psi_{1}, \psi_{2}, \varphi}:H(p, q, \phi)\rightarrow{\cal Z}_{\mu}是有界的,

\begin{equation}\label{qwe33}\lim\limits_{|\varphi(z)|\rightarrow1}\frac{\mu(z)|\psi_1''(z)|}{\phi(|\varphi(z)|)\left(1-\left|\varphi(z)\right|^{2}\right)^{1/q+n}}=0, \end{equation}
(3.39)

\begin{equation}\label{qwe34}\lim\limits_{|\varphi(z)|\rightarrow1}\frac{\mu(z)|\psi_1(z)\varphi''(z)+2\psi_1'(z)\varphi'(z)+\psi_2''(z)|}{\phi(|\varphi(z)|)\left(1-\left|\varphi(z)\right|^{2}\right)^{1/q+n+1}}=0, \end{equation}
(3.40)

\begin{equation}\label{qwe35}\lim\limits_{|\varphi(z)|\rightarrow1}\frac{\mu(z)|\psi_1(z)(\varphi'(z))^2+2\psi_2'(z)\varphi'(z)+\psi_2(z)\varphi''(z)|}{\phi(|\varphi(z)|)\left(1-\left|\varphi(z)\right|^{2}\right)^{1/q+n+2}}=0, \end{equation}
(3.41)

\begin{equation} \label{qwe35b}\lim\limits_{|\varphi(z)|\rightarrow1}\frac{\mu(z)|\psi_2(z)||\varphi'(z)|^2}{\phi(|\varphi(z)|)\left(1-\left|\varphi(z)\right|^{2}\right)^{1/q+n+3}}=0.\end{equation}
(3.42)

  充分性.设T^n_{\psi_{1}, \psi_{2}, \varphi}: H(p, q, \phi)\rightarrow{\cal Z}_{\mu}是有界的且条件(3.39)-(3.42)式成立.对于在{\Bbb D}的任意紧子集上一致收敛于零(k\rightarrow \infty)的有界序列\{f_k\}\subset H(p, q, \phi),根据引理2.2,只需证明

\|T^n_{\psi_{1}, \psi_{2}, \varphi}f_{k}\|_ {{\cal Z}_{\mu}}\rightarrow 0\ (k\rightarrow\infty).

不失一般性不妨设\|f_{k}\|_{p, q, \phi}\leq1.由(3.39)-(3.42)式,对任意的\varepsilon>0,一定存在\rho \in(0, 1),当 \rho<|\varphi(z)|<1时,有

\begin{equation}\label{qwe36} \frac{\mu(z)|\psi_1''(z)|}{\phi(|\varphi(z)|)\left(1-\left|\varphi(z)\right|^{2}\right)^{1/q+n}}<\varepsilon, \end{equation}
(3.43)

\begin{equation}\label{qwe37}\frac{\mu(z)|\psi_1(z)\varphi''(z)+2\psi_1'(z)\varphi'(z)+\psi_2''(z)|}{\phi(|\varphi(z)|)\left(1-\left|\varphi(z)\right|^{2}\right)^{1/q+n+1}}<\varepsilon, \end{equation}
(3.44)

\begin{equation}\label{qwe38}\frac{\mu(z)|\psi_1(z)(\varphi'(z))^2+2\psi_2'(z)\varphi'(z)+\psi_2(z)\varphi''(z)|}{\phi(|\varphi(z)|)\left(1-\left|\varphi(z)\right|^{2}\right)^{1/q+n+2}}<\varepsilon, \end{equation}
(3.45)

\begin{equation} \label{qwe38b}\frac{\mu(z)|\psi_2(z)||\varphi'(z)|^2}{\phi(|\varphi(z)|)\left(1-\left|\varphi(z)\right|^{2}\right)^{1/q+n+3}}<\varepsilon.\end{equation}
(3.46)

由于算子T^n_{\psi_{1}, \psi_{2}, \varphi}: H(p, q, \phi)\rightarrow{\cal Z}_{\mu}是有界的,根据定理3.1,我们看到(3.9), (3.11), (3.13)及(3.14)式成立.又因为f_{k}{\Bbb D}的任意紧子集上一致收敛于零(k\rightarrow \infty), Cauchy估计保证f^{(n)}_{k}, f^{(n+1)}_{k}, f^{(n+2)}_{k}f^{(n+3)}_{k}{\Bbb D}的任意紧子集上也一致收敛于零,于是存在常数K_{0}\in{\Bbb N}使得当k>K_{0}时,对\rho\in(0, 1),有

\begin{eqnarray}\label{qwe39}&&|(T^n_{\psi_{1}, \psi_{2}, \varphi}f_{k})(0)|+|(T^n_{\psi_{1}, \psi_{2}, \varphi}f_{k})'(0)|+\sup\limits_{|\varphi(z)|\leq\rho}\mu(z)\left|(T^n_{\psi_{1}, \psi_{2}, \varphi}f_{k})''(z)\right|\nonumber\\&\leq&|\psi_1(0)|\left|f^{(n)}_{k}(\varphi(0))\right|+\left|\psi_2(0)f^{(n+1)}_{k}(\varphi(0))\right|+\left|\psi'(0)||f^{(n)}_{k}(\varphi(0))\right|\nonumber\\&& +|\psi(0)\varphi'(0)|\left|f^{(n+1)}_{k}(\varphi(0))\right|+\left|\psi_2(0)\varphi'(0)f^{(n+2)}_{k}(\varphi(0))\right|\nonumber\\&& +\sup\limits_{|\varphi(z)|\leq\rho}\mu(z)\left|\psi_1''(z)||f^{(n)}_{k}(\varphi(z))\right|\nonumber\\&& +\sup\limits_{|\varphi(z)|\leq\rho}\mu(z)|\psi_1(z)\varphi''(z)+2\psi_1'(z)\varphi'(z)+\psi_2''(z)|\left|f^{(n+1)}_{k}(\varphi(z))\right|\nonumber\\&& +\sup\limits_{|\varphi(z)|\leq\rho}\mu(z)|\psi_1(z)(\varphi'(z))^2+2\psi_2'(z)\varphi'(z)+\psi_2(z)\varphi''(z)|\left|f^{(n+2)}_{k}(\varphi(z))\right|\nonumber\\&& +\sup\limits_{|\varphi(z)|\leq\rho}\mu(z)|\psi_2(z)||\varphi'(z)|^2\left|f^{(n+3)}_{k}(\varphi(z))\right|\nonumber\\&\leq& C\varepsilon +K_{1}\sup\limits_{|\varphi(z)|\leq\rho}\left|f^{(n)}_{k}(\varphi(z))\right|+K_{2}\sup\limits_{|\varphi(z)|\leq\rho}\left|f^{(n+1)}_{k}(\varphi(z))\right|\nonumber\\&& +K_{3}\sup\limits_{|\varphi(z)|\leq\rho}|f^{(n+2)}_{k}(\varphi(z))|+K_{4}\sup\limits_{|\varphi(z)|\leq\rho}|f^{(n+3)}_{k}(\varphi(z))|\nonumber\\&<&C\varepsilon.\end{eqnarray}
(3.47)

利用(3.43)-(3.47)式以及引理2.1,可得当k>K_{0}

\begin{eqnarray}\label{qwe40}\|T^n_{\psi_{1}, \psi_{2}, \varphi}f_{k}\|_{\mathcal{Z}_{\mu}}&=&\left|\left(T^n_{\psi_{1}, \psi_{2}, \varphi}f_{k}\right)(0)\right|+\left|\left(T^n_{\psi_{1}, \psi_{2}, \varphi}f_{k}\right)'(0)\right|+\sup\limits_{z\in{\Bbb D}}\mu(z)\left|\left(T^n_{\psi_{1}, \psi_{2}, \varphi}f_{k}\right)^{''}(z)\right|\nonumber\\&\leq& \left|\left(T^n_{\psi_{1}, \psi_{2}, \varphi}f_{k}\right)(0)\right|+\left|\left(T^n_{\psi_{1}, \psi_{2}, \varphi}f_{k}\right)'(0)\right|\nonumber\\&&+\sup\limits_{|\varphi(z)|\leq\rho}\mu(z)\left|\left(T^n_{\psi_{1}, \psi_{2}, \varphi}f_{k}\right)^{''}(z)\right|+\sup\limits_{\rho<|\varphi(z)|<1}\mu(z)\left|\left(T^n_{\psi_{1}, \psi_{2}, \varphi}f_{k}\right)^{''}(z)\right|\nonumber\\&<&C\varepsilon+C\sup\limits_{\rho<|\varphi(z)|<1}\frac{\mu(z)|\psi_1''(z)|}{\phi(|\varphi(z)|)\left(1-\left|\varphi(z)\right|^{2}\right)^{1/q+n}}\|f\|_{p, q, \phi}\nonumber\\&& +C\sup\limits_{\rho<|\varphi(z)|<1}\frac{\mu(z)|\psi_1(z)\varphi''(z)+2\psi_1'(z)\varphi'(z)+\psi_2''(z)|}{\phi(|\varphi(z)|)\left(1-\left|\varphi(z)\right|^{2}\right)^{1/q+n+1}}\|f\|_{p, q, \phi}\nonumber\\&& +C\sup\limits_{\rho<|\varphi(z)|<1}\frac{\mu(z)|\psi_1(z)(\varphi'(z))^2+2\psi_2'(z)\varphi'(z)+\psi_2(z)\varphi''(z)|}{\phi(|\varphi(z)|)\left(1-\left|\varphi(z)\right|^{2}\right)^{1/q+n+2}}\|f\|_{p, q, \phi} \nonumber\\&& +C\sup\limits_{\rho<|\varphi(z)|<1}\frac{\mu(z)|\psi_2(z)||\varphi'(z)|^2}{\phi(|\varphi(z)|)\left(1-\left|\varphi(z)\right|^{2}\right)^{1/q+n+3}}\|f\|_{p, q, \phi} \nonumber\\&<&4C\varepsilon.\end{eqnarray}
(3.48)

\lim\limits_{k\rightarrow\infty}\|T^n_{\psi_{1}, \psi_{2}, \varphi}f_{k}\|_ {{\cal Z}_{\mu}}=0.

因此算子T^n_{\psi_{1}, \psi_{2}, \varphi}: H(p, q, \phi)\rightarrow{\cal Z}_{\mu}是紧的.

必要性.如果T^n_{\psi_{1}, \psi_{2}, \varphi}: H(p, q, \phi)\rightarrow{\cal Z}_{\mu}是紧的.显然T^n_{\psi_{1}, \psi_{2}, \varphi}: H(p, q, \phi)\rightarrow{\cal Z}_{\mu}是有界的.设\{z_{k}\}{\Bbb D}中的一个点列使得|\varphi(z_{k})|\rightarrow1(k\rightarrow\infty).使用检验函数

\begin{eqnarray*}f_{k}(z):&=&f_{\varphi(z_{k})}(z)\nonumber\\&=&\frac{(1-|\varphi(z_{k})|^2)^{b+1}}{\phi(|\varphi(z_{k})|)}\left(\frac{1}{(1-\overline{\varphi(z_{k})}z)^{\alpha}}+A\frac{(1-|\varphi(z_{k})|^2)}{(1-\overline{\varphi(z_{k})}z)^{\alpha+1}}\right)\nonumber\\&&+\frac{(1-|\varphi(z_{k})|^2)^{b+1}}{\phi(|\varphi(z_{k})|)}\left(B\frac{(1-|\varphi(z_{k})|^2)^2}{(1-\overline{\varphi(z_{k})}z)^{\alpha+2}}+C\frac{(1-|\varphi(z_{k})|^2)^3}{(1-\overline{\varphi(z_{k})}z)^{\alpha+3}}\right).\nonumber\end{eqnarray*}

注意到\phi是正规函数,对|z|=r<1,有

|f_{k}(z)|\leq C(1-|\varphi(z_{k})|)\rightarrow 0 \ (k\rightarrow\infty).\nonumber

可见{f_{k}}H(p, q, \phi)中一个有界的函数列且在{\Bbb D}的任意紧子集上一致收敛于零.根据引理2.2,可得

\lim\limits_{k\rightarrow\infty}\|T^n_{\psi_{1}, \psi_{2}, \varphi}f_{k}\|_{{\cal Z}_{\mu}}=0.

由于

f_{k}^{(n+1)}(\varphi(z_{k}))=f_{k}^{(n+2)}(\varphi(z_{k}))=f_{k}^{(n+3)}(\varphi(z_{k}))=0,

f^{(n)}_{k}(\varphi(z_{k}))=\frac{C_1(A, B, C, \alpha, n)\left(\overline{\varphi(z_{k})}\right)^{n}}{\phi(|\varphi(z_k)|)\left(1-\left|\varphi(z_k)\right|^{2}\right)^{1/q+n}}.

利用(3.24)式以及算子T^n_{\psi_{1}, \psi_{2}, \varphi}: H(p, q, \phi)\rightarrow{\cal Z}_{\mu}是紧的,我们有

\begin{equation}\label{qwe42}|C_1(A, B, C, \alpha, n)|\frac{\mu(z_{k})|\psi_1''(z_{k})|\left|\overline{\varphi(z_{k})}\right|^{n}}{\phi(|\varphi(z_k)|)\left(1-\left|\varphi(z_k)\right|^{2}\right)^{1/q+n}}\leq\|T^n_{\psi_{1}, \psi_{2}, \varphi}f_{k}\|_{{\cal Z}_{\mu}}\rightarrow0~ (k\rightarrow\infty).\end{equation}
(3.49)

利用(3.49)式和|\varphi(z_{k})|\rightarrow1\ (k\rightarrow\infty),得到

\lim\limits_{k\rightarrow\infty}\frac{\mu(z_{k})|\psi_1''(z_{k})|}{\phi(|\varphi(z_k)|)\left(1-\left|\varphi(z_k)\right|^{2}\right)^{1/q+n}}=0,

因此(3.39)式成立.类似可证(3.40), (3.41)以及(3.42)式成立,此处省去有关细节.

参考文献

Castillo René E , Clahane Dana D , Farías López Juan F , et al.

Composition operators from mixed norm space to weighted Bloch spaces

Applied Mathematics and Computation, 2013, 219: 6692- 6706

DOI:10.1016/j.amc.2012.11.091      [本文引用: 1]

Colonna F, Li S. Weighted composition operators from Hardy spaces into mixed norm space. Journal of Function Spaces and Applications, 2012, 2012: Article ID: 454820

Du J , Zhu X .

Generalized composition operators on Zygmund type spaces and Bloch type spaces

Journal of Computational Analysis and Applications, 2017, 23: 635- 646

URL    

García Ortiz Armando J , Ramos-Fernández Julio C .

Composition operators from logarithmic Bloch spaces to Bloch-type spaces

Georgian Mathematical Journal, 2013, 20: 671- 686

URL    

于燕燕, 刘永民.

从混合模空间到Bloch-型空间微分算子与乘子的积

数学物理学报, 2012, 32 (32A): 68- 79

URL    

A:68-79 Yu Y , Liu Y .

The product of differentiation and multiplication operators from the mixed-norm to the Bloch-type spaces

Acta Math Sci, 2012, 32A: 68- 79

URL    

Jiang Z .

Product-type operators from Zygmund spaces to Bloch-Orlicz spaces

Complex Variables and Elliptic Equations, 2017, 62: 1645- 1664

DOI:10.1080/17476933.2016.1278436     

Li H , Guo Z .

On a product-type operator from Zygmund -type spaces to Bloch-Orlicz spaces

Journal of Inequalities and Applications, 2015, 2015: 132

DOI:10.1186/s13660-015-0658-8     

Li H , Guo Z .

On a product-type operator from mixed-norm spaces to Bloch-Orlicz spaces

Journal of Computational Analysis and Applications, 2016, 21: 934- 945

URL    

Li H , Guo Z .

Note on a Li-Stević integral-type operator from mixed-norm spaces to nth weighted spaces

Journal of Mathematical Inequalities, 2017, 11: 77- 85

URL    

Sanatpour A H .

Estimates of essential norm of the Li-Stević integral type operator between Zygmund type spaces

Mathematical Inequalities & Applications, 2016, 19: 685- 696

URL    

Ye S .

Weighted composition operators from Bloch spaces into Zygmund spaces

Journal of Computational Analysis and Applications, 2017, 23: 294- 305

URL    

刘永民, 于燕燕.

关于从混合模空间到小Zygmund空间的Volterra型复合算子

数学物理学报, 2015, 35A: 210- 217

URL    

Liu Y , Yu Y .

On Volterra-type composition operators from mixed norm spaces to little Zygmund spaces

Acta Math Sci, 2015, 35A: 210- 217

URL    

Zhang F , Liu Y .

On a Stević-Sharma operator from Hardy spaces to Zygmund-type spaces on the unit disk

Complex Analysis and Operator Theory, 2018, 12: 81- 100

DOI:10.1007/s11785-016-0578-8      [本文引用: 1]

Liu Y , Yu Y .

Products of composition, multiplication and radial derivative operators from logarithmic Bloch spaces to weighted-type spaces on the unit ball

Journal of Mathematical Analysis and Applications, 2015, 423: 76- 93

DOI:10.1016/j.jmaa.2014.09.069      [本文引用: 1]

Liu Y , Yu Y .

On an extension of Stević-Sharma operator from the general space to weighted-type spaces on the unit ball

Complex Analysis and Operator Theory, 2017, 11: 261- 288

DOI:10.1007/s11785-016-0535-6     

Liu Y , Liu X , Yu Y .

On an extension of Stević-Sharma operator from the mixed-norm space to weightedtype spaces

Complex Variables and Elliptic Equations, 2017, 62: 670- 694

DOI:10.1080/17476933.2016.1238465      [本文引用: 1]

Liu Y , Yu Y , Liu X .

Riemann-Stieltjes operator from general space to Zygmund -type spaces on the unit ball

Complex Analysis and Operator Theory, 2015, 9: 985- 997

DOI:10.1007/s11785-014-0384-0     

Zhou J , Liu Y .

Products of radial derivative and multiplication operator between mixed norm spaces and Zygmund-type spaces on the unit ball

Mathematical Inequalities & Applications, 2014, 17: 349- 366

URL    

王茂发, 陈芬, 姚兴兴, 邓方文.

Bergman空间Aαp(\mathbb{B}n)上加权复合算子的紧差

数学物理学报, 2016, 36A: 809- 820

DOI:10.3969/j.issn.1003-3998.2016.05.001     

A:809-820 Wang M , Chen F , Yao X , Deng F .

Compact differences of weighted composition operators on Bergman spaces Aαp(\mathbb{B}n)

Acta Math Sci, 2016, 36A: 809- 820

DOI:10.3969/j.issn.1003-3998.2016.05.001     

赵艳辉, 张学军.

单位球上Dirichlet型空间到Zμ-型空间的积分型算子

数学物理学报, 2017, 37A: 217- 227

DOI:10.3969/j.issn.1003-3998.2017.02.001      [本文引用: 1]

Zhao Y , Zhang X .

On an integral-type operator from Dirichlet spaces to Zygmund type spaces on the unit ball

Acta Math Sci, 2017, 37A: 217- 227

DOI:10.3969/j.issn.1003-3998.2017.02.001      [本文引用: 1]

Stević S , Sharma A , Krishan R .

Boundedness and compactness of a new product-type operator from a general space to Bloch-type spaces

Journal of Inequalities and Applications, 2016, 2016: 219

DOI:10.1186/s13660-016-1159-0      [本文引用: 2]

Al-Rawashdeh W .

Weighted differentiation composition operators from Nevanlinna classes to weightedtype spaces

Journal of Mathematical Analysis, 2017, 8: 163- 175

URL     [本文引用: 1]

Li H, Fu X. A new characterization of generalized weighted composition operators from the Bloch space into the Zygmund space. Journal of Function Spaces and Applications, 2013, 2013, Article ID: 925901

Liang Y , Zhou Z .

Weighted differentiation composition operator from mixed norm space to Bloch-type spaces

Mathematische Nachrichten, 2017, 290: 349- 366

DOI:10.1002/mana.v290.2-3      [本文引用: 1]

Sanatpour A H , Hassanlou M .

Essential norms of weighted differentiation composition operators between Zygmund type spaces and Bloch type spaces

Filomat, 2017, 31: 2877- 2889

DOI:10.2298/FIL1709877S     

Stević S .

Weighted differentiation composition operators from mixed-norm spaces to weighted-type spaces

Applied Mathematics and Computation, 2009, 211: 222- 233

DOI:10.1016/j.amc.2009.01.061      [本文引用: 2]

Zhu X .

Generalized weighted composition operators on weighted Bergman spaces

Numerical Functional Analysis and Optimization, 2009, 30: 881- 893

DOI:10.1080/01630560903123163     

Zhu X .

Generalized weighted composition operators from weighted Bergman spaces into Zygmund -type spaces

Journal of Classical Analysis, 2017, 10: 27- 37

URL     [本文引用: 1]

Stević S , Sharma A , Bhat A .

Products of multiplication composition and differentiation operators on weighted Bergman space

Applied Mathematics and Computation, 2011, 217: 8115- 8125

DOI:10.1016/j.amc.2011.03.014      [本文引用: 1]

Liu Y , Yu Y .

Composition followed by differentiation between H and Zygmund spaces

Complex Analysis and Operator Theory, 2012, 6: 121- 137

DOI:10.1007/s11785-010-0080-7      [本文引用: 1]

Stević S. Weighted differentiation composition operators from the mixed-norm space to the nth weightedtype space on the unit disk. Abstract and Applied Analysis, 2010, 2010, Article ID: 246287

[本文引用: 1]

Stević S .

Generalized composition operators between mixed-norm and some weighted spaces

Numerical Functional Analysis and Optimization, 2008, 29: 959- 978

DOI:10.1080/01630560802282276      [本文引用: 2]

Cowen C C , MacCluer B D . Composition Operators on Spaces of Analytic Functions. Boca Raton: CRC Press, 1995

[本文引用: 1]

Hedenmalm H , Korenblum B , Zhu K . Theory of Bergman Spaces. New York: Springer, 2000

[本文引用: 1]

Shields A L , Williams D L .

Bounded projections, duality and multipliers in space of analytic functions

Transactions of the American Mathematical Society, 1971, 162: 287- 302

URL     [本文引用: 1]

/