(3+1)维Potential-Yu-Toda-Sasa-Fukuyama方程新的多周期孤子解
New Multiple Periodic-Soliton Solutions for the -Dimensional Potential-YTSF Equation
Received: 2017-10-23
Fund supported: |
|
该文利用Hirota双线性形式和广义三波测试法构建了(3+1)维Potential-Yu-Toda-Sasa-Fukuyama方程新的多周期孤子解.其中有一些完全新的周期孤子解,包括周期性交叉扭结波解、周期性双孤立波解和呼吸型双孤立波解.借助于符号计算,呼吸子和孤子的相互作用及传播特点被一些图形展示出来.
关键词:
By using the Hirota's bilinear form and generalized three-wave approach, we construct multiple periodic-soliton solutions of (3+1)-dimensional potential-YTSF equation. Some entirely new periodic-soliton solutions are presented including periodic cross-kink wave, periodic two-solitary wave and breather type of two-solitary wave solutions. With the aid of symbolic computation, propagation characteristics and interactions of breathers and solitons are shown with some figures.
Keywords:
本文引用格式
危寰, 阳连武, 刘建国.
Wei Huan, Yang Lianwu, Liu Jianguo.
1 引言
在本文中,我们将研究所谓的(3+1)维Potential-Yu-Toda-Sasa-Fukuyama (Potential-YTSF)方程
它经常用来描述区域内孤子和非线性波的动力学,包括流体力学、等离子体物理、弱色散介质等. Potential-YTSF方程是由以下方程简化而成[31]
是Yu, Toda, Sasa和Fukuyama等人在研究下列(2+1)维Calogero-Bogoyavlenkii-Schiff方程时提出的一个新方程[32]
论文的主要结构如下.在第2节,我们利用三波测试法获得了行波多孤子解,其中包括了许多奇异周期孤子解,周期交叉扭结波解,双孤立波解和双周期孤立波解.并利用一些图形讨论了呼吸子和孤子的交互作用和传播特点.第3节对论文结果进行了总结.
2 新的多周期孤子解
为了求解新的周期孤子解,我们假设
假设(2.1)有如下形式的解
其中
其中
情形1
其中
因此,我们获得了方程(1.1)第一种形式的周期解
其中所有的参数在方程(2.4)中已列出.方程(2.6)的物理性质和特点被展示在图 1.
图 1
图 1
(a)
情形2
其中
因此,我们获得了方程(1.1)第二种形式的周期解
其中所有的参数在方程(2.7)中已列出.方程(2.9)的物理性质和特点被展示在图 2.
图 2
图 2
(a)
情形3
其中
因此,我们获得了方程(1.1)第三种形式的周期解
其中所有的参数在方程(2.10)中已列出.方程(2.12)的物理性质和特点被展示在图 3.
图 3
图 3
(a)
情形4
其中
因此,我们获得了方程(1.1)第四种形式的周期解
其中所有的参数在方程(2.13)中已列出.方程(2.15)的物理性质和特点被展示在图 4.
图 4
图 4
(a)
情形5
其中
因此,我们获得了方程(1.1)第五种形式的周期解
其中所有的参数在方程(2.16)中已列出.方程(2.18)的物理性质和特点被展示在图 5.
图 5
图 5
(a)
情形6
其中
因此,我们获得了方程(1.1)第六种形式的周期解
其中所有的参数在方程(2.19)中已列出.方程(2.21)的物理性质和特点被展示在图 6.
图 6
图 6
(a)
情形7
其中
因此,我们获得了方程(1.1)第七种形式的周期解
其中所有的参数在方程(2.22)中已列出.方程(2.24)的物理性质和特点被展示在图 7.
图 7
图 7
(a)
情形8
其中
因此,我们获得了方程(1.1)第八种形式的周期解
其中所有的参数在方程(2.25)中已列出.方程(2.27)的物理性质和特点被展示在图 8.
图 8
图 8
(a)
情形9
其中
因此,我们获得了方程(1.1)第九种形式的周期解
其中所有的参数在方程(2.28)中已列出.方程(2.30)的物理性质和特点被展示在图 9.
图 9
图 9
(a)
情形10
其中
因此,我们获得了方程(1.1)第十种形式的周期解
其中所有的参数在方程(2.31)中已列出.方程(2.33)的物理性质和特点被展示在图 10.
图 10
图 10
(a)
3 总结
参考文献
Solitary waves with the madelung fluid description:a generalized derivative nonlinear schrödinger equation
,
一维非线性抛物问题两层网格有限体积元逼近
,DOI:10.3969/j.issn.1003-3998.2017.05.015
A two-grid finite volume element approximation for one-dimensional nonlinear parabolic equations
DOI:10.3969/j.issn.1003-3998.2017.05.015
Nonlinear bi-integrable couplings with Hamiltonian structures
,DOI:10.1016/j.matcom.2013.11.007
Abundant lump and lump-kink solutions for the new (3+1)-dimensional generalized Kadomtsev-Petviashvili equation
,
广义Broer-Kaup-Kupershmidt孤子方程的拟周期解
,
Quasi-periodic solution of the generalized Broer-Kaup-Kupershmidt soliton equation
散焦mKdV方程的N重暗孤子解的行列式表示
,DOI:10.3969/j.issn.1003-3998.2016.01.002
Determinant representation of dark N-soliton solution for the defocusing modified Korteweg-de Vries (mKdV) equation
DOI:10.3969/j.issn.1003-3998.2016.01.002
Mixed lump-kink solutions to the bkp equation
,DOI:10.1016/j.camwa.2017.05.010
Reduced D-Kaup-Newell soliton hierarchies from sl(2, R) and so(3, R)
,
一类拟线性Kirchhoff型椭圆方程组多解的存在性
,
Multiple solutions for a quasilinear elliptic system of Kirchhoff type
Multiple soliton solutions for the new (2+1)-dimensional Korteweg-de Vries equation by multiple exp-function method
,
带Sobolev临界指数的超线性Kirchhoff型方程正解的存在性与多解性
,DOI:10.3969/j.issn.1003-3998.2017.06.011
Existence and multiplicity of positive solutions for the superlinear Kirchhoff-type equations with critical Sobolev exponent
DOI:10.3969/j.issn.1003-3998.2017.06.011
New three-wave solutions for the (3+1)-dimensional boiti-leon-manna-pempinelli equation
,
Diversity of interaction solutions to the (2+1)-dimensional Ito equation
,DOI:10.1016/j.camwa.2017.09.013
New periodic solitary wave solutions for the (3+1)-dimensional generalized shallow water equation
,
Navier-Stokes-Fourier方程的可压逼近
,DOI:10.3969/j.issn.1003-3998.2017.06.007
Approximation of the incompressible Navier-Stokes-Fourier system by the artificial compressibility method
DOI:10.3969/j.issn.1003-3998.2017.06.007
Lump and lump-soliton solutions to the (2+1)-dimensional Ito equation
,
含变号位势的p-Kirchhoff型方程组无穷多个高能量解的存在性
,DOI:10.3969/j.issn.1003-3998.2017.05.008
Infinitely many high energy solutions of p-Kirchhoff-type system with sign-changing weight
DOI:10.3969/j.issn.1003-3998.2017.05.008
New non-traveling wave solutions for the (3+1)-dimensional Boiti-Leon-Manna-Pempinelli equation
,
Mixed lump-kink solutions to the KP equation
,DOI:10.1016/j.camwa.2017.06.034 [本文引用: 1]
Auto-Bäcklund transformation and soliton-typed solutions of the generalized Variable-Coefficient KP equation
,DOI:10.1088/0256-307X/23/7/004 [本文引用: 1]
Multiple soliton solutions and multiple singular soliton solutions for (2+1)-dimensional shallow water wave equations
,DOI:10.1016/j.physleta.2009.06.026 [本文引用: 1]
New explicit and exact solutions for the Nizhnik-Novikov-Vesselov equation
,
Anote on the homogeneous balance method
,DOI:10.1016/S0375-9601(98)00547-7 [本文引用: 1]
The periodic wave solutions for the (2+1) dimensional Konopelchenko-Dubrovsky equations
,DOI:10.1016/j.chaos.2005.08.201 [本文引用: 1]
Nonclassical symmetries for nonlinear partial differential equations via compatibility
,DOI:10.1088/0253-6102/56/4/02 [本文引用: 1]
Analytical spatiotemporal localizations for the generalized (3+1)-dimensional nonlinear Schrödinger equation
,DOI:10.1364/OL.35.001437 [本文引用: 1]
A generalized auxiliary equation method and its application to (2+1)-dimensional Korteweg-de Vries equations
,DOI:10.1016/j.camwa.2006.12.046 [本文引用: 1]
New exact periodic solitary-wave solutions for new (2+1)-dimensional KdV equation
,DOI:10.1088/0253-6102/52/5/21 [本文引用: 1]
Exact three-wave solutions for the KP equation
,
N-soliton solutions to the Bogoyavlenskii-Schiff equation and a quest for the soliton solution in (3+1) dimensions
,DOI:10.1088/0305-4470/31/14/018 [本文引用: 1]
The Calogero-Bogoyavlenskii-Schiff equation in dimension 2+1
,DOI:10.4213/tmf [本文引用: 1]
Nonlinear evolution equations solvable by the inverse spectral transform I
,
New families of nontravelling wave solutions to a new (3+1)-dimensional potential-YTSF equation
,DOI:10.1016/j.physleta.2003.08.073 [本文引用: 2]
Generalized extended tanh-function method and its application
,DOI:10.1016/j.chaos.2005.04.069
Non-travelling wave solutions to a (3+1)-dimensional potential-YTSF equation and a simplified model for reacting mixtures
,DOI:10.1016/j.chaos.2006.04.005
A new variable coefficient Korteweg-de Vries equation-based sub-equation method and its application to the (3+1)-dimensional potential-YTSF equation
,
Multiple soliton solutions, soliton-type solutions and rational solutions for the (3+1)-dimensional potential-YTSF equation
,DOI:10.1007/s13226-014-0100-9 [本文引用: 1]
Exact periodic cross-kink wave solutions and breather type of two-solitary wave solutions for the (3+1)-dimensional potential-YTSF equation
,DOI:10.1016/j.camwa.2010.07.055 [本文引用: 1]
/
〈 | 〉 |