一类具有p-Laplacian算子的分数阶微分方程反周期边值问题解的存在唯一性
Existence and Uniqueness of Solutions to a Class of Anti-Periodic Boundary Value Problem of Fractional Differential Equations with p-Laplacian Operator
通讯作者:
收稿日期: 2016-11-15
基金资助: |
|
Received: 2016-11-15
Fund supported: |
|
该文研究了一类具有p-Laplacian算子的非线性Caputo分数阶微分方程反周期边值问题解的存在唯一性.首先,利用分数阶微分方程和反周期边值条件给出了该边值问题的Green函数,然后利用p-Laplacian算子的性质和Banach压缩映射原理得到该边值问题解的存在唯一性结论,最后给出两个例子验证结论的合理性.值得一提的是此文研究的微分方程的反周期边值条件是带有Caputo分数阶微分.
关键词:
In this paper, we investigate the existence and uniqueness of solutions to a class of anti-periodic boundary value problem of nonlinear Caputo fractional differential equations with p-Laplacian operator. First, the Green function of the fractional boundary value problem is given. By using the properties of p-Laplacian operator and the Banach contraction mapping principle, some new results on the existence and uniqueness of solutions to the fractional boundary value problem are obtained. As an application, two examples are given to illustrate our main results. In particular, the boundary value conditions of fractional differential equation which is studied in this paper contains the Caputo fractional differentiation.
Keywords:
本文引用格式
贠永震, 苏有慧, 胡卫敏.
Yun Yongzhen, Su Youhui, Hu Weimin.
1 前言
这里
这里
在上面提到的文献[5]中,作者研究了阶数为
这里
本文结构如下:在第2节给出分数阶积分和微分的定义及证明结论时需要的引理,第3节利用分数阶微分方程和反周期边值条件给出边值问题(1.3)的Green函数,第4节利用
2 预备知识
定义2.1[1] 若
定义2.2[1] 若
这里
引理2.1[1] 若
这里
引理2.2[1] 若
这里
引理2.3[9]
(ⅰ)如果
(ⅱ)如果
3 Green函数
引理3.1 若
拥有唯一解
这里
证 对方程
由Caputo分数阶微分性质可知
因为
因为
利用Caputo分数阶微分的性质,即
又因为
利用反周期边值条件
因此
证毕.
4 主要结论
定义Banach空间
定义算子
则求边值问题(1.3)解的存在唯一性转化为算子
定理4.1 假设
(H1)存在常数
(H2)存在常数
(H3)
则边值问题(1.3)存在唯一解.
证 对于任意的
因为
因此,我们有
其中
由条件(H3)可知
因此利用Banach压缩映射原理可知,算子
定理4.2 假设
(H4)存在常数
则边值问题(1.3)存在唯一解.
该定理证明类似定理4.1,此处略去.
定理4.3 假设
(H5)存在函数
(H6)存在常数
(H7)
则边值问题(1.3)存在唯一解.
证 由条件(H5)可得
因为
因此可得
其中
由条件(H7)可知
因此,利用Banach压缩映射原理可知,算子
5 例子
例5.1 令
证 因为
因为当
令
又因为
所以由定理4.1可知边值问题(5.1)存在唯一解.
例5.2 令
证 因为
因为当
令
又因为
所以由定理4.3可知边值问题(5.2)存在唯一解.
参考文献
Theory and Applications of Fractional Differential Equations
,
Ultimate boundedness of impulsive fractional differential equations
,
On piecewise continuous solutions of higher order impulsive fractional differential equations and applications
,
带有奇异非线性项的分数微分方程周期解的存在性与唯一性
,DOI:10.3969/j.issn.1003-3998.2015.06.003 [本文引用: 1]
Existence and uniqueness results for the periodic boundary value problems of factional differential equations with singular nonlinearities
DOI:10.3969/j.issn.1003-3998.2015.06.003 [本文引用: 1]
Anti-periodic fractional boundary value problems for nonlinear differential equations of fractional order
,
Existence results for impulsive fractional q-difference equations with anti-periodic boundary conditions
,
Uniqueness results for fully anti-periodic fractional boundary value problems with nonlinearity depending on lower-order derivatives
,
Generalized anti-periodic boundary value problems of impulsive fractional differential equations
,DOI:10.1016/j.cnsns.2012.06.014 [本文引用: 1]
Solvability of differential equations of order 2 <α ≤ 3 involving the p-Laplacian operator with boundary conditions
,
Solvability of anti-periodic boundary value problem for coupled system of fractional p-Laplacian equation
,
Solvability of fractional boundary value problem with p-Laplacian via critical point theory
,
Positive solution for higher-order singular infinite-point fractional differential equation with p-Laplacian
,
/
〈 | 〉 |