自反巴拿赫空间中方向扰动的广义混合变分不等式的可解性
Solvability of Directional Perturbed Generalized Mixed Variational Inequalities in Reflexive Banach Spaces
通讯作者:
收稿日期: 2017-10-20
基金资助: |
|
Received: 2017-10-20
Fund supported: |
|
该文给出了在自反巴拿赫空间中,一个强制条件下,方向扰动的广义混合变分不等式的可解性.其中,关于集合受方向扰动的研究结果是全新的.该文改进与推广了一些已有的结果(数学物理学报,2016,36A(3):473-480).
关键词:
Solvability of directional perturbed generalized mixed variational inequalities is discussed in reflexive Banach spaces, under a coercivity condition. In particular, the result we present that the set is directional perturbed is new. Our results generalize and extend some known results in this area (Acta Math Sci, 2016, 36A(3):473-480).
Keywords:
本文引用格式
罗雪萍, 崔梦天.
Luo Xueping, Cui Mengtian.
1 引言
设
GMVIP(F, f, K)包括大量其他问题作为其特例:
目前,扰动变分不等式的稳定性分析被推广到了空间是无限维,
2 预备知识
设
为
众所周知,给定
对于
对于正整数
设
其中,任意的
定义2.1 设
(i)在
(ⅱ)在
(ⅲ)在
(ⅳ)在
(ⅴ)在
(ⅵ)在
(ⅶ)在
注2.1 (ⅰ)显然地,单调映射必定是拟单调和
(ⅱ)如果
(ⅲ)
以下例子说明了如果
例2.1 设
易知
因为
以下例子说明了如果
例2.2 设
易知
然而
因此,
以下例子说明了如果
例2.3 设
接下来证明
由中值定理,存在
这样,
因此,
易知
因此,
引理2.1[10] 设
引理2.2[9] 设
命题2.1 (ⅰ)如果
(ⅱ)如果
证 (ⅰ)的证明参见文献[13]. (ⅱ)利用与(ⅰ)中类似的方法即可得证.
3 可解性
本部分为本文的主要结果,给出了扰动混合变分不等式在扰动项为映射
引理3.1 如果
证 设
因此,
另一方面,设
因此,
再由(2.1)式,有
定理3.1 设
则对于任意的
证 (1)首先,需要证明对于任意的
设
(ⅰ)对某一
由
(ⅱ)对每一
所以,对于所有的
由强制条件(3.1)可知存在
进而
所以
由
由
不失一般性,假设
因为
由(3.2)和(3.3)式,有
因为
又因为
由
上述两种情况均与
(2)下面需要证明对于任意的
因为
同时,
类似地,可以假设
类似地,
如果扰动项仅仅是映射,则有如下推论3.1.
推论3.1 设
则对任意的
如果扰动项仅仅是集合,则有如下推论3.2.
推论3.2 设
则存在
参考文献
Iterative schemes for approximating solutions of generalized variational inequalities in Banach spaces
,DOI:10.1016/j.na.2008.08.008 [本文引用: 1]
A projected subgradient method for solving generalized mixed variational inequalities
,
Strict feasibility for generalized mixed variational inequality in reflexive Banach spaces
,
Strict feasibility for generalized mixed variational inequality in reflexive Banach spaces
,DOI:10.3934/naco
Hadamard well-posedness of a general mixed variational inequality in Banach space
,
Levitin-Polyak well-posedness of a generalized mixed variational inequality in Banach spaces
,DOI:10.1016/j.na.2011.10.013 [本文引用: 1]
Coercivity conditions and variational inequalities
,DOI:10.1007/s101070050097 [本文引用: 1]
Pseudomonotone variational inequality problems:Existence of solutions
,
Stability analysis for variational inequality in reflexive Banach spaces
,DOI:10.1016/j.na.2007.08.031 [本文引用: 3]
Stable pseudomonotone variational inequality in reflexive Banach spaces
,DOI:10.1016/j.jmaa.2006.07.063 [本文引用: 4]
The Tikhonov regularization method for set-valued variational inequalities
,
On quasimonotone variational inequalities
,DOI:10.1023/B:JOTA.0000037413.45495.00 [本文引用: 1]
Exceptional families of elements for variational inequalities in Banach spaces
,DOI:10.1007/s10957-006-9041-8 [本文引用: 1]
On the convergence of a regularization method for variational inequalities
,
Tikhonov regularization methods for variational inequality problems
,DOI:10.1023/A:1021802830910 [本文引用: 1]
Sensitivity analysis in nonlinear programs and variational inequalities via continuous selections
,DOI:10.1137/S0363012993248876 [本文引用: 2]
Application of degree theory in stability of the complementarity problem
,
Sensitivity analysis in variational inequalities
,
Parametric variational inequalities with multivalued solution sets
,
Sensitivity analysis for variational inequalities
,
Sensitivity analysis for variational inequalities
,
Stability analysis of variational inequalities and nonlinear complementarity problems, via the mixed linear complementarity problem and degree theory
,DOI:10.1287/moor.19.4.831 [本文引用: 2]
Stability analysis for Minty mixed variational inequality in reflexive Banach spaces
,DOI:10.1007/s10957-010-9732-z [本文引用: 1]
一个扰动变分不等式的可解性
,DOI:10.3969/j.issn.1003-3998.2016.03.009 [本文引用: 4]
Solvability of a perturbed variational inequality
DOI:10.3969/j.issn.1003-3998.2016.03.009 [本文引用: 4]
general existence theorems for unilateral problems in continuum mechanics
,
Stability of the solution set of non-coercive variational inequalities
,
A generalization of Tychonoff's fixed point theorem
,
/
〈 | 〉 |