END随机变量序列Sung型加权和的矩完全收敛性
Complete Moment Convergence for Sung's Type Weighted Sums Under END Setup
收稿日期: 2017-05-8
基金资助: |
|
Received: 2017-05-8
Fund supported: |
|
作者简介 About authors
邱德华,E-mail:
肖娟,E-mail:
该文利用END随机变量序列部分和的Menshov-Rademacher型不等式,得到了同分布END随机变量序列的Sung型加权和的矩完全收敛性定理,推广和改进了已知的相应的一些结果.
关键词:
In this paper, the authors study a complete moment convergence result for Sung's type weighted sums of identically distributed END random variables by utilizing the Menshov-Rademacher's inequality of the partial sums of END random variables. The result extends and improves the corresponding theorems in series of previous papers.
Keywords:
本文引用格式
邱德华, 肖娟.
Qiu Dehua, Xiao Juan.
1 引言和主要结果
定理1.1[2] 设
如果
则对任意的
进而有
其中
事实上,当
称随机变量序列
END这一概念是Liu[13]提出的,以NOD (negatively orthant dependent)[14]为特殊情形(
下面陈述本文主要结果,其证明放在下一节.
定理1.2 设
注1.1 1)从本文的证明过程来看,本文的结论对成立最大值的Rosenthal型不等式的随机变量都成立.
2)本文的结论对成立Menshov-Rademacher型不等式的随机变量都成立.令
本文以下总用
2 主要结果的证明
为证本文结果,需要如下引理.
引理2.1[13] 设
引理2.2[12] 设
完全类似于Chen等[3]定理2.1与定理2.2的证明可得
引理2.3 设
引理2.2(ⅱ)与引理2.3(ⅱ)即为所谓的Menshov-Rademacher型矩不等式.
引理2.4[2] 设
其中当
根据标准的计算可得
引理2.5 设
引理2.6 设
证 由(1.1)式,不失一般性可设
则对任意
而对任意
于是再由(2.1)式和
证毕.
引理2.7 设
证 对任意
取定
证毕.
定理1.2的证明 先证(1.3)式.对任意给定的
因此,要证(1.3)式,只要证明对充分大的正整数
取定
则
由
同理可证
和
于是,当
由上证明可知当
因此要证(2.2)式,只要证
情形一
令
由引理2.1,引理2.3,
由
分别类似
情形二
由(1.2)式有
由引理2.1,引理2.3,
对
分别类似
参考文献
On the rate of moment complete convergence of sample sums and extremes
Complete moment convergence for weighted sums of weakly dependent random variables and its application in nonparametric regression model
DOI:10.1016/j.spl.2017.03.027 [本文引用: 7]
The von Bahr-Esseen moment inequality for pairwise independent random variables and applications
DOI:10.1016/j.jmaa.2014.05.067 [本文引用: 3]
Complete moment convergence for sequence of identically distributed φ-mixing random variables
Complete moment and integral convergence for sums of negatively associated random variables
Complete moment convergence for maximal partial sums under NOD setup
B值独立同分布随机变元序列的矩完全收敛性
DOI:10.3321/j.issn:0254-3079.2004.03.007
Moment complete convergence for sequences of B-valued iid random elements
DOI:10.3321/j.issn:0254-3079.2004.03.007
END随机变量序列产生的移动平均过程的收敛性
DOI:10.3969/j.issn.1003-3998.2015.04.012 [本文引用: 1]
Convergence for moving average processes under END set-up
DOI:10.3969/j.issn.1003-3998.2015.04.012 [本文引用: 1]
\tilde \rho 混合随机变量序列加权和的矩完全收敛性
DOI:10.3969/j.issn.1003-3998.2017.02.006 [本文引用: 1]
Complete moment convergence for weighted sums of \tilde \rho -mixing random variable sequences
DOI:10.3969/j.issn.1003-3998.2017.02.006 [本文引用: 1]
Complete convergence for weighted sums of ρ*-mixing random variables
Remark on convergence rate for weighted sums of ρ*-mixing random variables
Complete convergence for Sung's type weighted sums of END random variables
DOI:10.1186/1029-242X-2014-353 [本文引用: 2]
Precise large deviations for dependent random variables with heavy tails
DOI:10.1016/j.spl.2009.02.001 [本文引用: 4]
Negative association of random variables with applications
DOI:10.1214/aos/1176346079 [本文引用: 2]
On the complete convergence for arrays of rowwise extended negatively dependent random variables
DOI:10.4134/JKMS.2013.50.2.379 [本文引用: 1]
Complete convergence for weighted sums and arrays of rowwise END sequences
DOI:10.1080/03610926.2011.609321 [本文引用: 1]
Convergence properties of the partial sums for sequences of END random variables
DOI:10.4134/JKMS.2012.49.6.1097 [本文引用: 1]
Necessary and sufficient conditions for moderate deviations of dependent random variables with heavy tails
DOI:10.1007/s11425-010-4012-9 [本文引用: 1]
Probability inequalities for END sequence and their applications
DOI:10.1186/1029-242X-2011-98 [本文引用: 1]
/
〈 |
|
〉 |
