END随机变量序列Sung型加权和的矩完全收敛性
Complete Moment Convergence for Sung's Type Weighted Sums Under END Setup
收稿日期: 2017-05-8
基金资助: |
|
Received: 2017-05-8
Fund supported: |
|
作者简介 About authors
邱德华,E-mail:
肖娟,E-mail:
该文利用END随机变量序列部分和的Menshov-Rademacher型不等式,得到了同分布END随机变量序列的Sung型加权和的矩完全收敛性定理,推广和改进了已知的相应的一些结果.
关键词:
In this paper, the authors study a complete moment convergence result for Sung's type weighted sums of identically distributed END random variables by utilizing the Menshov-Rademacher's inequality of the partial sums of END random variables. The result extends and improves the corresponding theorems in series of previous papers.
Keywords:
本文引用格式
邱德华, 肖娟.
Qiu Dehua, Xiao Juan.
1 引言和主要结果
定理1.1[2] 设
如果
则对任意的
进而有
其中
事实上,当
称随机变量序列
END这一概念是Liu[13]提出的,以NOD (negatively orthant dependent)[14]为特殊情形(
下面陈述本文主要结果,其证明放在下一节.
定理1.2 设
注1.1 1)从本文的证明过程来看,本文的结论对成立最大值的Rosenthal型不等式的随机变量都成立.
2)本文的结论对成立Menshov-Rademacher型不等式的随机变量都成立.令
本文以下总用
2 主要结果的证明
为证本文结果,需要如下引理.
引理2.1[13] 设
引理2.2[12] 设
完全类似于Chen等[3]定理2.1与定理2.2的证明可得
引理2.3 设
引理2.2(ⅱ)与引理2.3(ⅱ)即为所谓的Menshov-Rademacher型矩不等式.
引理2.4[2] 设
其中当
根据标准的计算可得
引理2.5 设
引理2.6 设
证 由(1.1)式,不失一般性可设
则对任意
而对任意
于是再由(2.1)式和
证毕.
引理2.7 设
证 对任意
取定
证毕.
定理1.2的证明 先证(1.3)式.对任意给定的
因此,要证(1.3)式,只要证明对充分大的正整数
取定
则
由
同理可证
和
于是,当
由上证明可知当
因此要证(2.2)式,只要证
情形一
令
由引理2.1,引理2.3,
由
分别类似
情形二
由(1.2)式有
由引理2.1,引理2.3,
对
分别类似
参考文献
On the rate of moment complete convergence of sample sums and extremes
,
Complete moment convergence for weighted sums of weakly dependent random variables and its application in nonparametric regression model
,DOI:10.1016/j.spl.2017.03.027 [本文引用: 7]
The von Bahr-Esseen moment inequality for pairwise independent random variables and applications
,DOI:10.1016/j.jmaa.2014.05.067 [本文引用: 3]
Complete moment convergence for sequence of identically distributed φ-mixing random variables
,
Complete moment and integral convergence for sums of negatively associated random variables
,
Complete moment convergence for maximal partial sums under NOD setup
,
B值独立同分布随机变元序列的矩完全收敛性
,DOI:10.3321/j.issn:0254-3079.2004.03.007
Moment complete convergence for sequences of B-valued iid random elements
DOI:10.3321/j.issn:0254-3079.2004.03.007
END随机变量序列产生的移动平均过程的收敛性
,DOI:10.3969/j.issn.1003-3998.2015.04.012 [本文引用: 1]
Convergence for moving average processes under END set-up
DOI:10.3969/j.issn.1003-3998.2015.04.012 [本文引用: 1]
$\tilde \rho $混合随机变量序列加权和的矩完全收敛性
,DOI:10.3969/j.issn.1003-3998.2017.02.006 [本文引用: 1]
Complete moment convergence for weighted sums of $\tilde \rho $-mixing random variable sequences
DOI:10.3969/j.issn.1003-3998.2017.02.006 [本文引用: 1]
Complete convergence for weighted sums of ρ*-mixing random variables
,
Remark on convergence rate for weighted sums of ρ*-mixing random variables
,
Complete convergence for Sung's type weighted sums of END random variables
,DOI:10.1186/1029-242X-2014-353 [本文引用: 2]
Precise large deviations for dependent random variables with heavy tails
,DOI:10.1016/j.spl.2009.02.001 [本文引用: 4]
Negative association of random variables with applications
,DOI:10.1214/aos/1176346079 [本文引用: 2]
On the complete convergence for arrays of rowwise extended negatively dependent random variables
,DOI:10.4134/JKMS.2013.50.2.379 [本文引用: 1]
Complete convergence for weighted sums and arrays of rowwise END sequences
,DOI:10.1080/03610926.2011.609321 [本文引用: 1]
Convergence properties of the partial sums for sequences of END random variables
,DOI:10.4134/JKMS.2012.49.6.1097 [本文引用: 1]
Necessary and sufficient conditions for moderate deviations of dependent random variables with heavy tails
,DOI:10.1007/s11425-010-4012-9 [本文引用: 1]
Probability inequalities for END sequence and their applications
,DOI:10.1186/1029-242X-2011-98 [本文引用: 1]
/
〈 | 〉 |