数学物理学报, 2018, 38(5): 970-983 doi:

论文

基于Razumikhin-Type理论的中立性随机切换非线性系统的P阶矩稳定性与几乎必然稳定性

谷海波,1, 高彩霞,2

Razumikhin-Type Theorems on P-th Moment and Almost Sure Stability of Neutral Stochastic Switched Nonlinear Systems

Gu Haibo,1, Gao Caixia,2

通讯作者: 谷海波, E-mail: guhaibo@amss.ac.cn

收稿日期: 2017-03-14  

基金资助: 国家自然科学基金.  11261033

Received: 2017-03-14  

Fund supported: the NSFC.  11261033

作者简介 About authors

高彩霞,E-mail:gaocx0471@163.com , E-mail:gaocx0471@163.com

摘要

研究了中立型随机切换非线性系统的P阶矩稳定性与几乎必然稳定性.采用Lyapunov-Razumikhin方法和随机分析技术,建立了中立型随机切换非线性系统稳定性的判别准则,给出了中立型随机切换非线性系统稳定的充分条件.最后通过仿真算例表明了所得结果的有效性.

关键词: 中立型随机切换非线性系统 ; P阶矩稳定性 ; 几乎必然稳定性 ; Lyapunov-Razumikhin方法

Abstract

In this paper, P-th moment and almost sure stability for a class of neutral stochastic switched nonlinear systems have been investigated. By utilizing Lyapunov-Razumikhin approach, we employ the stochastic analysis techniques to establish novel stability criteria for neutral stochastic switched nonlinear systems. Some sufficient conditions have been derived to check the stability of the neutral stochastic switched nonlinear systems. One numerical example is provided to demonstrate the effectiveness of the results.

Keywords: Neutral stochastic switched nonlinear system ; P-th moment stability ; Almost surely stability ; Lyapunov-Razumikhin approach

PDF (436KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

谷海波, 高彩霞. 基于Razumikhin-Type理论的中立性随机切换非线性系统的P阶矩稳定性与几乎必然稳定性. 数学物理学报[J], 2018, 38(5): 970-983 doi:

Gu Haibo, Gao Caixia. Razumikhin-Type Theorems on P-th Moment and Almost Sure Stability of Neutral Stochastic Switched Nonlinear Systems. Acta Mathematica Scientia[J], 2018, 38(5): 970-983 doi:

1 引言

随机切换非线性系统是一类重要的混杂动态系统,许多实际问题都可以用这类系统进行描述.众所周知,时滞在系统中无处不在,例如物理系统、信息科学、生物系统[1-3].在实际系统中,时滞不仅存在于系统的状态变量中,而且存在于系统状态的导数项中,这样的系统称为中立型系统.近年来,由于中立型随机切换非线性系统在机械工程、电气工程和汽车工业等许多领域有着广泛应用[4-6],因此,得到了越来越多的关注.

众所周知,稳定性是系统理论研究的主要问题之一.在时滞系统稳定性的研究中, Lyapunov-Razumikhin方法是最有效的研究方法之一. Razumikhin在文献[7-8]中研究确定性时滞系统的稳定性时最早提出了这种方法.随后,毛等将这种方法推广到了随机泛函微分系统[9],在研究随机时滞微分系统的$P$阶矩指数稳定和几乎必然指数稳定时,毛将这种方法应用到随机泛函微分方程[10]和中立型随机泛函微分方程[11]中.此后, Razumikhin方法得到了快速的发展,并在其他随机泛函微分系统中得到了广泛的应用,如无限时滞随机泛函微分系统[12-14],脉冲随机时滞微分系统[15-17].近年来,一些研究者通过引入$\psi $函数把指数稳定性推广到了$\psi ^{\gamma }$稳定性[18-19].

在上述文献中,研究者主要研究了随机时滞非线性系统和中立型随机非线性系统的$P$阶矩稳定性和几乎必然稳定性.然而,对于中立型随机切换非线性系统的研究却很少.文献[20]采用多Lyapunov函数方法研究了随机切换非线性系统的稳定性.在本文中,我们主要研究中立型随机切换非线性系统的$P$阶矩$\psi ^{\gamma }$稳定性和几乎必然$\psi ^{\gamma }$稳定性.基于Lyapunov方法的Razumikhin定理给出中立型随机切换非线性系统稳定的充分条件,采用Lyapunov-Razumikhin方法建立并证明中立型随机切换非线性系统的$P$阶矩$\psi ^{\gamma }$稳定性,采用Holder不等式, Burkholder-Davis-Gundy不等式和Borel-Cantelli引理建立并证明中立型随机切换非线性系统的几乎必然$\psi ^{\gamma }$稳定性.

本文的主要内容安排如下:第2节给出问题的描述及本文所用到的预备知识;第3节利用Lyapunov-Razumikhin型方法给出并证明中立型随机切换非线性系统$P$阶矩$\psi ^{\gamma }$稳定与几乎必然$\psi ^{\gamma }$稳定的主要结果;第4节通过一个算例来说明本文主要结果的有效性;第5节为本文的结论.

2 预备知识

首先给出本文用到的一些记号. ${\mathbb{R}}^n $表示$n$维欧氏空间; ${\mathbb{R}}_+$表示所有的非负实数集; ${\mathbb{R}}^{n\times m}$表示$n\times m$阶实矩阵;若$A$是一个矩阵,它的范数$\|A\|$定义为$ \|A\|=\sup \{|Ax|:|x|=1\}$; $C([-\tau , 0];{\mathbb{R}}^n )$表示一族范数为$ \|\varphi \|= \sup\limits_{\theta \leq 0}|\varphi (\theta )|$的连续函数$\varphi:[-\tau , 0]\rightarrow {\mathbb{R}}^n $的集合; $|\cdot|$表示向量的欧氏范数;令$p \geq 1$,对任意的$t \geq 0$, $L^{p}_{{\cal F}_{t}}([-\tau , 0];{\mathbb{R}}^n )$表示一族$ {\cal F}_{t}$可测的$C([-\tau , 0];{\mathbb{R}}^n )$值随机变量$\varphi =\{\varphi (\theta ):-\tau \leq \theta \leq 0 \}$的全体,且$\varphi$满足$ \sup\limits_{\theta \leq 0}E|\varphi (\theta )|^{p}<\infty$; $C^{b}_{{\cal F}_{0}}([-\tau , 0];{\mathbb{R}}^n )$是一族$ {\cal F}_{0}$可测的$C([-\tau , 0];{\mathbb{R}}^n )$值有界随机变量; $ {\cal C}^{1, 2}([-\tau , \infty )\times {\mathbb{R}}^n ; {\mathbb{R}}_+)$表示所有在$[-\tau , \infty )\times {\mathbb{R}}^n $上的非负函数$V(t, x(t))$的全体,其中$V(t, x(t))$作为$x$的函数二阶连续可微,作为$t$的函数一阶连续可微; $a \vee b$表示$a$$b$的最大值; $E(\cdot)$表示随机变量的期望.

考虑一族中立型随机切换非线性系统

$\left\{ \begin{array}{ll}d(x(t)-u_{\sigma(t)}(x_{t}))=f_{\sigma (t)}(t, x_{t}){\rm d}t+g_{\sigma (t)}(t, x_{t}){\rm d}w(t), \\ x_{0}=\xi, \end{array} \right.$

其中$\sigma (t): [t_{0}, \infty)\rightarrow N$是切换信号, $\{t_{1}<t_{2}<\cdots <t_{k}<\cdots \}$是切换序列,在区间$[t_{k}, t_{k+1})$内,第$i_{k}$个子系统活跃,其中$t_{k}$是切换时刻, $i_{k}\in {\cal N}, \ k=0, 1, 2, \cdots$.系统(2.1)是由一系列子系统$d(x(t)-u_{i}(x_{t}))=f_{i}(t, x_{t}){\rm d}t+g_{i}(t, x_{t}){\rm d}w(t)$和作用在它上的切换信号$\sigma (t)$构成. $\xi \in C^{b}_{{\cal F}_{0}}([-\tau , 0];{\mathbb{R}}^n )$, $x_{t}=\{x(t+\theta ): -\tau \leq \theta \leq 0\}\in C([-\tau , 0];{\mathbb{R}}^n )$$\tau $是一个有限数, $w(t)$是一个$m$维标准布朗运动. $(\Omega, {\cal F}, \{{\cal F}_{t}\}, P)$是一个以${\cal F}_{t}$为滤波的完备概率空间且满足通常的条件(即它是递增且右连续的, ${\cal F}_{0}$包含所有的P-0集).函数$u:C([-\tau , 0];{\mathbb{R}}^n )\rightarrow {\mathbb{R}}^n $, $f:{\mathbb{R}}_+\times C([-\tau , 0]; {\mathbb{R}}^n )\rightarrow {\mathbb{R}}^n $, $g:{\mathbb{R}}_+\times C([-\tau , 0];{\mathbb{R}}^n )\rightarrow R^{n\times m}$均连续可测,对于$\forall t\geq t_{0}$$u(0)=0, \ f(t, 0)=0, \ g(t, 0)=0, t\in {[t_{0}, \infty)}$.

对于解的存在唯一性我们作如下假设

假设2.1[18]  函数$f_{i}(t, \varphi )$$g_{i}(t, \varphi )$均满足Lipschitz条件和线性增长条件,即对$\forall t\geq0$, $\forall \varphi , \phi \in C([-\tau , 0];{\mathbb{R}}^n )$,存在一族常数$L_{i}>0$使得

$\forall t\geq0$, $\forall \varphi \in C([-\tau , 0];{\mathbb{R}}^n )$,存在一族常数$K_{i}>0$使得

且函数$u_{i}(\varphi)$均满足压缩性条件,即存在一族常数$\kappa_{i} \in (0, 1)$,对$\forall \varphi , \phi \in C([-\tau , 0];{\mathbb{R}}^n )$,有

定义2.1[18]   $\psi(t)\in C^{1}([-\tau , \infty];{\mathbb{R}}_+)$称为$\psi $ -型函数,如果满足以下条件

(1)  该函数单调递减且连续可微;

(2)  $\psi (0)=1$且当$t\rightarrow \infty$时,有$\psi (t)\rightarrow0$;

(3)  $\psi_{1}(t)=\psi'(t)/\psi(t)<0$;

(4)  对于所有的$t, s\geq 0, \ \psi (t+s)\geq \psi (t)\psi (s)$.

定义2.2  对于$p>0$,中立型随机切换非线性系统(2.1)称为$P$阶矩$\psi ^{\gamma }$稳定,若存在正常数$\gamma $和函数$\psi(\cdot)$,使得

$\limsup\limits_{t \rightarrow \infty}\frac{\ln E|x(t, \xi )|^{p}}{|\ln \psi (t)|}\leq -\gamma . $

$p=2$时,称为均方$\psi ^{\gamma }$稳定,当$\psi (t)=e^{-t}$时,称为$P$阶矩指数稳定,当$\psi (t)=(1+t)^{-1}$时,称为$P$阶矩多项式稳定.

定义2.3  中立型随机切换非线性系统(2.1)称为几乎必然$\psi ^{\gamma }$稳定,若存在正常数$\bar{\gamma}$和函数$\psi(\cdot)$,使得

$\limsup\limits _{t\rightarrow\infty}\frac{\ln |x(t, \xi )|}{|\ln \psi (t)|}\leq -\bar{\gamma} , {\rm a.s..}$

$\psi (t)=e^{-t}$时,称为几乎必然指数稳定,当$\psi (t)=(1+t)^{-1}$时,称为几乎必然多项式稳定.

在给出本文引理之前,先介绍本文所用的$ {\rm{It\hat o}} $公式.

对于系统(2.1),任给函数$V(t, x)\in {\cal C}^{1, 2}([-\tau , \infty )\times {\mathbb{R}}^n ; {\mathbb{R}}_+)$,定义微分算子${\cal L}V(t, \varphi ): {\mathbb{R}}_+\times C([-\tau , 0];{\mathbb{R}}^n )$如下

为便于本文定理的推导,记$x_{\sigma(t)}(t)=x(t)-u_{\sigma(t)}(x_{t})$,

引理2.1[14]  对于任意常数$p\geq 1$, $\gamma \geq 0$,当$\gamma \in (0, \mu)$时,满足

$E|u_{\sigma (t)}(\varphi)|^{p}\leq \kappa^{p} \sup\limits_{\theta \leq 0}\psi^{-\mu}(\theta)E|\varphi(\theta)|^{p}, $

则对于任意初始值$\xi$满足$ \sup\limits_{\theta \leq0}\psi ^{-\gamma}(\theta)E|\xi(\theta)|^{p}< \infty$时,有

  由$x_{\sigma(t)}(t)$的定义可知

由基本不等式,条件(2.4)和函数$\psi (\cdot)$的性质可知,对$\forall t\geq 0$, $\kappa \in (0, 1)$,有

$H(t)$的定义可知

$\xi \in L_{{\cal F}_{0}}^{p}([-\tau , 0];{\mathbb{R}}^n )$,知$H(t)<\infty$.$ \sup\limits_{\theta \leq 0}h(\theta)= \sup\limits_{\theta \leq0}\psi ^{-\gamma}(\theta)E|\xi(\theta)|^{p}< \infty$,可得

证毕.

引理2.2[9]  (Burkholder-Davis-Cundy不等式) 当$0<p<\infty$时,有$g\in L^{2}([0, T];{\mathbb{R}}^{n\times m})$,则存在正常数$c_{p}$$C_{p}$,使得

其中

引理2.3[9]  (Borel-Cantelli引理)

(1)  若$\{A_{k}\}\subset {\cal F}$且满足$\sum\limits _{k=1}^{\infty}P(A_{k})<\infty$,则有

即存在集合$\Omega _{o}\in {\cal F}$满足$P(\Omega _{o})=1$和一个整数值随机向量$k_{o}$,使得对于所有的$\omega \in \Omega_{o}$,当$k\geq k_{o}(\omega )$时,有$\omega tin A_{k}$.

(2)  若序列$\{A_{k}\}\subset {\cal F}$是独立的且满足$\sum\limits_{k=1}^{\infty}P(A_{k})=\infty$,则有

即存在集合$\Omega_{\theta }\in {\cal F}$满足$P(\Omega _{\theta })=1$,使得对于所有的$\omega \in \Omega_{\theta }$,存在一个子序列$\{A_{k_{i}}\}$,使得$\omega $属于每个$A_{k_{i}}$.

3 主要结果及证明

本节采用Razumikhin技术和Lyapunov函数建立中立型随机切换非线性系统的$P$阶矩$\psi ^{\gamma }$稳定与几乎必然$\psi ^{\gamma }$稳定的Razumikhin型理论.假设切换信号$\sigma(t)$是右连续的.

定理3.1  对于中立型随机切换非线性系统(2.1),若假设2.1成立,当$p\geq1$时,存在常数$\kappa \in (0, 1)$, $u\geq 0$,使得对$\forall \varphi \in L_{{\cal F}_{t}}^{p}([-\tau, 0];{\mathbb{R}}^n )$,有

$ \begin{eqnarray} \label{eq:6}E|u_{i}(\varphi)|^{p}\leq \kappa^{p} \sup\limits_{\theta \leq 0}\psi^{-\mu}(\theta)E|\varphi(\theta)|^{p}, \end{eqnarray} $

且存在正常数$b_{i}, c_{i}, \mu $和一族Lyapunov函数$V_{i}(t, x)\in {\cal C}^{1, 2}([-\tau , \infty )\times {\mathbb{R}}^n ; {\mathbb{R}}_+)$及函数$\zeta(t) \in {\cal C}({\mathbb{R}}_+, {\mathbb{R}}_+)$,满足$\psi^{-\mu}(t)\zeta(t) \in L^{1}({\mathbb{R}}_+, {\mathbb{R}}_+)$,且

$b_{i}|x|^{p}\leq V_{i}(t, x)\leq c_{i}|x|^{p}, $

$E {\cal L}V_{i}(t, \varphi )\leq \zeta(t)+\mu \psi _{1}(t)E V_{i}(t, \varphi (0)-u_{i}(\varphi)), $

$\forall t\geq 0, \forall \theta \in [-\tau , 0]$$\varphi \in L^{p}_{{\cal F}_{t}}([-\tau , 0];{\mathbb{R}}^n )$,满足

$E V_{i}(t+\theta , \varphi (\theta ))\leq q E V_{i}(t, \varphi (0)-u_{i}(\varphi)), $

其中$q\geq \frac{c}{b} (1-\kappa)^{-p} \psi ^{-\mu }(-\theta )$.在每一个切换时刻$t_{k}, \ (k=1, 2, \cdots)$,有

$E V_{\sigma (t_{k+1})}(t_{k}, x_{\sigma (t_{k+1})}(t_{k}))\leq d_{k} E V_{\sigma (t_{k})}(t_{k}, x_{\sigma (t_{k})}(t_{k})), $

其中$0\leq d_{k} \leq \psi ^{\gamma }(t_{k+1}-t_{k})$.

则对任意初始值$\xi \in C^{b}_{{\cal F}_{0}}([-\tau , 0];{\mathbb{R}}^n )$,在区间$[t_{0}, \infty)$上,中立型随机切换非线性系统(2.1)存在唯一解$x(t)=x(t, \xi )$,使得系统(2.1)是$P$阶矩$\psi ^{\gamma }$稳定的,且有

$E|x(t, \xi )|^{p}\leq \left(\frac{c(1+\kappa)^{p}}{b(1-\kappa)^{p}} \sup\limits_{\theta\leq0}\psi^{-\mu}(\theta)E|\xi(\theta)|^{p} +\frac{1}{b(1-\kappa)^{p}}|\zeta(t)\psi^{-\mu}(t)| \right)\psi^{\mu}(t).$

  给定任意初始值$\xi \in C^{b}_{\mathcal {F}_{0}}([-\tau , 0];{\mathbb{R}}^n )$,记$x(t)=x(t, \xi)$.$\forall \gamma \in (0, \mu )$,只要(3.6)式成立,则令$\gamma \rightarrow \mu $,即可使定理得证.

给定任意时刻$t$和切换信号$\sigma (t)$,假设$t_{k}$是时刻$t$之前的最后一个切换时刻,即在区间$[t_{k}, t)$上没有切换发生.

$\forall \gamma \in (0, \mu )$,只需证

$ h(t)\leq\frac{c(1+\kappa)^{p}}{b(1-\kappa)^{p}} \sup\limits_{\theta\leq0}\psi^{-\gamma}(\theta)E|\xi(\theta)|^{p} + \frac{1}{b(1-\kappa)^{p}}\int _{0}^{t}\zeta(s)\psi^{-\gamma}(s){\rm d}s , $

即等价于证

$H(t)\leq \frac{c(1+\kappa)^{p}}{b(1-\kappa)^{p}} \sup\limits_{\theta\leq0}\psi^{-\gamma}(\theta)E|\xi(\theta)|^{p}+ \frac{1}{b(1-\kappa)^{p}}\int _{0}^{t}\zeta(s)\psi^{-\gamma}(s){\rm d}s .$

由引理2.1可知,只需证

即等价于证

由(3.2)式可知

即等价于证对$\forall t\geq 0$,有

$ \begin{eqnarray}W_{\sigma(t)}(t)&=& \psi^{-\gamma}(t) EV_{\sigma(t)}(t, x_{\sigma(t)}(t)) - \int _{0}^{t}\zeta(s)\psi^{-\gamma}(s){\rm d}s \\& \leq & c_{\sigma(t)} (1+\kappa)^{p} \sup\limits_{\theta\leq0}\psi^{-\gamma}(\theta)E|\xi(\theta)|^{p}=c_{\sigma(t)}\beta . \end{eqnarray}$

下证对$\forall t \geq 0$,有(3.9)式成立.

$W_{\sigma (t)}(t)$的连续性, (3.1)式, (3.2)式和基本不等式得

首先证

$ W_{\sigma(t_{1})}(t) \leq c_{\sigma(t_{1})}\beta . $

采用反证法.假设(3.10)式不成立,由$W_{\sigma (t_{1})}(t)$的连续性可知,存在最小的$t^{*}\geq 0$,对$\forall t \in [0, t^{*}]$,有$W_{\sigma (t_{1})}(t)\leq c_{1}\beta$$W_{\sigma (t_{1})}(t^{*})= c_{1}\beta$,对于充分小的$\delta $,有$W_{\sigma (t_{1})}(t^{*}+\delta )>W_{\sigma (t_{1})}(t^{*})$.则对$\forall \theta \in [-\tau , 0]$,若$t^{*}+\theta <0$, $t^{*}+\theta \in [-\tau , 0]$,由(3.2)式可得

$ \begin{eqnarray}&& E V _{\sigma (t_{1})}(t^{*}+\theta, x_{\sigma (t_{1})}(t^{*}+\theta)) \\&\leq &c_{\sigma (t_{1})}E|x_{\sigma (t_{1})}(t^{*}+\theta)|^{p}=c_{\sigma (t_{1})}\psi^{\gamma}(t^{*}+\theta)h_{\sigma(t_{1})}(t^{*}+\theta) \\ & \leq &c_{\sigma (t_{1})}\psi^{\gamma}(t^{*}+\theta) \biggl(\frac{c_{\sigma (t_{1})}(1+\kappa)^{p}}{b_{\sigma (t_{1})}(1-\kappa)^{p}} \sup\limits_{\theta\leq0}\psi^{-\gamma}(\theta)E|\xi(\theta)|^{p}+\frac{1}{b_{\sigma (t_{1})}(1-\kappa)^{p}}\int _{0}^{t}\zeta(s)\psi^{-\gamma}(s){\rm d}s \biggr) \\&= &\frac{c_{\sigma (t_{1})}}{b_{\sigma (t_{1})}}(1-\kappa)^{-p} \biggl(c_{\sigma (t_{1})}(1+\kappa)^{p} \sup\limits_{\theta\leq0}\psi^{-\gamma}(\theta)E|\xi(\theta)|^{p}+\int _{0}^{t}\zeta(s)\psi^{-\gamma}(s){\rm d}s \biggr) \psi^{\gamma}(t^{*}+\theta) \\&\leq& \frac{c_{\sigma (t_{1})}}{b_{\sigma (t_{1})}}(1-\kappa)^{-p} \biggl(W_{\sigma(t_{1})}(t^{*})+\int _{0}^{t^{*}}\zeta(s)\psi^{-\gamma}(s){\rm d}s \biggr)\psi^{\gamma}(t^{*}+\theta)\\& \leq &\frac{c_{\sigma (t_{1})}}{b_{\sigma (t_{1})}}(1-\kappa)^{-p} \psi^{-\gamma}(t^{*}) E V_{\sigma (t_{1})}(t^{*} , x_{\sigma (t_{1})}(t^{*}))\psi^{\gamma}(t^{*}+\theta)\\&\leq &\frac{c_{\sigma (t_{1})}}{b_{\sigma (t_{1})}}(1-\kappa)^{-p} \psi^{-\gamma}(-\theta) E V_{\sigma (t_{1})}(t^{*} , x_{\sigma (t_{1})}(t^{*})) \\ & \leq& q E V_{\sigma (t_{1})}(t^{*} , x_{\sigma (t_{1})}(t^{*})), \end{eqnarray} $

其中$q\geq \frac{c_{\sigma (t_{1})}}{b_{\sigma (t_{1})}}(1-\kappa)^{-p} \psi^{-\gamma}(-\theta)$.$t^{*}+\theta \geq 0$,由于$t^{*}+\theta \in [0, t^{*}]$,故$W_{\sigma(t_{1})}(t^{*}+\delta )\leq c_{\sigma(t_{1})}\beta $.因此,有

$ \begin{eqnarray} E V _{\sigma (t_{1})}(t^{*}+\theta , x_{\sigma (t_{1})}(t^{*}+\theta))& \leq &c_{\sigma (t_{1})} E|\xi (t^{*}+\theta)|^{p} \\ & \leq &\psi^{\gamma}(t^{*}+\theta)c_{\sigma (t_{1})}(1+\kappa)^{p} \sup\limits_{\theta\leq0}\psi^{-\gamma} (\theta)E|\xi(\theta)|^{p}\\& =& \psi^{\gamma}(t^{*}+\theta)W_{\sigma (t_{1})}(t^{*}) \\ & \leq &\psi^{\gamma}(t^{*}+\theta) \psi^{-\gamma}(t^{*}) E V_{\sigma (t_{1})}(t^{*} , x_{\sigma (t_{1})}(t^{*})) \\&\leq &\psi^{-\gamma}(-\theta) E V_{\sigma (t_{1})}(t^{*} , x_{\sigma (t_{1})}(t^{*}))\\&\leq& q E V_{\sigma (t_{1})}(t^{*} , x_{\sigma (t_{1})}(t^{*})). \end{eqnarray} $

故,对$\forall \theta \in [-\tau , 0]$,有

由(3.3)式得

$W_{\sigma (t_{1})}(t)$应用$ {\rm{It\hat o}} $,得

由(3.3)式可知

这与假设矛盾.因此,对$\forall t\geq 0$, (3.10)式均成立.即对于$k=1$,有(3.9)式成立.

$c=\max\{c_{i}\}$,假设对于$k=1, 2, \cdots , m, \ (m \in N, m\geq 1)$, (3.9)式均成立,即

$ W_{\sigma(t_{k})}(t)= \psi^{-\gamma}(t)EV_{\sigma(t_{k})}(t, x_{\sigma(t_{k})}(t))-\int_{0}^{t}\zeta(s) \psi^{-\gamma}(s){\rm d}s \leq c_{\sigma(t_{k})}\beta, \ \ t \in [t_{k-1}, t_{k}).$

下证

$W_{\sigma(t_{m+1})}(t) \leq c_{\sigma(t_{m+1})}\beta, \ \ t \in [t_{m}, t_{m+1}).$

$ E V_{\sigma (t_{k})}(t_{k}, x_{\sigma (t_{k})}(t_{k})) \leq c_{\sigma (t_{k})} \beta \psi ^{\gamma }(t_{k})\leq c \beta \psi ^{\gamma }(t_{k}), \ \ k=1, 2, \cdots , m. $

采用反证法.假设(3.14)式不成立,由(3.5)和(3.15)式,可得

$\begin{eqnarray} E V _{\sigma (t_{m+1})}(t_{m}, x_{\sigma (t_{m+1})}(t_{m}))& \leq &d_{m}E V_{\sigma (t_{m})}(t_{m}, x_{\sigma (t_{m})}(t_{m})) \\ & \leq& d_{m}c\beta\psi ^{\gamma }(t_{m})\\& \leq&c \beta \psi ^{\gamma }(t_{m})\psi ^{\gamma }(t_{m+1}-t_{m}) \\ & \leq& c \beta \psi ^{\gamma }(t_{m+1}) , \end{eqnarray} $

$ W_{\sigma(t_{m+1})}(t_{m}) \leq c_{\sigma(t_{m+1})}\beta. $

$W_{\sigma (t_{m+1})}(t)$的连续性知,存在最小的$t^{*} \in (t_{m}, t_{m+1})$,对$\forall t \in [t_{m}, t^{*}]$,有$W_{\sigma (t_{m+1})}(t) \leq c_{\sigma (t_{m+1})}\beta$$W_{\sigma (t_{m+1})}(t^{*})= c_{\sigma (t_{m+1})}\beta$,对于充分小的$\delta $,有$W_{\sigma (t_{m+1})}(t^{*}+\delta )>W_{\sigma (t_{m+1})}(t^{*})$.因此,对$\forall \theta \in [-\tau , 0]$,若$t^{*}+\theta <t_{m}$,由(3.16)式可得

$ \begin{eqnarray}&& E V _{\sigma (t_{m+1})}(t^{*}+\theta, x_{\sigma (t_{m+1})}(t^{*}+\theta)) \leq c_{\sigma (t_{m+1})}\psi^{\gamma} (t^{*}+\theta)h_{\sigma(t_{m+1})}(t^{*}+\theta) \\ &\leq&c_{\sigma (t_{m+1})}\psi^{\gamma}(t^{*}+\theta) \biggl(\frac{c_{\sigma (t_{m+1})}(1+\kappa)^{p}}{b_{\sigma (t_{m+1})} (1-\kappa)^{p}} \sup\limits_{\theta\leq0}\psi^{-\gamma} (\theta) E|\xi(\theta)|^{p} \\&&+ \frac{1}{b_{\sigma (t_{m+1})}(1-\kappa)^{p}}\int _{0}^{t}\zeta(s)\psi^{-\gamma}(s){\rm d}s \biggr) \\& =&\frac{c_{\sigma (t_{m+1})}}{b_{\sigma (t_{m+1})}}(1-\kappa)^{-p} \biggl(c_{\sigma (t_{m+1})}(1+\kappa)^{p} \sup\limits_{\theta\leq0}\psi^{-\gamma}(\theta)E|\xi(\theta)|^{p}+ \int _{0}^{t}\zeta(s)\psi^{-\gamma}(s){\rm d}s \biggr) \psi^{\gamma}(t^{*}+\theta) \\& \leq&\frac{c_{\sigma (t_{m+1})}}{b_{\sigma (t_{m+1})}}(1-\kappa)^{-p} \biggl(W_{\sigma (t_{m+1})}(t^{*}) +\int_{0}^{t^{*}}\zeta(s)\psi^{-\gamma}(s){\rm d}s \biggr) \psi^{\gamma}(t^{*}+\theta)\\ &\leq&\frac{c_{\sigma (t_{m+1})}}{b_{\sigma (t_{m+1})}}(1-\kappa)^{-p} \psi^{-\gamma}(t^{*}) E V_{\sigma (t_{m+1})}(t^{*} , x_{\sigma (t_{m+1})}(t^{*})) \psi^{\gamma}(t^{*}+\theta)\\ &\leq&\frac{c_{\sigma (t_{m+1})}}{b_{\sigma (t_{m+1})}}(1-\kappa)^{-p} \psi^{-\gamma}(-\theta) E V_{\sigma (t_{m+1})}(t^{*} , x_{\sigma (t_{m+1})}(t^{*})) \\ &\leq&q E V_{\sigma (t_{m+1})}(t^{*} , x_{\sigma (t_{m+1})}(t^{*})), \end{eqnarray} $

其中$q\geq \frac{c_{\sigma (t_{m+1})}}{b_{\sigma (t_{m+1})}}(1-\kappa)^{-p} \psi^{-\gamma}(-\theta)$.$t^{*}+\theta \geq t_{m}$,由$t^{*}+\theta \in [t_{m}, t^{*}]$,可知$W_{\sigma (t_{m+1})}(t^{*}+\delta )\leq c_{\sigma (t_{m+1})}\beta$,于是,有

$\begin{eqnarray}&&E V _{\sigma (t_{m+1})}(t^{*}+\theta , x_{\sigma (t_{m+1})}(t^{*}+\theta)) \\&\leq &c_{\sigma (t_{m+1})} E|\xi (t^{*}+\theta)|^{p} \leq c_{\sigma(t_{m+1})}\psi^{\gamma}(t^{*}+\theta) \sup\limits_{\theta\leq0}\psi^{-\gamma}(\theta)E|\xi(\theta)|^{p} \\&\leq& \psi^{\gamma}(t^{*}+\theta)c_{\sigma (t_{m+1})}(1+\kappa)^{p} \sup\limits_{\theta\leq0}\psi^{-\gamma} (\theta)E|\xi(\theta)|^{p} = \psi^{\gamma}(t^{*}+\theta)W_{\sigma (t_{m+1})}(t^{*})\\ & =& \psi^{\gamma}(t^{*}+\theta) \biggl(\psi^{-\gamma}(t^{*}) E V_{\sigma (t_{m+1})}(t^{*} , x_{\sigma (t_{m+1})}(t^{*}))-\int _{0}^{t}\zeta(s)\psi^{-\gamma}(s){\rm d}s \biggr)\\ & \leq& \psi^{\gamma}(t^{*}+\theta) \psi^{-\gamma}(t^{*}) E V_{\sigma (t_{m+1})}(t^{*} , x_{\sigma (t_{m+1})}(t^{*})) \\&\leq &\psi^{-\gamma}(-\theta) E V_{\sigma (t_{m+1})}(t^{*} , x_{\sigma (t_{m+1})}(t^{*})) \\&\leq& q E V_{\sigma (t_{m+1})}(t^{*} , x_{\sigma (t_{m+1})}(t^{*})) . \end{eqnarray} $

故,对$\forall \theta \in [-\tau , 0]$,有

由(3.3)式,可得

$W_{\sigma (t_{m+1})}(t)$应用$ {\rm{It\hat o}} $公式,得

由(3.3)式,可知

这与假设矛盾.故对$\forall t\geq 0$, (3.14)式均成立.

由数学归纳法,对$\forall k \in N$,有(3.9)式成立.因此,系统(2.1)是$P$阶矩$\psi ^{\gamma }$稳定的.

注3.1  定理3.1给出并证明了中立型随机切换非线性系统(2.1)的$P$阶矩$\psi^{\gamma}$稳定的充分条件.虽然Razumikhin定理在研究中立型随机系统的指数稳定[6, 9, 11]$\psi^{\gamma}$稳定[9, 13-14, 18]中得到了广泛的应用,但通过定理3.1,我们将$\psi^{\gamma}$稳定性从随机非线性系统推广到了随机切换非线性系统.

定理3.2  对于中立型随机切换非线性系统(2.1),假设定理3.1的所有条件均成立,即存在常数$p \geq 2, \beta, \mu >0$,使得

$ E|x(t)|^{p}\leq \beta \psi ^{\mu}(t), \ \ \forall t\geq 0, $

且存在常数$K_{i}>0$,使得

$E|f_{i}(t, x_{t})|^{p}\vee E|g_{i}(t, x_{t})|^{p}\leq K_{i} \sup\limits_{\theta\leq0}\psi ^{-\mu}(\theta) E|x(t+\theta)|^{p}.$

$\forall \xi \in C^{b}_{{\cal F}_{0}}([-\tau , 0];{\mathbb{R}}^n )$,若存在$\gamma \in (0, \mu)$,使得

$\sum\limits_{k=0}^{\infty} \psi ^{\mu-\gamma}(t_{k})<\infty, $

则对任意初始值$\xi \in C^{b}_{{\cal F}_{0}}([-\tau , 0];{\mathbb{R}}^n )$$\forall \gamma \in (0, \mu)$,在区间$[t_{0}, \infty)$内,中立型随机切换非线性系统(2.1)存在唯一解$x(t)=x(t, \xi )$,使得系统(2.1)是几乎必然$\psi ^{\gamma }$稳定的,且有

$\limsup\limits_{t\rightarrow \infty}\frac{\ln |x(t, \xi )|}{|\ln \psi(t)|}\leq -\frac{\gamma}{p}, \ \ {\rm a.s.} .$

  对任意初始值$\xi \in C^{b}_{{\cal F}_{0}}([-\tau , 0];{\mathbb{R}}^n )$,令$x(t)=x(t, \xi )$.要证(3.23)式成立,即证

$\psi^{-\gamma}(t)|x(t)|^{p}\leq D, \ \ {\rm a.s. , }$

其中$D$是一个常数.记$ x_{\sigma(t)}(t)=x(t)-u_{\sigma(t)}(x_{t})$, $\tilde{x}(t)=\max x_{\sigma(t)}(t)$.由(3.1)式和引理2.1,得

$ \sup\limits_{s\leq t}\psi^{-\gamma}(s)|x(s)|^{p} \leq\frac{ \sup\limits_{\theta \leq0}\psi ^{-\gamma}(\theta)E|\xi(\theta)|^{p}}{1-\kappa} \vee \frac{ \sup\limits_{s \leq t}\psi ^{-\gamma}(s)E|\tilde{x}(s)|^{p}}{(1-\kappa)^{p}} .$

由于$\xi \in C^{b}_{{\cal F}_{0}}([-\tau , 0];{\mathbb{R}}^n )$,所以有$ \sup_{\theta \leq 0}|\xi(\theta)|^{p}<\infty$.因此,要证(3.24)式成立,只需证$\psi^{-\gamma}(t)E|\tilde{x}(t)|^{p}$是几乎必然有界的.

选取充分小的$\delta $使得$0<\delta <t_{k}-t_{k-1}$,对于固定的$\delta $,令$k_{\delta }=[\frac{t_{k}-t_{k-1}}{\delta }]\in N$,其中$[x]$是不超过$x$的最大整数.则对$\forall t \in [t_{k-1}, t_{k})$,存在正整数$i$满足$1 \leq i \leq k_{\delta }+1$,使得当$t_{k-1}+(i-1)\delta \leq t \leq t_{k-1}+i\delta $时,对$\forall t \in [t_{k-1}, t_{k})$, $k \in N$,有

$I_{t_{k}}=E\Big( \sup\limits_{t_{k-1}\leq t\leq t_{k}}|\tilde{x}(t)|^{p}\Big) \leq \sum\limits_{i=1}^{k_{\delta }+1} E\Big( \sup\limits_{t_{k-1}+(i-1)\delta \leq t\leq t_{k-1}+i\delta }|\tilde{x}(t)|^{p}\Big) =\sum\limits_{i=1}^{k_{\delta }+1} I_{i} .$

$\tilde{x}(t)$的定义和系统(2.1),对任意的$i$,当$1\leq i \leq k_{\delta }+1$, $k \in N$时,有

$\begin{eqnarray} I_{i}&=& E \Big( \sup\limits_{t_{k-1}+(i-1)\delta \leq t\leq t_{k-1}+i\delta }|\tilde{x}(t)|^{p} \Big)\\& =& E \biggl( \sup\limits_{t_{k-1}+(i-1)\delta \leq t\leq t_{k-1}+i\delta} \biggl|\tilde{x}(t_{k-1}+(i-1)\delta) +\int_{t_{k-1}+(i-1)\delta}^{t}f_{\sigma (s)}(s, x_{s}){\rm d}s\\&&+\int_{t_{k-1}+(i-1)\delta}^{t}g_{\sigma (s)}(s, x_{s}){\rm d}w(s)\biggr|^{p}\biggr) \\& \leq&c \biggl( E|\tilde{x}(t_{k-1}+(i-1)\delta)|^{p} + E \biggl(\int_{t_{k-1}+(i-1)\delta}^{t_{k-1}+i\delta}|f_{\sigma (s)}(s, x_{s})|{\rm d}s \biggr)^{p} \\&& + E \biggl( \sup\limits_{t_{k-1}+(i-1)\delta \leq t \leq t_{k-1}+i\delta} \biggl|\int _{t_{k-1}+(i-1)\delta}^{t}g_{\sigma (s) }(s, x_{s}){\rm d}w(s) \biggr|^{p} \biggr) \biggr) , \end{eqnarray}$

其中$c=3^{p-1}$.由(3.1)和(3.20)式,得

$ \begin{eqnarray} && E|\tilde{x} (t_{k-1}+(i-1)\delta)|^{p} \leq E|x(t_{k-1}+(i-1)\delta)|^{p}+E|u_{\sigma(t)}(x_{t_{k-1}+(i-1)\delta})|^{p} \\&\leq &\beta\psi^{\mu}(t_{k-1}+(i-1)\delta)+\kappa^{p} \sup\limits_{t\leq t_{k-1}+(i-1)\delta} \psi^{-\mu}(t-t_{k-1}-(i-1)\delta)E|x(t)|^{p} \\ & \leq& \beta\psi^{\mu}(t_{k-1}+(i-1)\delta)+\kappa^{p} \sup\limits_{t\leq t_{k-1}+(i-1)\delta} \psi^{-\mu}(t-t_{k-1}-(i-1)\delta)\beta\psi^{\mu}(t) \\&\leq &\beta\psi^{\mu}(t_{k-1}+(i-1)\delta)+\kappa^{p}\beta \sup\limits_{t\leq t_{k-1}+(i-1)\delta} \psi^{\mu}(t_{k-1}+(i-1)\delta) \\ & \leq &\beta(1+\kappa^{p})\psi^{\mu}(t_{k-1}+(i-1)\delta) .\end{eqnarray}$

由Holder不等式, (3.20)式, (3.21)式和$\psi(t)$的性质,得

$\begin{eqnarray} && E \biggl( \int _{t_{k-1}+(i-1)\delta}^{t_{k-1}+i\delta}|f_{\sigma (t) }(t, x_{t})|{\rm d}t \biggr)^{p} \leq \int_{t_{k-1}+(i-1)\delta}^{t_{k-1}+i\delta}E|f_{\sigma (t)}(t, x_{t})|^{p}{\rm d}t \\ & \leq &\int_{t_{k-1}+(i-1)\delta}^{t_{k-1}+i\delta}K_{\sigma (t)} \sup\limits_{s\leq t}\psi^{-\mu}(s-t)E |x(s)|^{p}{\rm d}t \\ & \leq &\int_{t_{k-1}+(i-1)\delta}^{t_{k-1}+i\delta}K_{\sigma (t)} \sup\limits_{s\leq t}\psi ^{-\mu}(s-t)\beta \psi ^{\mu}(s){\rm d}t \\&\leq &K_{\sigma (t)}\beta \int _{t_{k-1}+(i-1)\delta}^{t_{k-1}+i\delta}\psi ^{\mu}(t){\rm d}t\\ & \leq &K_{\sigma (t)} \beta \delta \psi^{\mu}(t_{k-1}+(i-1)\delta) . \end{eqnarray}$

类似地,由Holder不等式,引理2.2和(3.21)式,得

$ \begin{eqnarray} &&E \biggl( \sup\limits_{t_{k-1}+(i-1)\delta\leq t \leq t_{k-1}+i\delta} \biggl|\int_{t_{k-1}+(i-1)\delta}^{t}g_{\sigma (s)}(s, x_{s}){\rm d}w(s) \biggr|^{p} \biggr)\\&\leq &C_{p}E \biggl(\int_{t_{k-1}+(i-1)\delta}^{t_{k-1}+i\delta}|g_{\sigma (t)}(t, x_{t})|^{2}{\rm d}t \biggr)^{\frac{p}{2}} \leq C_{p}\int_{t_{k-1}+(i-1)\delta}^{t_{k-1}+i\delta} E|g_{\sigma (t)}(t, x_{t})|^{p}{\rm d}t\\&\leq &C_{p} K_{\sigma (t)} \beta \delta \psi^{\mu}(t_{k-1}+(i-1)\delta) , \end{eqnarray} $

其中$C_{p}$是一个仅与$p$有关的正常数.把(3.28)-(3.30)式代入(3.27)式,得

$ \begin{eqnarray}I_{i}& \leq&c (\beta(1+\kappa^{p})\psi^{\mu}(t_{k-1}+(i-1)\delta) +K_{\sigma (t)} \beta \delta \psi^{\mu}(t_{k-1}+(i-1)\delta) \\&&+C_{p} K_{\sigma (t)} \beta \delta \psi^{\mu}(t_{k-1}+(i-1)\delta))\\& =& c \beta((1+\kappa^{p})+K_{\sigma (t)}\delta(1+C_{p}))\psi^{\mu}(t_{k-1}+(i-1)\delta) .\end{eqnarray} $

把(3.31)式代入(3.26)式得

$K=\max \{K_{i}\}$,有

其中$C=c\beta k_{\delta}((1+\kappa^{p})+K\delta(1+C_{p}))$.由Chebyshev不等式可知

由(3.22)式和引理2.3,可知,当$t_{k}\rightarrow \infty$, $t_{k-1}\leq t \leq t_{k}$时,有

$|\tilde{x}(t)|^{p}<\psi^{\gamma}(t_{k})<\psi^{\gamma}(t), $

$\psi ^{-\gamma}(t)E|\tilde{x}(t)|^{p}$是几乎必然有界的.证毕.

注3.2  定理3.2给出并证明了中立型随机切换非线性系统(2.1)的几乎必然$\psi^{\gamma}$稳定的充分条件.在定理3.1的基础上增加条件(3.21)和(3.22), $P$阶矩$\psi^{\gamma}$稳定可推出几乎必然$\psi^{\gamma}$稳定.定理3.2的证明依赖于几乎必然有界,这种方法比较容易实现.

4 仿真算例

本节通过一个具体的算例验证上一节主要定理的有效性.

考虑一族中立型随机切换非线性系统

其中$\sigma (t): [t_{0}, \infty)\rightarrow \{1, 2\}$是切换信号. $\{t_{1}<t_{2}< \cdots <t_{k}<\cdots \}$是切换序列,在区间$[t_{k}, t_{k+1})$内,第$i_{k}$个子系统活跃,其中$t_{k}$是切换时刻, $k=0, 1, \cdots$, $i_{k}\in \{1, 2\}$.

选取$\kappa=0.75$, $d_{k}=0.15$, $t_{k+1}-t_{k}=0.5$, $\tau =0.1$, $q=1.6$,对任意的$ \zeta(t)>0$,取$\psi (t)=\frac{e^{-t}}{1+t}, \ t\geq 0$,则有$\psi (0)=1, \psi (\infty)\rightarrow 0$, $\psi '(t)=-\frac{2+t}{(1+t)^{2}} e^{-t}$, $\psi_{1}(t)=-(1+\frac{1}{1+t})$, $-2\leq \psi _{1}(t)\leq -1$.

$\sigma (t)=1$时,对于第一个子系统,选取函数$f_{1}(t, x)=-3\frac{x^{2}(t)-3}{3+x(t)} -{\rm sgn}(\frac{x^{2} (t)-3}{3+x(t)})+0.625x(t-0.1)$, $g_{1}(t, x)=\sqrt{\frac{2x^{2}(t)-6}{3+x(t)}}$, $u_{1}(x_{t})=3\frac{1+x(t)}{3+x(t)}$;当$\sigma (t)=2$时,对于第二个子系统,选取函数$f_{2}(t, x)=-7(\frac{x^{2}(t)-x(t)-2}{x(t)+2})+0.625x(t-0.1) $, $g_{2}(t, x)=\sqrt{5}x(t-0.1)$, $u_{2}(x_{t})=\frac{x(t)+3}{x(t)+2}$.

对于第一个子系统,选取$V_{1}(t, x)=8x^{2}$,有$x^{2}\leq V_{1}(t, x) \leq 8x^{2}$.$x\neq 0$,则

$x=0$,则有$V_{1}(t, x)=0, \ E {\cal L}V_{1}(t, x)=0$.

对于第二个子系统,选取$V_{2}(t, x)=x^{2}$,有$\frac{1}{2}x^{2}\leq V_{2}(t, x) \leq x^{2}$.$x\neq 0$,则

$x=0$,则有$V_{2}(t, x)=0, \ E {\cal L}V_{2}(t, x)=0$.

由定理3.1,选取$p=2, \ \gamma =2$,则有$E {\cal L}V_{i}(t, x)\leq \zeta(t)+\gamma \psi _{1}(t)E V_{i}(t, x-u_{t})$, $i=1, 2$,即定理3.1的所有条件均满足.所以中立型随机切换非线性系统是$P$阶矩$\psi ^{\gamma }$稳定的.切换信号和状态轨迹的图像如图 1, 图 2.

图 1

图 1   系统的切换信号


图 2

图 2   系统的状态轨迹


注4.1  本算例构造了一个中立型随机切换非线性系统,通过MATLAB仿真说明了定理主要结果的有效性. 图 1描述了切换信号随时间的变化, 图 2描述了状态轨迹随时间的变化.本例说明中立型随机切换非线性系统是$P$阶矩$\psi ^{\gamma }$稳定的.

5 结论

本文究了中立型随机切换非线性系统的$P$阶矩$\psi ^{\gamma }$稳定与几乎必然$\psi ^{\gamma }$稳定.首先,利用Lyapunov-Razumikhin方法给出了系统稳定的充分条件,其次,通过一个具体的算例说明了所构造定理的有效性.下一步,我们将对脉冲中立型随机切换非线性系统的$\psi ^{\gamma }$稳定性进行研究.

参考文献

Hale J , Lunel S . Introduction to Functional Differential Equations. Berlin: Springer-Verlag, 1993

[本文引用: 1]

Chatterjee D , Liberzon D .

On stability of switched stochastic systems

IEEE Conference on Decision and Control, 2004, 4 (4): 4125- 4127

URL    

Feng W , Tian J , Zhao P .

Stability analysis of switched stochastic systems

Automatica, 2011, 47 (1): 148- 157

DOI:10.1016/j.automatica.2010.10.023      [本文引用: 1]

Chen G , Xiang Z , Mahmoud M .

Stability and H performance analysis of switched stochastic neutral systems

Circ Syst Signal Pr, 2013, 32 (1): 387- 400

DOI:10.1007/s00034-012-9459-1      [本文引用: 1]

Kolmanovskii V , Nosov V . Stability of Functional Differential Equations. New York: Academic Press, 1986

Chen H , Shi P , Lim C , et al.

Exponential stability for neutral stochastic markov systems with time varying delay and its applications

IEEE Trans on Cybern, 2016, 46 (6): 1350- 1362

DOI:10.1109/TCYB.2015.2442274      [本文引用: 2]

Razumikhin B .

On the stability of systems with delay

Prikl Mat Mekh, 1956, 20: 500- 512

[本文引用: 1]

Razumikhin B .

Application of Lyapunov's method to problems in the stability of systems with a delay

Automation and Remote Control, 1960, 21 (6): 740- 749

[本文引用: 1]

Mao X . Stochastic Differential Equations and Applications. Chichester: Horwood Publications, 1997

[本文引用: 5]

Mao X .

Razumikhin-type theorems on exponential stability of stochastic functional differential equations

Stoch Proc Appl, 1996, 65 (2): 233- 250

DOI:10.1016/S0304-4149(96)00109-3      [本文引用: 1]

Mao X .

Razumikhin-type theorems on exponential stability of neutral stochastic functional differential equations

SIAM J Math Anal, 1997, 28 (2): 389- 401

DOI:10.1137/S0036141095290835      [本文引用: 2]

Yang Z , Zhu E , Xu Y , et al.

Razumikhin-type theorems on exponential stability of stochastic functional differential equations with infinite delay

Acta Appl Math, 2010, 111B (2): 219- 231

URL     [本文引用: 1]

Pavlovic G , Jankovic S .

Razumikhin-type theorems on general decay stability of stochastic functional differential equations with infinite delay

J Comput Appl Math, 2012, 236 (7): 1679- 1690

DOI:10.1016/j.cam.2011.09.045      [本文引用: 1]

Wu F , Hu S , Mao X .

Razumikhin-type theorem for neutral stochastic functional differential equations with unbounded delay

Acta Mathematica Sinica, 2011, 31B (4): 1245- 1258

URL     [本文引用: 3]

Cheng P , Deng F .

Global exponential stability of impulsive stochastic functional differential systems

Statis and Prob Lett, 2010, 80 (23/24): 1854- 1862

URL     [本文引用: 1]

Wu X , Zhang W , Tang Y .

P-th moment stability of impulsive stochastic delay differential systems with markovian switching

Commun Nonlinear Sci Numer Simul, 2013, 18 (7): 1870- 1879

DOI:10.1016/j.cnsns.2012.12.001     

Peng S , Jia B .

Some criteria on p-th moment stability of impulsive stochastic functional differential equations

Statis Prob Lett, 2010, 80 (13): 1085- 1092

URL     [本文引用: 1]

Hu S , Huang C , Wu F . Stochastic Differential Equations. Beijing: Science Press, 2008

[本文引用: 4]

Wu F , Hu S .

Razumikhin-type theorems on general decay stability and robustness for stochastic functional differential equations

Int J Robust Nonlinear Control, 2012, 22 (22): 763- 777

URL     [本文引用: 1]

Chatterjee D , Liberzon D .

Stability analysis of deterministic and stochastic switched systems via a comparison principle and multiple Lyapunov functions

SIAM J Control Opti, 2006, 45 (1): 174- 206

DOI:10.1137/040619429      [本文引用: 1]

/