Processing math: 3%

数学物理学报, 2018, 38(5): 941-953 doi:

论文

Benjamin-Bona-Mahony方程指数吸引子的存在性

罗旭东,, 马巧珍,

Exponential Attractors of 3D Benjamin-Bona-Mahony Equations

Luo Xudong,, Ma Qiaozhen,

通讯作者: 马巧珍, E-mail: maqzh@nwnu.edu.cn

收稿日期: 2017-02-15  

基金资助: 国家自然科学基金.  11561064
国家自然科学基金.  11361053
西北师范大学科研创新团队项目.  NWNU-LKQN-14-6

Received: 2017-02-15  

Fund supported: the NSFC.  11561064
the NSFC.  11361053
the Northwest Normal University Research Innovation Team Project.  NWNU-LKQN-14-6

作者简介 About authors

罗旭东,E-mail:1325434116@qq.com , E-mail:1325434116@qq.com

摘要

该文讨论3维的Benjamin-Bona-Mahony方程在自治和非自治两种情况下指数吸引子的存在性,推广和改进了已有的一些结果.

关键词: Benjamin-Bona-Mahony方程 ; 加强的平坦性条件 ; Lipschitz连续 ; 指数吸引子

Abstract

In this paper, we investigate the existence of exponential attractors of the three dimensional Benjamin-Bona-Mahony equation in the case that both the autonomous and nonautonomous systems, which extend and improve some previous results.

Keywords: Benjamin-Bona-Mahony equation ; Enhanced flattening property ; Lipschitz continuity ; Exponential attractor

PDF (344KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

罗旭东, 马巧珍. Benjamin-Bona-Mahony方程指数吸引子的存在性. 数学物理学报[J], 2018, 38(5): 941-953 doi:

Luo Xudong, Ma Qiaozhen. Exponential Attractors of 3D Benjamin-Bona-Mahony Equations. Acta Mathematica Scientia[J], 2018, 38(5): 941-953 doi:

1 引言

我们考虑3维的Benjamin-Bona-Mahony (BBM)方程

{ututνu+F(u)=g(x,t),(x,t)Ω×(0,),u(x,t)Ω=0,t(0,),u(x,0)=u0(x),xΩ,
(1.1)

其中ΩR3是有足够光滑边界Ω的有界域, u=u(x,t)=(u1(x,t),u2(x,t),u3(x,t))表示流速向量, ν>0是动力粘度, F是非线性向量函数, g是外力项.

BBM方程作为一种传播长波的模型,近几年来被一些作者广泛研究.文献[2]通过对无界域上BBM方程渐近性的研究得到了3维的BBM方程全局吸引子的存在性.文献[3]解决了BBM方程全局吸引子的正则性问题,并证明了外力项光滑时全局吸引子也是光滑的.由于BBM方程生成的动力系统在H2per不是紧的,故文献[4]首先得到了该方程存在一个弱的全局吸引子,接着通过能量估计证明了H2per中的弱全局吸引子在弱拓扑意义下几乎为强全局吸引子,从而证明了H2per中存在有限维的全局吸引子.文献[7]证明了广义BBM方程生成的动力系统在周期边界条件下全局吸引子的Gevrey正则性.文献[9]给出了BBM方程在H1(Ω)中拉回吸引子的存在性.文献[12]中作者得到了BBM方程在R3中解的渐近性,并证明了该方程在H1(R3)中吸引子的存在性,进一步得到了该吸引子在H2(R3)中是有界的.文献[14]用弱收敛的思想在H20(Ω)中建立了过程U(t,τ)的渐近紧性,从而得到了BBM方程在H2(Ω)中拉回吸引子的存在性.文献[8]运用算子分解技巧和紧性平移定理分别证明了3维BBM方程(1.1)的全局吸引子和一致吸引子的存在性.文献[1]研究具有周期边界条件的多维广义BBM方程,获过得了具有有限分形维数全局吸引子的存在性和其相应半群指数吸引子的存在性.

我们在文献[8]的研究基础上,应用文献[6]中提出的加强的平坦性条件证明了自治BBM方程(1.1) (即g(x,t)=g(x))指数吸引子的存在性;进一步借助文献[5]中的方法和技巧获得了非自治系统指数吸引子的存在性.

2 预备工作

引入与外力项g(x,t)有关的空间L2loc(R;Lk(Ω)), r,k1 :

Lrb(R;Lk(Ω)):={gLrloc(R;Lk(Ω)):sup

其中 \|f\|^{2}_{L^{2}_{b}({\Bbb R};H)}=\sup\limits_{t\in{\Bbb R}}\int^{t+1}_{t}\|f(t)\|^{2}_{H}{\rm d}s.记空间L^{2}_{\rm loc}({\Bbb R};H)中的平移紧函数构成的空间为L^{2}_{c}({\Bbb R};H), L^{2}_{c}({\Bbb R};H)=\{f\in L^{2}_{\rm loc}({\Bbb R};H):任意的[t_{1}, t_{2}]\subset{\Bbb R}, \{f(x, \tau+s):\tau\in{\Bbb R}\}\mid_{[t_{1}, t_{2}]}在空间 L^{2}(t_{1}, t_{2};H)中是准紧的.令L^{2}_{\rm loc}({\Bbb R};H)的局部弱收敛空间为L^{2}_{w, loc}({\Bbb R};H), 即空间L^{2}_{w, loc}({\Bbb R};H)中存在一个序列{f_{n}}\longrightarrow{f}(n\rightarrow\infty)当且仅当

\int^{t_{2}}_{t_{1}}\int_{\Omega}(f_{n}(x, s)-f(x, s))\varphi(x, s){\rm d}x{\rm d}s\rightarrow0, \;\;\; n\rightarrow\infty,

对所有的 [t_{1}, t_{2}]\subset{\Bbb R} \varphi(x, s)\in L^{2}(t_{1}, t_{2};H)成立.

我们引入空间X中一个集合B_{1}到另一个集合B_{2}的Hausdorff半距离,即

{\rm dist}_{X}(B_{1}, B_{2})=\sup\limits_{b_{1}\in{B_{1}}}\inf\limits_{b_{2}\in{B_{2}}}\|b_{1}-b_{2}\|.

L^p(\Omega), 1<p<\infty为Lebesgue空间, H^{m}(\Omega)=H^{m, 2}(\Omega)是Sobolev空间. <\cdot, \cdot>\|\cdot\|分别表示L^{2}(\Omega)中的内积和范数.令V_{0}=\{v\mid v\in (C_{0}^{\infty}(\Omega))^{3}\}, 定义HV_{0}(C_{0}^{\infty}(\Omega))^{3}中的闭包,记V:={\cal H}_{0}=(H_{0}^{1}(\Omega))^{3}\bigcap H.P(L^{2}(\Omega))^{3}H上的Helmholtz-Leray正交映射,则A=-P\triangleD(A)=(H^{2}(\Omega))^{3}\bigcap V中的Stokes算子.考虑一族Hilbert空间D(A^{\frac{s}{2}}), s\in{\Bbb R}, 其内积和范数分别如下表示

\langle \cdot, \cdot\rangle_{D(A^{\frac{s}{2}})}=\langle A^{\frac{s}{2}}\cdot, A^{\frac{s}{2}}\cdot\rangle, \;\;\;\;\;\|\cdot\|_{D(A^{\frac{s}{2}})}=\|A^{\frac{s}{2}}\cdot\|.

对任意的s>r, D(A^{\frac{s}{2}})\hookrightarrow{D(A^{\frac{r}{2}})}.\forall u=(u_{1}, u_{2}, u_{3})v=(v_{1}, v_{2}, v_{3}), 定义

\langle u, v\rangle =\sum^3\limits_{j=1}\langle u_{j}, v_{j}\rangle_{L^{2}(\Omega)} , \;\;\;\|v\|^{2}=\sum^3\limits_{j=1}\|v_{j}\|_{L^{2}(\Omega)}^{2},

分别为空间H中的内积与范数.由Poincaré不等式得, V的等价范数为

\|v\|^2_V=\|\nabla v\|^{2}=\sum^3\limits_{i, j=1}\|\partial_{i}v_{j}\|^2_{L^{2}(\Omega)}.

定义V_{1}:={\cal H}_{1}=({H}^{2}(\Omega))^{3}\cap{V}.0\leq s\leq1时,可定义如下的一族Hilbert空间

{\cal H}_{s}=D(A^{\frac{s}{2}}) ,\;\;\;\|\cdot\|_{{\cal H}_{s}}=\|\cdot\|_{s}.

对非线性向量函数\overrightarrow{F}=(F_{1}(s), F_{2}(s), F_{3}(s)), \forall s\in{\Bbb R}, 定义

G_{i}(s)=F'_{i}(s),\;\;\;{\cal F}_{i}(s)=\int^{s}_{0}F_{i}(r){\rm d}r,
(2.1)

其中

\overrightarrow{G}(s)=(G_{1}(s), G_{2}(s), G_{3}(s)), \;\;\;\overrightarrow{{\cal F}}(s)=({\cal F}_{1}(s), {\cal F}_{2}(s), {\cal F}_{3}(s)).
(2.2)

假设F_{i}(i=1, 2, 3)满足与文献[8]相同的条件,即F_{i}是光滑函数并且满足

F_{i}(0)=0, \ |F_{i}(s)|\leq c_{1}|s|+c_{2}|s|^{2},\;\;\;\forall s\in{\Bbb R},
(2.3)

c_{1}(1+c_{0}|s|)\leq|G_{i}(s)|\leq c_{2}(1+c_{0}|s|), \ |{\cal F}_{i}(s)|\leq c_{1}|s|^{2}+c_{2}|s|^{3}, \;\;\;\forall s\in{\Bbb R},
(2.4)

其中c_{0}, c_{1}c_{2}是正常数.

另外,本文会经常用到以下Poincaré不等式

\lambda_{1}\|u\|^{2}\leq\|u\|^{2}_{V},\;\;\;\forall u\in V,
(2.5)

这里\lambda_{1}是正常数.

定理2.1[5]  设({\cal M}, d)是一个度量空间, U(t, \tau){\cal M}中Lipschitz连续的解过程,满足

d(U(t, \tau)m_{1}, U(t, \tau)m_{2})\leq C{\rm e}^{k(t-\tau)}d(m_{1}, m_{2}),

其中常数Ckm_{1}, m_{2}, t, \tau无关.进一步假设存在三个子集{\cal M}_{1}, {\cal M}_{2}, {\cal M}_{3}\subset{\cal M}使得

{\rm dist}_{\cal M}(U(t, \tau){\cal M}_{1}, {\cal M}_{2})\leq L_{1}{\rm e}^{-v_{1}t}, \\{\rm dist}_{\cal M}(U(t, \tau){\cal M}_{2}, {\cal M}_{3})\leq L_{2}{\rm e}^{-v_{2}t},

这里v_{1}, v_{2}>0L_{1}, L_{2}>0.则有

{\rm dist}_{\cal M}(U(t, \tau){\cal M}_{1}, {\cal M}_{3})\leq L{\rm e}^{-vt},

其中v=\frac{v_{1}v_{2}}{k+v_{1}+v_{2}}, L=CL_{1}+L_{2}.

3 自治的情况

本小节我们考虑自治的BBM方程,即下面的方程

\left\{\begin{array}{ll}u_{t}+Au_{t}+\nu Au+\nabla\cdot\overrightarrow{F}(u)=f(x), & (x, t)\in\Omega\times(0, \infty), \\u(x, t)|_{\partial\Omega}=0, \\u(x, 0)=u_{0}(x),&x\in\Omega, \end{array} \right.
(3.1)

这里f(x)=Pg(x)\in V', 其中V'V的对偶空间.

定义3.1[6] (加强的平坦性条件)  设X为一致凸的Banach空间,如果对任意的有界子集B\subset X, 存在X的有限维子空间X_{1}\subset X, k, l>0T>0, 使得

(1) P_{m}(\bigcup\limits_{s\geq t}S(s)B)有界;

(2) \|(I-P_{m})(\bigcup\limits_{s\geq t}S(s)x)\|_{X}\leq k{\rm e}^{-lt}+\phi(m), \forall x\in B, t\geq T.

其中, P_{m}:X\longrightarrow X_{1}为有界投影, dimX_{1}=m, \phi(m)为一实函数,满足\lim\limits_{s\rightarrow\infty}\phi(s)=0.则称此条件为加强的平坦性条件.

定理3.1[8]  设\{S(t)\}_{t\geq0}为完备度量空间X中的半群, B\{S(t)\}_{t\geq0}在空间X中的有界吸收集,则以下条件等价

(1) \bigcup\limits_{s\geq t}S(s)B的非紧性测度是指数衰退的,即存在k, l>0使得

\alpha(\bigcup\limits_{s\geq t}S(s)B)\leq k{\rm e}^{-lt},
(3.2)

其中\alpha表示Kuratowski非紧性测度.

(2)半群\{S(t)\}_{t\geq0}X中拥有指数吸引子.

定理3.2[6]  设X中的半群\{S(t)\}_{t\geq0}满足强拉平性,则\bigcup\limits_{s\geq t}S(s)B的非紧性测度是指数衰退的.

定理3.3[6]  设X为一致凸的Banach空间, \{S(t)\}_{t\geq0}X中的强连续或强弱连续半群,则\{S(t)\}_{t\geq0}X中拥有指数吸引子,如果它满足

(1) \{S(t)\}_{t\geq0}X中存在有界吸收集B\subset X;

(2) \{S(t)\}_{t\geq0}满足加强的平坦性条件.

定理3.4[8]  设f(x)\in V', 那么对于任意的u_{0}\in V, T>0, 方程(3.1)存在唯一解u

u\in C([0, T];V)\cap L^{\infty}(0, \infty;V_{0}),\;\;\;u_{t}\in L^{2}(0, T;V).
(3.3)

并且, u连续依赖于V中的初值.

定理3.5[8]  存在正常数\rhoT=T(B), 使得对任意的有界集B\subset V,有

\|S(t)u_{0}\|_{V}\leq \rho,\;\;\; t\geq T,\;\;\;\forall u_{0}\in B.
(3.4)

下面证明半群\{S(t)\}_{t\geq0}在空间V中满足加强的平坦性条件.设\lambda_{i}, i=1, 2, \cdot\cdot\cdot为算子A在空间V中的特征值,满足0<\lambda_{1}\leq\lambda_{2}\leq\cdots \leq\lambda_{j}\leq\cdots , \lambda_{j}\rightarrow\infty, j\rightarrow\infty, \omega_{i}表示特征值\lambda_{i}对应的特征向量,它构成空间V中的正交基,并且满足

A\omega_{i}=\lambda_{i}\omega_{i},\;\;\;\forall i\in N.

V_{m}={\rm span}\{\omega_{1}, \omega_{2}, \cdots , \omega_{m}\}, P_{m}:V\longrightarrow V_{m}为正交投影.对任意的(u, u_{t})\in V,

(u, u_{t})=(u_{1}, u_{1t})+(u_{2}, u_{2t}),

其中(u_{1}, u_{1t})=(P_{m}u, P_{m}u_{t}).

定理3.6  设\{S(t)\}_{t\geq0}为方程(3.1)的解半群, f(x)=Pg(x)\in H, 则半群\{S(t)\}_{t\geq0}在空间V中满足加强的平坦性条件,即对于任意有界集B\subset V, 存在常数k, l, T>0和函数q(m), 使得对任意的Z_{0}\in B, t\geq T,

\bigg\|(I-P_{m})\bigcup\limits_{s\geq t}S(s)Z_{0}\bigg\|^{2}\leq k{\rm e}^{-lt}+q(m),

其中\lim\limits_{m\rightarrow\infty}q(m)=0.

  用u_{2}作为试验函数与方程(3.1)在空间H中做内积,可得

\frac{1}{2}\frac{\rm d}{{\rm d}t}(\|u_{2}\|^{2}+\|\nabla u_{2}\|^{2})+\nu\|\nabla u_{2}\|^{2}+\langle\nabla\overrightarrow{F}(u_{2}), u_{2}\rangle\leq\langle f(x), u_{2}\rangle ,
(3.5)

其中

\langle f(x), u_{2}\rangle=\frac{1}{2\nu}\|(I-P_{m})f(x)\|^{2}+\frac{\nu}{2}\|u_{2}\|^{2}.
(3.6)

定义泛函

L(t)=\frac{1}{2}(\|u_{2}\|^{2}+\|\nabla u_{2}\|^{2}),

则结合(3.3)式, (3.4)式与(3.6)式可得

\frac{\rm d}{{\rm d}t}L(t)+\nu L(t)\leq\|(I-P_{m})f(x)\|^{2},\;\;\; t\geq t_{0},

由Gronwall引理,可得

L(t)\leq L(t_{0}){\rm e}^{-\nu(t-t_{0})}+\int_{t_{0}}^{t}{\rm e}^{-\nu(t-t_{0})}\|(I-P_{m})f(x)\|^{2}{\rm d}s,\;\;\; t\geq t_{0}.

因此,方程(3.1)的解半群在空间V中满足加强的平坦性条件.

利用定理3.4即得下面的结论.

定理3.7  设\{S(t)\}_{t\geq0}为方程(3.1)的解半群, f(x)=Pg(x)\in H, 则半群\{S(t)\}_{t\geq0}在空间V中拥有指数吸引子.

4 非自治的情况

本小节我们考虑下面非自治的BBM方程

\left\{\begin{array}{ll} u_{t}+Au_{t}+\nu Au+\nabla\cdot\overrightarrow{F}(u)=f(x, t), &(x, t)\in\Omega\times[\tau, \infty), \\ u(x, t)=0, &(x, t)\in\partial\Omega\times[\tau, \infty), \\ u(x, \tau)=u_{\tau}(x),&\tau\in{\Bbb R}.\end{array} \right.
(4.1)

对外力项f, 我们仅假设f_{0}=f_{0}(x, t)\in L_{b}^{2}({\Bbb R};H), 并设\Sigma_{0}=\{(x, t)\longrightarrow f_{0}(x, t+h):h\in{\Bbb R}\}.L_{w, loc}^{2}({\Bbb R};H)中,令\Sigma={\cal H}(f_{0}), 它是\Sigma_{0}关于L_{\rm loc}^{2}({\Bbb R};H)的局部弱拓扑的闭包.

定理4.1[8]  假设f(x, t)\in L^{2}_{b}({\Bbb R};H), 那么对于任意的\tau\in {\Bbb R}和任意的初值u_{\tau}\in V, 方程(4.1)存在唯一解.进一步对方程(4.1)的任意两个解u_{1}(t)u_{2}(t),

\|u_{1}(t)-u_{2}(t)\|^{2}_{V}\leq Q(u_{\tau1}, u_{\tau2}, T)(\|u_{\tau1}-u_{\tau2}\|^{2}_{V}+\|f_{1}-f_{2}\|^{2}_{L^{2}_{b}({\Bbb R};H)}),\;\;\;\forall\tau\leq t\leq T,

\forall u_{\tau i}\in Vf_{i}\in L^{2}_{b}({\Bbb R};H), i=1, 2.因此,过程{U_{f}(t, \tau)}:U_{f}(t, \tau)u_{\tau}=u(t), U_{f}(t, \tau):V\longrightarrow V, t\geq\tau, \tau\in{\Bbb R}是有意义的.这里u(t)是方程(4.1)的解.

定理4.2[8]  设(2.3)-(2.4)式成立, f\in L^{2}_{b}({\Bbb R}, H), 那么对任意的有界集B\subset V, 存在一个依赖于\|u_{\tau}\|_{V}\|f\|_{L^{2}_{b}({\Bbb R}, H)}的常数M, 使得

\|U_{f}(t, \tau)u_{\tau}\|^{2}_{V}\leq M,\;\;\;\forall t\geq \tau,\;\;\;u_{\tau}\in B.
(4.2)

为了得到解的正则性的估计,将U_{f}(t, \tau){u_{\tau}}=u(t)做如下分解

U_{f}(t, \tau){u_{\tau}}=D(t, \tau){u_{\tau}}+K_{f}(t, \tau){u_{\tau}},
(4.3)

其中D(t, \tau)u_{\tau}=v(t), K_{f}(t, \tau)u_{\tau}=w(t)分别是下面两个方程的解

\left\{\begin{array}{ll} v_{t}+Av_{t}+\nu Av=0, &(x, t)\in\Omega\times[\tau, \infty), \\ v(x, t)=0, &(x, t)\in\partial\Omega\times[\tau, \infty), \\ v(x, \tau)=u_{\tau}(x),&x\in\Omega\end{array} \right.
(4.4)

\left\{\begin{array}{ll} w_{t}+Aw_{t}+\nu Aw+\nabla\cdot\overrightarrow{F}(u)=f(t), &(x, t)\in\Omega\times[\tau, \infty), \\ w(x, t)=0, &(x, t)\in\partial\Omega\times[\tau, \infty), \\ w(x, \tau)=0, &x\in\Omega.\end{array} \right.
(4.5)

定理4.3[8]  对任意的\tau\in{\Bbb R}和初值u_{\tau}\in {\cal H}_{0}, 方程(4.4)的解满足以下结果:存在k>0使得对任意的t\geq\tau

\|D(t, \tau)u_{\tau}\|_{{\cal H}_{0}}^{2}=\|v(t)\|_{V}^{2}\leq Q(\|u_{\tau}\|_{{\cal H}_{0}}){\rm e}^{-k(t-\tau)},

这里Q(\cdot)是非负的递增函数, k仅依赖于\lambda_{1}.

定理4.4[8]  对任意的T>0, f\in L_{b}^{2}({\Bbb R};H)u_{\tau}\in V, 都存在一个与T, \|f\|_{L_{b}^{2}({\Bbb R};H)}, \|u_{\tau}\|_{V}有关的常数M_{1}, 使得方程(4.5)的解满足

\|K_{f}(T+\tau, \tau)u_{\tau}\|_{1+\sigma}^{2}=\|w(T+\tau)\|_{1+\sigma}^{2}\leq M_{1},

其中0<\sigma<\frac{1}{2}.

定理4.5[8]  对\forall\tau\in {\Bbb R}, u(t)是方程(4.1)对应于初值u_{\tau}\in{\cal H}_{0}的解.则对\forall\epsilon>0, 分解u(t)=v_{1}(t)+w_{1}(t), \forall t\geq\tau, 其中v_{1}(t)w_{1}(t)分别满足

\|A^{\frac{1+\sigma}{2}}w_{1}(t)\|^{2}\leq K_{\epsilon},\;\;\;\forall t\geq\tau

\int_{s}^{t}\|\nabla v_{1}(r)\|^{2}{\rm d}r\leq\epsilon(t-s)+C_{\epsilon},\;\;\;\forall t\geq s\geq\tau,

其中C_{\varepsilon}K_{\epsilon}是依赖于\epsilon, \|u_{\tau}\|_{{\cal H}_{0}}\|f\|_{L_{b}^{2}}^{2}({\Bbb R};H)的常数.

定理4.6[8]  设B_{\theta}\subset{\cal H}_{\theta}是有界的,那么对任意的\theta\in[\sigma, 1-\sigma]\tau\in{\Bbb R}

\|K_{f}(t, \tau)u_{\tau}\|_{{\cal H}_{\theta+\sigma}}\leq K_{\theta}, t\geq\tau,\;\;\;\forall u_{\tau}\in B_{\theta},

其中常数K_{\theta}仅依赖于有界集B_{\theta}{\cal H}_{\theta}范数.

定理4.7[8] (一致吸引子)  方程(4.1){\cal H}_{0}中有一致吸引子{\cal A}, 并且{\cal A}{\cal H}_{1}中有界,满足

{\cal A}=\bigcup\limits_{f\in\sum}{\cal K}_{f}(0),

其中{\cal K}_{f}是过程U_{f}的核, {\cal K}_{f}(0)0时刻的核截片.

下面,我们研究问题(4.1)的非自治的指数吸引子.首先需要下面的一些抽象结果.

定义4.1[5] (指数吸引子)  过程族U(t, \tau), t\geq\tau, t\geq\tau的紧的正不变集,即(U(t, \tau){\cal M}(\tau)\subset{\cal M}(t))的一个映射t\longrightarrow{\cal M}(t),在Banach空间E中称为指数吸引子,如果以下条件成立

(1)所有集合{\cal M}的分形维数是适定的并且一致有界

{\rm dim}_{F}({\cal M}(t), E)\leq C < \infty,\;\;\;t\in{\Bbb R};

(2)存在一个正常数\alpha和一个单调函数Q, 使得对每一个t\in{\Bbb R}, s\geq0和每一个在E中的有界集B, 都有

{\rm dist}_{E}(U(t+s, t)B, {\cal M}(t+s))\leq Q(\|B\|_{E}){\rm e}^{-\alpha s}.

定义4.2[5, 15]  设EE_{1}是两个Banach空间, E_{1}\hookrightarrow E, BE_{1}的一个有界吸收集.给定三个常数\varepsilon\in[0, 1)\delta, K>0, {\Bbb S}_{\delta, \varepsilon, K}(B)为从E到其自身的一簇非线性算子.我们说S\in{\Bbb S}_{\delta, \varepsilon, K}(B), 如果它满足

(1)映射SB中的\delta-邻域{\cal O}_{\delta}(B)映射到B

S:{\cal O}_{\delta}(B)\longrightarrow B;

(2) S有以下的分解形式

S=S_{0}+S_{1}, S_{0}:{\cal O}_{\delta}\longrightarrow E, S_{1}:{\cal O}_{\delta}\longrightarrow E_{1},

这里S_{0}S_{1}分别满足以下条件

\|S_{0}(z_{1})-S_{0}(z_{2})\|_{E}\leq\varepsilon\|z_{1}-z_{2}\|_{E},\;\;\;\forall z_{1}, z_{2}\in{\cal O}_{\delta}(B)

\|S_{1}(z_{1})-S_{1}(z_{2})\|_{E_{1}}\leq K\|z_{1}-z_{2}\|_{E},\;\;\;\forall z_{1}, z_{2}\in{\cal O}_{\delta}(B).
(4.6)

定理4.8[5, 15]  设EE_{1}是两个Banach空间, E_{1}紧嵌入到 E, BE_{1}中的一个有界子集并且U(t, \tau), t\geq\tau, \tau\in{\Bbb R}E上的过程.进一步假设过程U(t, \tau)满足以下条件

(a)存在正常数\varepsilon<1, \delta, K, 使得:存在一个T>0,使得U(T+\tau, \tau)\in{\Bbb S}_{\delta, \varepsilon, K}(B)对任意的\tau\in{\Bbb R}都成立;

(b) U(t, \tau)依下面的意义下是Hölder连续的:存在正常数k_{1}C_{T, B}, 使得对任意的z_{i}\in{\cal O}_{\delta} (B), i=1, 2, s\in[0, T], \tau\in{\Bbb R},

\|U(\tau+s+t, \tau)z_{1}-U(\tau+t, \tau)z_{1}\|_{E}\leq C_{T, B}|s|^{1/2},\;\;\;\forall t \geq 0
(4.7)

\|U(\tau+s+t, \tau+s)z_{2}-U(\tau+t, \tau)z_{2}\|_{E}\leq C_{T, B}{\rm e}^{ct}|s|^{k_{1}}, \;\;\;\forall t\geq T.
(4.8)

那么,存在一个指数吸引子\tau\rightarrow\varepsilon_{U}(\tau)\subset{\cal O}_{\delta}(B), \tau\in{\Bbb R}, 满足以下性质

(1)对每一个\tau\in{\Bbb R}, \varepsilon_{U}(\tau)\subset B并且它的分形维数是有限的

{\rm dim}_{F}(\varepsilon_{U}(\tau), E)\leq C_{1},
(4.9)

这里常数C_{1}\tau无关;

(2) \varepsilon_{U}(\tau)关于U是正不变的

U(t, \tau)\varepsilon_{U}(\tau)\subset\varepsilon_{U}(t),\;\;\;t, \tau\in{\Bbb R}, t\geq\tau;
(4.10)

(3)这一簇集合满足下列形式的一致指数吸引性

{\rm dist}_{E}(U(t, \tau)B, \varepsilon_{U}(t))\leq C_{2}{\rm e}^{-\alpha(t-\tau)}, \;\;\; \forall t\geq\tau,
(4.11)

这里C_{2}\alpha是与\tau, t无关的正常数;

(4)函数t\longrightarrow\varepsilon_{U}(t)是一致Hölder连续的

{\rm dist}^{symm}_{E}(\varepsilon_{U}(t+s), \varepsilon_{U}(t))\leq C_{3}|s|^{k},\;\;\;\forall t\in{\Bbb R},
(4.12)

这里C_{3}k是与s, t无关的正常数.

进一步我们假设\overrightarrow{F}(u)满足(2.3)-(2.4)式, f\in L^{2}_{b}({\Bbb R};H)并且有

\|f\|^{2}_{L^{2}_{b}({\Bbb R};H)}\leq M'<\infty.
(4.13)

本文的主要结果是

定理4.9  设\Omega{\Bbb R}^{3}中的光滑有界域,且(2.3)-(2.4)式成立.那么当外力项f满足(4.13)式时,过程U_{f}(t, \tau){\cal H}_{0}中存在非自治的指数吸引子\{\varepsilon_{f}(t)\}_{t\in{\Bbb R}}, 并满足以下性质

(1)对每个t\in{\Bbb R}, \varepsilon_{f}(t){\cal H}_{0}中是紧的,其分形维数是有限的,即

{\rm dim}_{F}(\varepsilon_{f}(t), {\cal H}_{0})\leq C_{1},\;\;\;t\in{\Bbb R},
(4.14)

(2) \varepsilon_{f}(\tau)关于U_{f}是正不变的,即

U_{f}(t, \tau)\varepsilon_{f}(\tau)\subset\varepsilon_{f}(t) \;\;\; t, \tau\in{\Bbb R}, t\geq\tau;
(4.15)

(3) \varepsilon_{f}(t)满足一致指数吸引性:存在一个正常数\alpha和单调函数Q(\cdot) (两者仅依赖于\|f\|_{L^{2}_{b}({\Bbb R}, L^{2}(\Omega))}), 使得对{\cal H}_{0}中的任意有界集B, t\geq\tau时,有

{\rm dist}_{{\cal H}_{0}}(U_{f}(t, \tau)B, \varepsilon_{f}(t))\leq Q(\|B\|_{{\cal H}_{0}}){\rm e}^{-\alpha(t-\tau)},
(4.16)

这里常数\alphaQ(\cdot)t, \tau无关;

(4)函数t\longrightarrow\varepsilon_{f}(t)是Hölder连续的:对任意的t\in{\Bbb R},

{\rm dist}^{symm}_{{\cal H}_{0}}(\varepsilon_{f}(t+s), \varepsilon_{f}(t))\leq C_{2}|s|^{k},
(4.17)

这里常数C_{2}kt, s无关.

定理4.10({\cal H}_{1}中的一致耗散性)  设\frac{1}{4}<\sigma<\frac{1}{2}, 存在一个仅与\|f\|_{L^{2}_{b}({\Bbb R}, H)}相关的正数{\Bbb M}, 使得对任意的有界(在{\cal H}_{1})B\subset{\cal H}_{1}, 存在T=T(\|B\|_{{\cal H}_{1}})>0使得

\|U_{f}(t, \tau)u_{\tau}\|^{2}_{{\cal H}_{1}}\leq {\Bbb M}, \;\;\; t-\tau\geq T,\;\;\;\forall u_{\tau}\in B.
(4.18)

  由定理4.2可得存在一个依赖于有界集B的界的T_{B}使得

\|U_{f}(t, \tau)u_{\tau}\|_{{\cal H}_{0}}^{2}\leq M_{0},\;\;\; t-\tau\geq T_{B},\;\;\;\forall u_{\tau}\in B.
(4.19)

由文献[8,定理4.6]可得,对任意的有界集B\subset{\cal H}_{0}\frac{1}4{}<\sigma<\frac{1}{2}, 存在常数k_{\sigma}=k_{\sigma}(\|B\|_{{\cal H}_{0}}), 使得对任意\tau\in{\Bbb R},

\|K_{f}(t, \tau)u_{\tau}\|_{1+\sigma}^{2}\leq k_{\sigma},\;\;\;t\geq\tau,\;\;\;\forall u_{\tau}\in \bigcup\limits_{s\in{\Bbb R}}U_{f}(s+T_{B}, s)B.
(4.20)

-\bigtriangleup u(t)与方程(4.1)做内积得

\frac{1}{2}\frac{\rm d}{{\rm d}t}(\|\nabla u\|^{2}+\|\triangle u\|^{2})+\nu\|\triangle u\|^{2}-\int_{\Omega}\nabla\cdot\overrightarrow{F}(u)\triangle u{\rm d}x=-\int_{\Omega}f(x, t)\triangle u{\rm d}x.
(4.21)

由Young不等式可得

\bigg|\int_{\Omega}f(x, t)\triangle u{\rm d}x\bigg|\leq \frac{2}{\nu}\|f(x, t)\|^{2}+\frac{\nu}{8}\|\triangle u(t)\|^{2}.
(4.22)

结合(2.3)式, (2.4)式和(4.19)式可知

\begin{eqnarray*}\int_{\Omega}\triangle u\nabla\cdot\overrightarrow{F}(u){\rm d}x&=&-\int_{\Omega}\nabla u{\rm d}(\overrightarrow{F}'(u)\nabla u)\\&=&\int_{\Omega}\nabla\cdot\overrightarrow{F}(u){\rm d}\nabla u\\&=&\nabla\cdot\overrightarrow{F}(u)\nabla u\mid_{\partial\Omega}-\int_{\Omega}\nabla u{\rm d}(\overrightarrow{F}'(u)\nabla u)\\&=&-\int_{\Omega}\bigtriangledown u\overrightarrow{F}^{''}(u)(\nabla u)^{2}{\rm d}x-\int_{\Omega}\nabla u\overrightarrow{F}'(u)(\triangle u){\rm d}x\\&\leq& C\int_{\Omega}|\nabla u|^{3}{\rm d}x+c_{2}\int_{\Omega}\nabla u(1+c_{0}|u|)\triangle u{\rm d}x\\&\leq& M_{1}+c_{2}\int_{\Omega}|\nabla u||\triangle u|{\rm d}x+c_{2}c_{0}\int_{\Omega}|\nabla u||u||\triangle u|{\rm d}x, \end{eqnarray*}

D(A^{\frac{1+\sigma}{2}})\hookrightarrow L^{\frac{6}{1-2\sigma}}(\Omega), D(A^{\frac{1-2\sigma}{4}})\hookrightarrow L^{\frac{6}{2+2\sigma}}(\Omega) D(A^{\frac{3-2\sigma}{4}})\hookrightarrow D(A^{\frac{1-2\sigma}{4}})可得

\begin{eqnarray*}\int_{\Omega}|\nabla u||u||\triangle u|{\rm d}x&\leq&\int_{\Omega}|v_{1}||\nabla u||\triangle u|{\rm d}x+\int_{\Omega}|w_{1}||\nabla u||\triangle u|{\rm d}x \\&\leq&\lambda_{1}\|\nabla v_{1}\|^{2}\|\triangle u\|^{2}\\&&+\bigg(\int_{\Omega}|w_{1}|^{\frac{6}{1-2\sigma}}\bigg)^{\frac{1-2\sigma}{6}}\bigg(\int_{\Omega}|\nabla u|^{\frac{6}{2+2\sigma}}\bigg)^{\frac{2+2\sigma}{6}}\bigg(\int_{\Omega}|\triangle u|^{2}\bigg)^{\frac{1}{2}}\\&\leq&\lambda_{1}\|\nabla v_{1}\|^{2}\|\triangle u\|^{2}+\|w_{1}\|_{L^{\frac{6}{1-2\sigma}}}\|\nabla u\|_{L^{\frac{6}{2+2\sigma}}}\|\triangle u\|\\&\leq&\lambda_{1}\|\nabla v_{1}\|^{2}\|\triangle u\|^{2}+\|A^{\frac{1+\sigma}{2}}w_{1}\|\|A^{\frac{1+\sigma}{2}}u\|\|\triangle u\|\\&\leq&\lambda_{1}\|\nabla v_{1}\|^{2}\|\triangle u\|^{2}+k_{\epsilon\sigma}\|\triangle u\|\\&\leq&\lambda_{1}\|\nabla v_{1}\|^{2}\|\triangle u\|^{2}+\frac{\nu}{8}\|\triangle u\|^{2}+\frac{2k_{\varepsilon\sigma}}{\nu}, \end{eqnarray*}

\int_{\Omega}|\nabla u||\triangle u|{\rm d}x\leq\bigg (\int_{\Omega}|\nabla u|^{2}\bigg)^{\frac{1}{2}}\bigg(\int_{\Omega}|\triangle u|^{2}\bigg)^{\frac{1}{2}}\leq\frac{\nu}{8}\|\triangle u\|^{2}+\frac{2c_{2}}{\nu},

故可得

\int_{\Omega}\nabla\overrightarrow{F}\triangle u{\rm d}x\leq\lambda_{1}\|\nabla v_{1}\|^{2}\|\triangle u\|^{2}+\frac{\nu}{4}\|\triangle u\|^{2}+\frac{k_{\varepsilon\sigma}}{2}+\frac{2c_{2}}{\nu}+M_{1} .
(4.23)

(4.22)(4.23)式带入(4.21)式,当t-\tau\geq T_{B}并且u_{\tau}\in B时有

\frac{1}{2}\frac{\rm d}{{\rm d}t}(\|\nabla u\|^{2}+\nu\|\triangle u\|^{2})+(\frac{3}{8}\nu-\lambda_{1}\|\nabla v_{1}\|^{2})\|\triangle u(t)\|^{2}\leq \frac{2}{\nu}\|f(x, t)\|^{2}+\frac{k_{\varepsilon\sigma}}{2}+\frac{2c_{2}}{\nu}+M_{1} .
(4.24)

利用Gronwall不等式,结合定理4.5,即可证明(4.18)式成立.

为了得到以下的引理,记

{\Bbb B}=\{u\in{\cal H}_{1}:\|\triangle u\|^{2}\leq{\Bbb M}\}
(4.25)

{\cal O}_{1}({\Bbb B})=\{u\in{\cal H}_{1}:\|\triangle u\|^{2}\leq{\Bbb M}+1\}.
(4.26)

定理4.11({\cal H}_{0}中的Lipschitz连续性)  在定理4.1的假设下,对任意固定的时间T>0, 过程U_{f}(t, \tau)在以下意义下是Hölder连续的:存在正常数C_{T, {\Bbb B}}c'使得对任意的z_{i}\in{\cal O}_{1}({\Bbb B}), i=1, 2, s\in[0, T],

\|U_{f}(\tau+s+t, \tau)z_{1}-U_{f}(\tau+t, \tau)_{z_{1}}\|_{{\cal H}_{0}}\leq C_{T, {\Bbb B}}|s|^{1/2},\;\;\; \forall t \geq 0
(4.27)

\|U_{f}(\tau+s+t, \tau+s)z_{2}-U_{f}(\tau+t, \tau)_{z_{2}}\|_{{\cal H}_{0}}\leq C_{T, {\Bbb B}}{\rm e}^{c{'}t}|s|^{1/2},\;\;\; \forall t\geq T.
(4.28)

  用u_{t}与方程(4.1)做内积可得

\|u_{t}\|^{2}+\|\nabla u_{t}\|^{2}+\frac{\nu}{2}\frac{\rm d}{{\rm d}t}\|\nabla u\|^{2}+(\nabla\cdot\overrightarrow{F}(u), u_{t})=(f(x, t), u_{t}).
(4.29)

\begin{eqnarray*}\bigg|\int_{\Omega}(\nabla\cdot\overrightarrow{F}(u))u_{t}{\rm d}x\bigg|&=&\bigg|\int_{\Omega}\overrightarrow{F}\cdot\nabla u_{t}{\rm d}x\bigg|\\&\leq& c_{1}\int_{\Omega}|u||\nabla u_{t}|{\rm d}x+c_{2}\int_{\Omega}|u|^{2}|\nabla u_{t}|{\rm d}x\\&\leq&\frac{1}{2}\|\nabla u_{t}\|^{2}+c_{1}^{2}\|u\|+cc_{2}^{2}\|u\|_{{\cal H}_{0}}^{4}.\end{eqnarray*}

(f(x, t), u_{t})\leq\frac{1}{2}\|f\|_{L_{b}^{2}({\Bbb R};H)}^{2}+\frac{1}{2}\|u_{t}\|^{2},

因为H_{0}^{1}(\Omega)\hookrightarrow L^{p}(\Omega) (p<6), 故可得

\|u_{t}\|^{2}+\|\nabla u_{t}\|^{2}+\nu\frac{\rm d}{{\rm d}t}\|\nabla u\|^{2}\leq\frac{1}{2}\|f\|_{L_{b}^{2}({\Bbb R};H)}^{2}+{\lambda_{1}}\|u\|_{{\cal H}_{0}}^{2}+2cc_{2}^{2}\|u\|_{{\cal H}_{0}}^{4}.

u(t)=U_{g}(t, \tau)u_{\tau} (t\geq\tau)对任意的u_{\tau}\in{\cal O}_{1}({\Bbb B})将上式从[t, t+s]上积分可得

\int_{t}^{t+s}\|\nabla u_{t}(y)\|^{2}\leq|s|\|f\|_{L_{b}^{2}({\Bbb R};H)}^{2}+C_{M}.
(4.30)

从而,利用与文献[5,定理4.6]同样的计算可得(4.27)式和(4.28)式成立.

定理4.12  在定理4.1的假设下,存在一个{\Bbb T}={\Bbb T}(B), 使得过程U_{f}(t, \tau), t\geq\tau, 满足以下性质

(1)对任意的\tau\in{\Bbb R}t\geq0,

U_{f}(t+{\Bbb T}+\tau, \tau){\cal O}_{1}({\Bbb B})\subset{\Bbb B};
(4.31)

(2) \forall z_{1}, z_{2}\in{\cal O}_{1}({\Bbb B}), 对任意的\tau\in{\Bbb R}, U_{f}({\Bbb T}+\tau, \tau)做如下分解

U_{f}({\Bbb T}+\tau, \tau)=S^{\tau}_{0}+S^{\tau}_{1}, \;\;\;S^{\tau}_{0}:{\cal O}_{1}({\Bbb B})\longrightarrow{\cal H}_{0}, \;\;\;S^{\tau}_{1}:{\cal O}_{1}({\Bbb B})\longrightarrow{\cal H}_{1},

这里S^{\tau}_{0}S^{\tau}_{1}满足以下条件

\|S^{\tau}_{0}(z_{1})-S^{\tau}_{0}(z_{2})\|_{{\cal H}_{0}}\leq\frac{1}{4}\|z_{1}-z_{2}\|_{{\cal H}_{0}}, \;\;\;\forall z_{1}, z_{2}\in{\cal O}_{1}({\Bbb B})
(4.32)

\|S^{\tau}_{1}(z_{1})-S^{\tau}_{1}(z_{2})\|_{{\cal H}_{1}}\leq C_{{\Bbb B}, {\Bbb T}}\|z_{1}-z_{2}\|_{{\cal H}_{0}}, \;\;\;\forall z_{1}, z_{2}\in{\cal O}_{1}({\Bbb B}).
(4.33)

  由定理4.64.9, 对每个初值u_{\tau}\in{\cal O}_{1}({\Bbb B}), 我们做如下分解:定义S(t, \tau)u_{\tau}为齐次方程(4.1)的解,并且\widetilde{S}_{f}(t, \tau)u_{\tau}=U_{f}(t, \tau)u_{\tau}-S(t, \tau)u_{\tau}.那么,对任意的两个初值u^{i}_{\tau}\in{\cal O}_{1}({\Bbb B})与其对应的两个解u^{i}(t)=U_{f}(t, \tau)u^{i}_{\tau}, i=1, 2, 集合u_{\tau}=u^{1}_{\tau}-u^{2}_{\tau}, u^{1}(t)-u^{2}(t)写成如下形式的和

U_{f}(t, \tau)u^{1}_{\tau}-U_{f}(t, \tau)u^{2}_{\tau}=S_{f}(t, \tau)u^{1}_{\tau}-S_{f}(t, \tau)u^{2}_{\tau}+\widetilde{S}_{f}(t, \tau)u^{1}_{\tau}-\widetilde{S}_{f}(t, \tau)u^{2}_{\tau},

这里\widetilde{v}(t)=S(t, \tau)u^{1}_{\tau}-S(t, \tau)u^{2}_{\tau}是下列线性方程的解

\left\{\begin{array}{ll}\widetilde{v}(t)-\triangle\widetilde{v}(t)-\nu\triangle\widetilde{v}=0, \\\widetilde{v}(\tau, x)=u^{1}_{\tau}-u^{2}_{\tau}.\end{array} \right.
(4.34)

\widetilde{w}(t)=\widetilde{S}_{f}(t, \tau)u^{1}_{\tau}-\widetilde{S}_{f}(t, \tau)u^{2}_{\tau}是下列方程的解

\left\{\begin{array}{ll}\widetilde{w}(t)-\triangle\widetilde{w}(t)-\nu\triangle\widetilde{w}=\nabla\overrightarrow{F}(u^{1}(t))-\nabla\overrightarrow{F}(u^{2}(t)), \\\widetilde{w}(x)=0.\end{array} \right.
(4.35)

(4.34)式可得

\|S(t, \tau)u^{1}_{\tau}-S(t, \tau)u^{2}_{\tau}\|_{{\cal H}_{0}}=\|\widetilde{v}_{t}\|_{{\cal H}_{0}}\leq C_{1}\|u^{1}_{\tau}-u^{2}_{\tau}\|_{{\cal H}_{0}}{\rm e}^{-k_{1}(t-\tau)},

这里常数C_{1}k_{1}仅仅与第一特征值\lambda_{1}有关.因此,当t-\tau足够大时定义T_{1}

\|S(t+T_{1}+\tau, \tau)u^{1}_{\tau}-S(t+T_{1}+\tau, \tau)u^{2}_{\tau}\|_{{\cal H}_{0}}\leq\frac{1}{4}\|u^{1}_{\tau}-u^{2}_{\tau}\|_{{\cal H}_{0}}, t\geq0.
(4.36)

对于\widetilde{w}(t), -\triangle\widetilde{w}(t)(4.35)式做内积可得

\begin{array}[b]{ll}&\frac{1}{2}\frac{\rm d}{{\rm d}t}(\|\nabla\widetilde{w}(t)\|^{2}+\|\triangle\widetilde{w}(t)\|^{2})+\nu\|\triangle\widetilde{w}(t)\|^{2}\\\leq&\frac{1}{2\nu}\int_{\Omega}|\nabla\overrightarrow{F}(u^{1}(t))-\nabla\overrightarrow{F}(u^{2}(t))|^{2}{\rm d}x+\frac{\nu}{2}\|\triangle\widetilde{w}(t)\|^{2}{\rm d}x.\end{array}
(4.37)

由Lagrange中值定理与Hölder不等式可得

\begin{eqnarray*}&&\int_{\Omega}|\nabla\overrightarrow{F}(u^{1}(t))-\nabla\overrightarrow{F}(u^{2}(t))|^{2}{\rm d}x\\&=&\int_{\Omega}|\overrightarrow{F}'(u^{1}(t))\nabla u^{1}(t)-\overrightarrow{F}'(u^{2}(t))\nabla u^{2}(t)|^{2}{\rm d}x\\&=&\int_{\Omega}|\overrightarrow{F}'(u^{1}(t))(\nabla u^{1}(t)-\nabla u^{2}(t))+(\overrightarrow{F}'(u^{1}(t))-\overrightarrow{F}'(u^{2}(t)))\nabla u^{2}(t)|^{2}{\rm d}x\\&=&\int_{\Omega}|\overrightarrow{F}'(u^{1}(t))(\nabla u^{1}(t)-\nabla u^{2}(t))+\overrightarrow{F}^{''}(\xi)(u^{1}(t)-u^{2}(t))\nabla u^{2}(t)|^{2}{\rm d}x\\&\leq&\int_{\Omega}|\overrightarrow{F}'(u^{1}(t))(\nabla u^{1}(t)-\nabla u^{2}(t))|^{2}{\rm d}x+|\overrightarrow{F}^{''}(\xi)(u^{1}(t)-u^{2}(t))\nabla u^{2}(t)|^{2}{\rm d}x, \end{eqnarray*}

其中\xi=u^{1}(t)+\theta(u^{2}(t)-u^{1}(t)), \theta\in[0, 1].

(2.4)式与Hölder不等式可知

\begin{eqnarray*}&&\int_{\Omega}|\nabla\overrightarrow{F}(u^{1}(t))-\nabla\overrightarrow{F}(u^{2}(t))|^{2}{\rm d}x\\&=&\int_{\Omega}|\overrightarrow{F}'(u^{1}(t))\nabla u^{1}(t)-\overrightarrow{F}'(u^{2}(t))\nabla u^{2}(t)|^{2}{\rm d}x\\&=&\int_{\Omega}|\overrightarrow{F}'(u^{1}(t))(\nabla u^{1}(t)-\nabla u^{2}(t))+(\overrightarrow{F}'(u^{1}(t))-\overrightarrow{F}'(u^{2}(t)))\nabla u^{2}(t)|^{2}{\rm d}x\\&=&\int_{\Omega}|\overrightarrow{F}'(u^{1}(t))(\nabla u^{1}(t)-\nabla u^{2}(t))+\overrightarrow{F}^{''}(\xi)(u^{1}(t)-u^{2}(t))\nabla u^{2}(t)|^{2}{\rm d}x\\&\leq&\int_{\Omega}|\overrightarrow{F}'(u^{1}(t))(\nabla u^{1}(t)-\nabla u^{2}(t))|^{2}{\rm d}x+|\overrightarrow{F}^{''}(\xi)(u^{1}(t)-u^{2}(t))\nabla u^{2}(t)|^{2}{\rm d}x, \end{eqnarray*}

\begin{eqnarray*}\int_{\Omega}|\overrightarrow{F}^{''}(\xi)|^{2}|u^{1}(t)-u^{2}(t)|^{2}|\nabla u(t)|^{4}{\rm d}x&\leq &C\int_{\Omega}|u^{1}(t)-u^{2}(t)|^{2}{\rm d}x\\&\leq &C\|u^{1}(t)-u^{2}(t)\|^{2}.\end{eqnarray*}

故可得

\int_{\Omega}|\nabla\overrightarrow{F}(u^{1}(t))-\nabla\overrightarrow{F}(u^{2}(t))|^{2}{\rm d}x\leq +C[ \|\nabla u^{1}(t)-\nabla u^{2}(t)\|^{2}+\|u^{1}(t)-u^{2}(t)\|^{2} ].

从而,由(4.37)式可得

\frac{\rm d}{{\rm d}t}(\|\nabla\widetilde{w}(t)\|^{2}+\|\triangle\widetilde{x}(t)\|^{2})\leq\frac{c}{2\nu}[ \|\nabla u^{1}(t)-\nabla u^{2}(t)\|^{2}+\|u^{1}(t)-u^{2}(t)\|^{2} ].

因此,由定理4.1与定理4.4可得:对任意的T>0

\|\nabla\widetilde{w}(\tau+T)\|^{2}+\|\triangle\widetilde{w}(\tau+T)\|^{2}\leq C_{M_{{\Bbb B}, T}}[ \|\nabla u^{1}(t)-\nabla u^{2}(t)\|^{2}+\|u^{1}(t)-u^{2}(t)\|^{2} ],
(4.38)

其中C_{M_{{\Bbb B}, T}}是与\tau无关的常数.

故有

\|\triangle\widetilde{w}(t)\|^{2}\leq C\|\nabla u^{1}(t)-\nabla u^{2}(t)\|^{2}.

由定理4.9对于有界集{\cal O}_{1}({\Bbb B}), 存在一个仅依赖于{\cal H}_{1}中的有界集{\Bbb B}对任意的\tau\in{\Bbb R},

U_{f}(t, \tau){\cal O}_{1}({\Bbb B})\subset{\Bbb B}, t-\tau\geq T_{2}.
(4.39)

{\Bbb T}=\max\{T_{1}, T_{2}\}S^{\tau}_{0}=S(\tau+{\Bbb T}, \tau), S^{\tau}_{1}=\widetilde{S}_{f}(\tau+{\Bbb T}, \tau).那么从(4.36)式, (4.38)式与(4.39)式可知{\Bbb B}, S^{\tau}_{0}S^{\tau}_{1}满足条件(4.31)-(4.33)式.

定理4.9的证明  由定理4.104.11, 再通过定理4.8可得对于(4.25)式中定义的集合{\Bbb B}中外力项f满足条件(4.13)式时,集合{\Bbb B}存在一个满足(4.14)-(4.17)式的非自治的拉回指数吸引子\{\varepsilon_{f}(t)\}_{t\in{\Bbb R}}.

参考文献

Celebi A O , Kalantarov V K , Polat M .

Attractors for the generalized Benjamin-Bona-Mahony equation

Differ Equa, 1999, 157: 437- 451

[本文引用: 1]

Wang B , Fussner D W , Bi C .

Existence of global attractors for the Benjamin-Bona-Mahony equation in unbounded domains

J Phys A, 2007, 40: 10491- 10504

DOI:10.1088/1751-8113/40/34/007      [本文引用: 1]

Wang B .

Regularity of attractors for the Benjamin-Bona-Mahony equation

J Phys A, 1998, 31: 7635- 7645

DOI:10.1088/0305-4470/31/37/021      [本文引用: 1]

Wang B .

Strong attractors for the Benjamin-Bona-Mahony equation

Appl Math Lett, 1997, 10: 23- 28

URL     [本文引用: 1]

Sun C , Yang M .

Dynamics of the nonclassical diffusion equations

Asymptot Anal, 2008, 59: 51- 81

URL     [本文引用: 6]

Wu L Y , Zhao H T .

Necessary and sufficient conditions for the existence of exponential attractors for semigroups and applications

Nonlinear Anal, 2012, 17: 62- 97

[本文引用: 4]

Chueshov I , Polat M , Siegmund S .

Gevrey regularity of global attractors for the generalized BenjaminBona-Mahony equation

Mat Fiz Anal Geom, 2002, 11: 226- 242

URL     [本文引用: 1]

Kang J .

Attractors for autonomous and nonautonomous 3D Benjamin-Bona-Mahony equations

Applied Mathematics and Computation, 2016, 274: 343- 352

DOI:10.1016/j.amc.2015.10.086      [本文引用: 14]

Park J Y , Park S H .

Pullback attractors for the nonautonomous Benjamin-Bona-Mahony equation in unbounded domains

Sci China Math, 2011, 4: 741- 752

URL     [本文引用: 1]

Hale J . Asymptotic Behavior of Dissipative Systems. Providence, RI: Amer Math Soc, 1969

Kuttlcr K , Aifantis E .

Quasilincar cvolution cquations in nonclassical diffusion

SIAM J Math Anal, 1988, 19: 110- 120

DOI:10.1137/0519008     

Stanislavova M , Stefanow A , Wang B .

Asymptotic smoothing and attractors for the generalized BenjaminBona-Mahony equation on Rn

Differ Equa, 2005, 219: 451- 483

DOI:10.1016/j.jde.2005.08.004      [本文引用: 1]

Efendiev M , Miranville A , Zelik S V .

Exponential attractors and finite-dimensional reduction of nonautonomous dynamical systems

Proc Royal Soc Edinburgh, 2005, 135A: 703- 730

URL    

/