|
A General Solution for Trinomial Linear Recurrence with two Indices
Yu Changan
Acta mathematica scientia,Series A. 1997, 17 (3):
255-260.
In this paper we consider the following trinomial linear recurrence with two indicis#br#ui,j=f(i,j)ui,j-p+ g(i,j)ui-1,j-p + h(i,j), u1,s=cs(s=1,2,..,p),ui,j=0 (i<1 or j < 1 or j ≤ q(i-1)),#br#where i,j=l, 2,...;p,q ≥ 1;f(i,j),g(i,j) and h(i,j) are variable numbers; c,(s=1, 2,.., p) are constant numbers. Its general solution is given by the formula#br#ui,j={ F(i,j;i-1, θ1, 1) } C(j-q(i-1)-pθ1)+∑l=1i{∑ml=1θl=1{F(i,j;i-l,θl+1-ml,l)}h(l,j-q(i-l)-p(θl+1-ml))}(i,j=1,2...),where θl=[(j-1-q(i-l)/p)(1 ≤ l ≤i).
Related Articles |
Metrics
|