[1] |
Coifman R R, Weiss G. Analyse Harmonique Non-Commutative Sur Certains Espaces Homogènes. Berlin: Springer-Verlag, 1971
|
[2] |
Coifman R R, Weiss G. Extensions of Hardy spaces and their use in analysis. Bull Amer Math Soc, 1977, 83(4): 569-645
|
[3] |
Frazier M, Jawerth B. A discrete transform and decompositions of distribution spaces. J Funct Anal, 1990, 93(1): 34-170
|
[4] |
Han Y S, Müller D, Yang D C. A theory of Besov and Triebel-Lizorkin spaces on metric measure spaces modeled on Carnot-Carath\'{e}odory spaces. Abstr Appl Anal, 2008, 2008( 1): 893409
|
[5] |
Han Y S. Plancherel-Pôlya type inequality on spaces of homogeneous type and its applications. Proc Amer Math Soc, 1998, 126(11): 3315-3327
|
[6] |
Tao X X, Kang Y C, Zheng T T. The Tb theorem for some inhomogeneous Besov and Triebel-Lizorkin spaces over space of homogeneous type. J Math Anal Appl, 2024, 531(1): 127879
|
[7] |
Zheng T T, Chen J C, et al. Calderón-Zygmund operators on homogeneous product Lipschitz spaces. J Geom Anal, 2021, 31(2): 2033-2057
|
[8] |
Zheng T T, Xiao Y M, He S Y, Tao X X. T1 theorem on homogeneous product Besov spaces and product Triebel-Lizorkin spaces. Banach J Math Anal, 2022, 16(3): Article 50
|
[9] |
Zheng T T, Li H L, Tao X X. The boundedness of Calderón-Zygmund operators on Lipschitz spaces over spaces of homogeneous type. Bull Braz Math Soc (N S), 2020, 51(2): 653-669
|
[10] |
Zheng T T, Xiao Y M, Tao X X. The T1 theorem for the generalized product Calderón-Zygmund operator on product endpoint function spaces over RD spaces (in Chinese). Sci Sin Math, 2023, 53: 441-472
|
[11] |
Han Y S, Sawyer E T. Littlewood-Paley theory on spaces of homogeneous type and the classical function spaces. Mem Amer Math Soc, 1994, 110(530): 1-126
|
[12] |
Deng D G, Han Y S. Harmonic Analysis on Spaces of Homogeneous Type. Berlin:Springer, 2009
|
[13] |
Han Y S. Inhomogeneous Calderón reproducing formula on spaces of homogeneous type. J Geom Anal, 1997, 7(2): 259-284
|
[14] |
Müller D. Yang D C. A difference characterization of Besov and Triebel-Lizorkin spaces on RD spaces. Forum Math, 2009, 21(2): 259-298
|
[15] |
Grafakos L, Liu L G, Maldonado D, Yang D C. Multilinear analysis on metric spaces. Dissertationes Math, 2014, 497: 1-121
|
[16] |
Capri O N, Gutiérrez C E. Weighted inequalities for a vector-valued strong maximal function. Rocky Mountain J Math, 1988, 18(3): 565-570
|
[17] |
Ding Y, Han Y S, Lu G Z, Wu X F. Boundedness of singular integrals on multiparameter weighted Hardy spaces Hpw (Rn×Rm). Potential Anal, 2012, 37(1): 31-56
|
[18] |
Fefferman R. Ap weights and singular integrals. Amer J Math, 1988, 110(5): 975-987
|
[19] |
Han Y S, Li J, Ward L A. Hardy space theory on spaces of homogeneous type via orthonormal wavelet bases. Appl Comput Harmon Anal, 2018, 45(1): 120-169
|
[20] |
Huang Y H, Fang Q Q, Tao X X, Zheng T T. A new approach for Hardy spaces on Euclidean space. J Geom Anal, 2024, 34(10): Article 304
|
[21] |
Müller D, Ricci F, Stein E M. Marcinkiewicz multipliers and multi-parameter structure on Heisenberg (-type) groups, I. Invent Math, 1995, 119(2): 119-233
|
[22] |
Müller D, Ricci F, Stein E M. Marcinkiewicz multipliers and multi-parameter strucure on Heisenberg (-type) groups, II. Math Z, 1996, 221(2): 267-291
|
[23] |
Zheng T T, Xiao Y M, Tao X X. Weighted estimates for product singular integral operatorsin Journe's class on RD-spaces. Forum Math, 2025, 37(2): 593-627
|
[24] |
Lu G Z, Zhu Y P. Singular integrals and weighted Triebel-Lizorkin and Besov spaces of arbitrary number of parameters. Acta Math Sin Engl Ser, 2013, 29(1): 39-52
|
[25] |
Auscher P, Hytönen T. Addendum to orthonormal bases of regular wavelets in spaces of homogeneous type. Appl Comput Harmon Anal, 2013, 34(2): 266-296
|
[26] |
Hytönen T, Kairema A. Systems of dyadic cubes in a doubling metric space. Colloq Math, 2012, 126(1): 1-33
|
[27] |
Wang F, Han Y S, He Z Y, Yang D C. Besov and Triebel-Lizorkin spaces on spaces of homogeneous type with applications to boundedness of Calderón-Zygmund operators. Dissertationes Math, 2021, 565: 1-113
|