Acta mathematica scientia,Series A ›› 2024, Vol. 44 ›› Issue (6): 1595-1606.
Previous Articles Next Articles
Lian Yuan1,*(),Liu Hongjun2(),Zhu Bin3()
Received:
2024-02-21
Revised:
2024-06-11
Online:
2024-12-26
Published:
2024-11-22
Supported by:
CLC Number:
Lian Yuan, Liu Hongjun, Zhu Bin. Weyl Mean Equicontinuity and Weyl Mean Sensitivity of A Random Dynamical System[J].Acta mathematica scientia,Series A, 2024, 44(6): 1595-1606.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | Arnold L. Random Dynamical Systems. Berlin: Springer-Verlag, 1998 |
[2] | Akin E, Auslander J, Berg K. When is a transitive map chaotic? Convergence in Ergodic Theory and Probability. Berlin: De Gruyter, 1996: 25-40 |
[3] | Auslander J, Yorke J A. Interval maps, factors of maps, and chaos. Tohoku Math J, 1980, 32(2): 177-188 |
[4] | Baake M, Lenz D, Moody R V. Charaucterization of model sets by dynamical systems. Ergos Th and Dynam sys, 2007, 27(2): 341-382 |
[5] | Cong N D. Topological Dynamics of Random Dynamical Systems. Oxford: Oxford Univ Press, 1997 |
[6] | Crauel H. Random Probability Measures on Polish Spaces. London: Taylor and Francis, 2002 |
[7] | Danilenko A I. Entropy theory from the orbital point of view. Monatsh Math, 2001, 134(2): 121-141 |
[8] | Dooley A, Zhang G. Local Entropy Theory of a Random Dynamical System. Providence RI: Amer Math Soc, 2015 |
[9] | Fuhrmann G, Gröger M, Lenz D. The structure of mean equicontinuous group actions. Israel Journal of Mathematics, 2022, 247: 75-123 |
[10] | García-Ramos F. Weak forms of topological and measure theoretical equicontinuity: relationships with discrete spectrum and sequence entropy. Ergos Th and Dynam Sys, 2017, 37(4): 1211-1237 |
[11] | Glasner S, Maon D. Rigidity in topological dynamics. Ergods Th and Dynam Sys, 1989, 9: 309-320 |
[12] | Glasner E, Weiss B. Sensitive dependence on initial conditions. Nonlinearity, 1993, 6(6): 1067-1075 |
[13] | Kakutani S. Random ergodic theorems and Markoff processes with a stable distribution. Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability. California: University of California Press, 1951, 247-261 |
[14] | Kifer Y. Ergodic Theory of Random Transformations. Boston: Birkhäuser,986 |
[15] | Kerr D, Li H. Ergodic Theory:Independence and Dichotomies. Switzerland: Springer, 2016 |
[16] | Liu P D, Qian M. Smooth Ergodic Theory of Random Dynamical Systems. Berlin: Springer-Verlag, 1995 |
[17] | Li J, Tu S, Ye X. Mean equicontinuity and mean sensitivity. Ergod Th Dynam Sys, 2015, 35(8): 2587-2612 |
[18] | Ledrappier F, Walters P. A relativized variational principle for continuous transformations. J London Math Soc, 1977, 16(2): 568-576 |
[19] | Ornstein D S, Weiss B. Entropy and isomorphism theorems for actions of amenable groups. J Analyse Math, 1987, 48: 1-141 |
[20] | Rudolph D J, Weiss B. Entropy and mixing for amenable group actions. Ann of Math, 2000, 151(3): 1119-1150 |
[21] | Rokholin V A. On the fundamental ideas of measure theory. Matematicheskii Sbornik, 1949, 67(1): 107-150 |
[22] | Rokholin V A. Selected topics from the metric theory of dynamical systems. Uspekhi Matematicheskikh Nauk, 1949, 4(1): 57-128 |
[23] | Schenk-Hoppé K R. Random dynamical systems in economics. Stochastics Dynamics, 2001, 1(1): 63-83 |
[24] | Thouvenot J P. Quelques properties des systemes dynamiques que se decomposent en un produit de deux systemes dont l'un est un schema de Bernoulli. Israel J Math, 1975, 21: 177-207 |
[25] | Ulam S M, Von Neumann J. Random ergodic theorems. Bull Amer Math Soc, 1945, 51:660 |
[26] | Weiss B. Actions of Amenable Groups, Topics in Dynamics and Ergodic Theory. Cambridge: Cambridge Univ Press, 2003, 310: 226-262 |
[27] | Zhu B, Huang X, Lian Y. The systems with almost Banach mean equicontinuity for Abelian group actions. Acta Mathematica Scientia, 2022, 42(3): 919-940 |
[1] | Zhang Yiran, Li Dingshi. Invariant Measure of Impulsive Fractional Lattice System [J]. Acta mathematica scientia,Series A, 2024, 44(6): 1563-1576. |
[2] | Xiao Jianrong. Robust Accessible Hyperbolic Repelling Sets [J]. Acta mathematica scientia,Series A, 2024, 44(1): 1-11. |
[3] | Fu Qinhong, Xiong Lianglin, Zhang Haiyang, Qin Ya, Quan Shenai. Sliding Mode Control for Time-Varying Delay Systems with Semi-Markov Jump [J]. Acta mathematica scientia,Series A, 2023, 43(2): 549-562. |
[4] |
Zhu Kaixuan, Sun Tao, Xie Yongqin.
Global Attractors for a Class of Reaction-Diffusion Equations with Distribution Derivatives in |
[5] | Kaixuan Zhu,Yongqin Xie,Xinyu Mei,Xijun Deng. Uniform Attractors for the Sup-Cubic Weakly Damped Wave Equations with Delays [J]. Acta mathematica scientia,Series A, 2022, 42(1): 86-102. |
[6] | Yue Sun,Daoxiang Zhang,Wen Zhou. The Influence of Fear Effect on Stability Interval of Reaction-Diffusion Predator-Prey System with Time Delay [J]. Acta mathematica scientia,Series A, 2021, 41(6): 1980-1992. |
[7] | Xiaofang Yang,Xiao Tang,Tianxiu Lu. The Collectively Sensitivity and Accessible in Non-Autonomous Composite Systems [J]. Acta mathematica scientia,Series A, 2021, 41(5): 1545-1554. |
[8] | Kaixuan Zhu,Yongqin Xie,Feng Zhou,Xijun Deng. Pullback Attractors for the Complex Ginzburg-Landau Equations with Delays [J]. Acta mathematica scientia,Series A, 2020, 40(5): 1341-1353. |
[9] | Lan Xu. Another Proof of Variational Principle for Sub-Additive Potentials [J]. Acta mathematica scientia,Series A, 2020, 40(4): 977-982. |
[10] | Yi Shao,Chunxiang A. Limit Cycles Bifurcations of Liénard System of Degree Four with One Nilpotent Cusp [J]. Acta mathematica scientia,Series A, 2020, 40(3): 619-630. |
[11] | Zhiheng Yu,Xiaobing Gong. Polynomial Solutions of the Polynomial-Like Iterative Equation [J]. Acta mathematica scientia,Series A, 2019, 39(6): 1352-1364. |
[12] | Qinghua Zhou,Li Wan,Jie Liu. Global Attracting Set for Neutral Type Hopfield Neural Networks with Time-Varying Delays [J]. Acta mathematica scientia,Series A, 2019, 39(4): 823-831. |
[13] | Chao Yang,Runjie Li. Existence and Stability of Periodic Solution for a Lasota-Wazewska Model with Discontinuous Harvesting [J]. Acta mathematica scientia,Series A, 2019, 39(4): 785-796. |
[14] | Miaomiao Chen,Yongzhen Pei,Xiyin Liang,Yunfei Lv. The Optimal Strategies of SI Pest Control Models with Impulsive Intervention [J]. Acta mathematica scientia,Series A, 2019, 39(3): 689-704. |
[15] | Chunming Zhang,Dongyao Chen. Propagation of Computer Virus on Generalized Networks [J]. Acta mathematica scientia,Series A, 2019, 39(2): 402-416. |
|