[1] |
Anderson C W, Turkman K F. The joint limiting distribution of sums and maxima of stationary sequences. Journal of Applied Probability, 1991, 28(1): 33-34
doi: 10.2307/3214738
|
[2] |
Anderson C W, Turkman K F. Limiting joint distributions of sums and maxima in a statistical context. Theory of Probability and its Applications, 1993, 37(2): 314-316
|
[3] |
Anderson C W, Turkman K F. Sums and maxima of stationary sequences with heavy tailed distributions. Sankhya Series A, 1995, 57: 1-10
|
[4] |
Berman S M. Limit theorems for the maximum term in stationary sequences. The Annals of Mathematical Statistics, 1964, 35(2): 502-516
|
[5] |
Biondi F, Kozubowski T J, Panorska A K. A new model for quantifying climate episodes. International Journal of Climatology, 2005, 25(9): 1253-1264
|
[6] |
Buitendag S, Beirlant J, De Wet T. Confidence intervals for extreme Pareto-type quantiles. Scandinavian Journal of Statistics, 2020, 47(1): 36-55
|
[7] |
Chow T L, Teugels J L. The sum and the maximum of iid random variables. North-Holland: Amsterdam, 1978, 45: 394-403
|
[8] |
French J P, Davis R A. The asymptotic distribution of the maxima of a Gaussian random field on a lattice. Extremes, 2013, 16: 1-26
|
[9] |
Hashorva E, Peng L, Weng Z. Maxima of a triangular array of multivariate Gaussian sequence. Statistics and Probability Letters, 2015, 103: 62-72
|
[10] |
Hashorva E, Weng Z. Limit laws for extremes of dependent stationary Gaussian arrays. Statistics and Probability Letters, 2013, 83(1): 320-330
|
[11] |
Hill B M. A simple general approach to inference about the tail of a distribution. The Annals of Statistics, 1975, 3: 1163-1174
|
[12] |
Ho H C, Hsing T. On the asymptotic joint distribution of the sum and maximum of stationary normal random variables. Journal of Applied Probability, 1996, 33(1): 138-145
|
[13] |
Ho H C, McCormick W P. Asymptotic distribution of sum and maximum for strongly dependent Gaussian processes. Journal of Applied Probability, 1999, 36: 1031-1044
|
[14] |
Hsing T, Hüsler J, Reiss R D. The extremes of a trangular array of normal random variables. The Annals of Applied Probability, 1996, 6(2): 671-686
|
[15] |
Hu A, Peng Z, Qi Y. Joint behavior of point process of exceedances and partial sum from a Gaussian sequence. Metrika, 2009, 70(3): 279-295
|
[16] |
James B, James K, Qi Y. Limit distribution of the sum and maximum from multivariate Gaussian sequences. Journal of Multivariate Analysis, 2007, 98(3): 517-532
|
[17] |
Kallenberge O. Random Measures. Berlin: Akademie-Verlag, 1976
|
[18] |
Kozubowski T J, Panorska A K. A mixed bivariate distribution with exponential and geometric marginals. Journal of Statistical Planning and Inference, 2005, 134(2): 501-520
|
[19] |
Kozubowski T J, Panorska A K, Qeadan F. A new multivariate model involving geometric sums and maxima of exponentials. Journal of Statistical Planning and Inference, 2011, 141(7): 2353-2367
|
[20] |
Leadbetter M R. Extremes and local dependence in stationary sequences. Zeitschrift Für Wahrscheinlichkeitstheorie Und Verwandte Gebiete, 1983, 65(2): 291-306
|
[21] |
Leadbetter M R, Lindgren G, Rootzen H. Extremes and Related Properties of Stationary Sequences and Processes. Berlin: Springer-Verlag, 1983
|
[22] |
Ling C. Extremes of stationary random fields on a lattice. Extremes, 2019, 22: 391-411
doi: 10.1007/s10687-019-00349-z
|
[23] |
McCormick W P, Qi Y. Asymptotic distribution for the sum and maximum of Gaussian processes. Journal of Applied Probability, 2000, 37(4): 958-971
|
[24] |
Mittal Y, Ylvisaker D. Limit distribution for the maximum of stationary Gaussian processes. Stochastic Processes and their Applications, 1975, 3(1): 1-18
|
[25] |
O'Brien G L. Extreme values for stationary and Markov sequences. Annals of Probability, 1987, 15(1): 281-291
|
[26] |
Peng Z, Nadarajah S. On the joint limiting distribution of sums and maxima of stationary normal sequence. Theory of Probability and Its Applications, 2003, 47(4): 706-709
|
[27] |
谭中权, 彭作祥. 部分和乘积的几乎处处中心极限定理. 数学物理学报, 2009, 29A(6): 1689-1698
|
|
Tan Z Q, Peng Z X. Almost sure central limit theorem for the product of partial sums. Acta Math Sci, 2009, 29A(6): 1689-1698
|