Acta mathematica scientia,Series A ›› 2024, Vol. 44 ›› Issue (5): 1283-1301.
Previous Articles Next Articles
Dai Xuefei,Yu Yikang,Niu Jing*()
Received:
2023-08-07
Revised:
2024-04-16
Online:
2024-10-26
Published:
2024-10-16
Supported by:
CLC Number:
Dai Xuefei, Yu Yikang, Niu Jing. Numerical Algorithm for Volterra Type Integral Equation of the Second Kind[J].Acta mathematica scientia,Series A, 2024, 44(5): 1283-1301.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | Salon S, Chari M. Numerical Methods in Electromagnetism. Beijing: Academic Press, 1999 |
[2] |
Cheng Z. Quantum effects of thermal radiation in a Kerr nonlinear blackbody. J Opt Soc Amer B Opt Phys, 2002, 19(7): 1692-1705
doi: 10.1364/JOSAB.19.001692 |
[3] | Chew W C, Tong M S, Hu B. Integral Equation Methods for Electromagnetic and Elastic Waves. Berlin: Springer Nature, 2022 |
[4] | Bloom F. Asymptotic bounds for solutions to a system of damped integro-differential equations of electromagnetic theory. J Math Anal Appl, 1980, 73(2): 524-542 |
[5] | Wazwaz A M. Linear and Nonlinear Integral Equations. Berlin: Springer, 2011 |
[6] | Tang Q, Waxman D. An integral equation describing an asexual population in a changing environment. Nonlinear Anal, 2003, 53(5): 683-699 |
[7] | Corduneanu C. Integral Equations and Applications. Cambridge: Cambridge University, Press, 1991 |
[8] | Schiavone P, Constanda C, Mioduchowski A. Integral Methods in Science and Engineering. Boston: Birkhäuser, 2012 |
[9] | Abaoub A E, Shkheam A S, Zali S M. The Adomian decomposition method of Volterra integral equation of second kind. Am J Appl Math, 2018, 6(4): 142-148 |
[10] | 曾志刚. Volterra 积分微分方程的稳定性. 数学物理学报, 2001, 21A(1): 48-54 |
Zeng Z G. Stability of Volterra integro differential equations. Acta Math Sci, 2001, 21A(1): 48-54 | |
[11] | 袁海龙, 李艳玲. 一类具有 Lotka-Volterra 竞争模型共存解的存在性与稳定性. 数学物理学报, 2017, 37A(1): 173-184 |
Yuan H L, Li Y L. The existence and stability of coexistence solutions of a kind of Lotka-Volterra competition model. Acta Math Sci, 2017, 37A(1): 173-184 | |
[12] | Chu Y M, Ullah S, Ali M, et al. Numerical investigation of Volterra integral equations of second kind using optimal homotopy asymptotic method. Appl Math Comput, 2022, 430: 127304 |
[13] | Khidir A A. A new numerical technique for solving Volterra integral equations using Chebyshev spectral method. Math Probl Eng, 2021, 2021: 1-11 |
[14] | Bulai I M, De Bonis M C, Laurita C, et al. MatLab Toolbox for the numerical solution of linear Volterra integral equations arising in metastatic tumor growth models. Dolomites Research Notes on Approximation, 2022, 15(2): 13-24 |
[15] | 冯立新, 杨晓旭. 解带有扰动数据的第一类 Volterra 积分方程的谱正则化方法. 数学物理学报, 2020, 40A(3): 650-661 |
Feng L X, Yang X X. Spectral regularization method for solving Volterra integral equation of the first kind with perturbed data. Acta Math Sci, 2020, 40A(3): 650-661 | |
[16] | Hesameddini E, Shahbazi M. A reliable algorithm based on the shifted orthonormal Bernstein polynomials for solving Volterra-Fredholm integral equations. Journal of Taibah University for Science, 2018, 12(4): 427-438 |
[17] | Varah J M. A spline least squares method for numerical parameter estimation in differential equations. SIAM J Sci Comput, 1982, 3(1): 28-46 |
[18] | Wang W X, Xu Y, Han X L, Gao M L, et al. A study of function-based wind profiles based on least squares method: A case in the suburbs of Hohho. Energy Reports, 2022, 8: 4303-4318 |
[19] | Rahman M H, Habib A. Impact of economic and noneconomic factors on inflow of remittances into bangladesh: Application of robust least squares method. Finance and Economics Review, 2021, 3(1): 51-62 |
[20] | 张晶, 余旌胡. 线性回归模型参数估计方法的分辨率. 数学物理学报, 2020, 40A(5): 1381-1392 |
Zhang J, Yu J H. Parameter resolution of estimation methods for linear regression models. Acta Math Sci, 2020, 40A(5): 1381-1392 | |
[21] | 马奕佳, 薛留根, 芦飞. 缺失数据下部分非线性变系数 EV 模型的统计推断. 数学物理学报, 2020, 40A(2): 460-474 |
Ma Y J, Xue L g, Lu F. Statistical inference in partially nonlinear varying-coefficient Errors-Variables models with missing responses. Acta Math Sci, 2020, 40A(2): 460-474 | |
[22] | 冯三营, 薛留根, 范承华. 非线性半参数回归模型中参数的经验似然置信域. 数学物理学报, 2009, 29A(5): 1338-1349 |
Feng S Y, Xue L G, Fan C H. Empirical likelihood confidence regions of the parameters in nonlinear semiparametric regression models. Acta math sci, 2009, 29A(5): 1338-1349 | |
[23] | Salehi R, Dehghan M. A generalized moving least square reproducing kernel method. J Comput Appl Math, 2013, 249: 120-132 |
[24] | Liu G, Han X, Lam K Y. A combined genetic algorithm and nonlinear least squares method for material characterization using elastic waves. Comput Methods Appl. Mech Engrg, 2002, 191(17/18): 1909-1921 |
[25] | Fonken J M, Ramaswamy K R, Paul M J. A scalable multi-step least squares method for network identification with unknown disturbance topology. Automatica, 2022, 141: 110295 |
[26] | Sun L X, Niu J, Hou J J. A high order convergence collocation method based on the reproducing kernel for general interface problems. Appl Math Lett, 2021, 112: 106718 |
[27] | Geng F Z, Cui M G. A reproducing kernel method for solving nonlocal fractional boundary value problems. Appl Math Lett, 2012, 25(5): 818-823 |
[28] | Li X Y, Wu B Y. Error estimation for the reproducing kernel method to solve linear boundary value problems. J Comput Appl Math, 2013, 243: 10-15 |
[29] | Wu B Y, Li X Y. Application of reproducing kernel method to third order three-point boundary value problems. Appl Math Comput, 2010, 217(7): 3425-3428 |
[30] | Niu J, Xu M Q, Lin Y Z, Xue Q. Numerical solution of nonlinear singular boundary value problems. J Comput Appl Math, 2018, 331: 42-51 |
[31] | Xu M Q, Tohidi E, Niu J, Fang Y Z. A new reproducing kernel-based collocation method with optimal convergence rate for some classes of BVPs. Appl Math Comput, 2022, 432: 127343 |
[32] | Al-Smadia M, Arqub O A, Shawagfeh N, Momanic S. Numerical investigations for systems of second-order periodic boundary value problems using reproducing kernel method. Appl Math Comput, 2016, 291: 137-148 |
[33] | Niu J, Jia Y T, Sun J D. A new piecewise reproducing kernel function algorithm for solving nonlinear Hamiltonian systems. Appl Math Lett, 2023, 136: 108451 |
[34] | Xu M Q, Niu J, Lin Y Z. An efficient method for fractional nonlinear differential equations by quasi-Newton's method and simplified reproducing kernel method. Math Methods Appl Sci, 2018, 41(1): 5-14 |
[35] | Niu J, Sun L X, Xu M Q, Hou J J. A reproducing kernel method for solving heat conduction equations with delay. Appl Math Lett, 2020, 100: 106036 |
[36] | Niu J, Xu M, Yao G M. An efficient reproducing kernel method for solving the Allen-Cahn equation. Appl Math Lett, 2019, 89: 78-84 |
[37] | 吴勃英, 林迎珍. 应用型再生核空间. 北京: 科学出版社, 2012 |
Wu B Y, Lin Y Z. Applied Regenerative Nuclear Space. Beijing: Science Press, 2012 | |
[38] | Babolian E, Davari A. Numerical implementation of Adomian decomposition method for linear Volterra integral equations of the second kind. Appl Math Comput, 2005, 165(1): 223-27 |
[39] | Dalal A M. The modified decompositon method for solving Volterra integral equations of the second kind using Maple. Int J GEOMATE, 2019, 17(62): 23-28 |
[40] | Saad S, Mushtaq A K B. Some new applications of Elzaki transform for solution of linear Volterra type integral equations. J Appl Math Phys, 2019, 7(8): 1877-1892 |
[41] | Ahmet A. Application of the Bernstein polynomials for solving Volterra integral equations with convolution kernels. Faculty of Sciences and Mathematics, 2016, 30(4): 1045-1052 |
[42] | Singh I, Kumar S. Haar wavelet method for some nonlinear Volterra integral equations of the first kind. J Comput Appl Math, 2016, 292: 541-552 |
[43] | Babolian E, Shahsavarani A. Numerical solution of nonlinear Fredholm and Volterra integral equations of the second kind using Haar wavelets and collocation method. J Sci Tarbiat Moallem University, 2007, 7: 213-222 |
[44] | Mahmoudi Y. Wavelet Galerkin method for numerical solution of nonlinear integral equation. Appl Math Comput, 2005, 167: 1119-1129 |
[45] | Ishola C Y, Taiwo O A, Adedokun K A, et al. Solution of nonlinear Volterra integral equations by Chebyshev collocation approximation method. Pacific Journal of Science and Technology, 2022, 23(1): 34-39 |
|