Acta mathematica scientia,Series A ›› 2024, Vol. 44 ›› Issue (4): 1066-1079.
Previous Articles Next Articles
Jian Jinbao,Dai Yu,Yin Jianghua*()
Received:
2023-10-05
Revised:
2024-02-01
Online:
2024-08-26
Published:
2024-07-26
Supported by:
CLC Number:
Jian Jinbao, Dai Yu, Yin Jianghua. An Inertial Conjugate Gradient Projection Method for the Split Feasibility Problem[J].Acta mathematica scientia,Series A, 2024, 44(4): 1066-1079.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | Censor Y, Elfving T. A multiprojection algorithm using Bregman projections in a product space. Numer Algorithms, 1994, 8: 221-239 |
[2] | López G, Martín-Márquez V, Wang F H, et al. Solving the split feasibility problem without prior knowledge of matrix norms. Inverse Probl, 2012, 28(8): 085004 |
[3] | Qu B, Xiu N H. A note on the CQ algorithm for the split feasibility problem. Inverse Probl, 2005, 21(5): 1655-1665 |
[4] | Byrne C. A unified treatment of some iterative algorithms in signal processing and image reconstruction. Inverse Probl, 2003, 20(1): 103-120 |
[5] | Aubin J P. Optima and Eauilibria: An Introduction to Nonliner Analysis. Berlin: Springer-Verlag, 1993 |
[6] | Byrne C. Iterative oblique projection onto convex sets and the split feasibility problem. Inverse Probl, 2002, 18(2): 441-453 |
[7] | Yang Q Z. On variable-step relaxed projection algorithm for variational inequalities. J Math Anal Appl, 2005, 302(1): 166-179 |
[8] | Zhao J L, Yang Q Z. Self-adaptive projection methods for the multiple-sets split feasibility problem. Inverse Probl, 2011, 27(3): 035009 |
[9] | Wang F H, Xu H K. Cyclic algorithms for split feasibility problems in Hilbert spaces. Nonlinear Anal: Theory Methods Appl, 2011, 74(12): 4105-4111 |
[10] | Qin X L, Wang L. A fixed point method for solving a split feasibility problem in Hilbert spaces. Rev R Acad Cienc Exactas Fís Nat Ser A Mat RACSAM, 2019, 113: 315-325 |
[11] | Dong Q L, He S N, Rassias M T. General splitting methods with linearization for the split feasibility problem. J Glob Optim, 2021, 79: 813-836 |
[12] | Dong Q L, Liu L L, Rassias M T. The strong convergence of Douglas-Rachford methods for the split feasibility problem// Parasidis I N, Providas E, Rassias M T. Mathematical Analysis in Interdisciplinary Research. Switzerland: Springer International Publishing, 2022: 213-233 |
[13] |
刘洋, 薛中会, 王永全, 等. 分裂可行性问题的外推加速线性交替方向乘子法及其全局收敛性. 计算机科学, 2023, 50(6): 261-265
doi: 10.11896/jsjkx.230100009 |
Liu Y, Xue Z H, Wang Y Q, et al. Extrapolation accelerated linear alternating direction multiplier method for split feasibility problems and its global convergence. Computer Science, 2023, 50(6): 261-265
doi: 10.11896/jsjkx.230100009 |
|
[14] | Yu Z S, Lin J, Sun J, et al. Spectral gradient projection method for monotone nonlinear equations with convex constraints. Appl Numer Math, 2009, 59(10): 2416-2423 |
[15] |
尹江华, 简金宝, 江羡珍. 凸约束非光滑方程组基于自适应线搜索的谱梯度投影算法. 计算数学, 2020, 42(4): 457-471
doi: 10.12286/jssx.2020.4.457 |
Yin J H, Jian J B, Jiang X Z. A spectral gradient projection algorithm for convex constrained nonsmooth equations based on an adaptive line search. Math Numer Sin, 2020, 42(4): 457-471
doi: 10.12286/jssx.2020.4.457 |
|
[16] | Sun M, Liu J. New hybrid conjugate gradient projection method for the convex constrained equations. Calcolo, 2016, 53: 399-411 |
[17] | Ding Y Y, Xiao Y H, Li J W. A class of conjugate gradient methods for convex constrained monotone equations. Optimization, 2017, 66(12): 2309-2328 |
[18] | Sun M, Liu J. Three derivative-free projection methods for nonlinear equations with convex constraints. J Appl Math Comput, 2015, 47: 265-276 |
[19] | Liu J K, Li S J. Multivariate spectral DY-type projection method for convex constrained nonlinear monotone equations. J Ind Manag Optim, 2017, 13(1): 283-295 |
[20] | Gao P T, He C J, Liu Y. An adaptive family of projection methods for constrained monotone nonlinear equations with applications. Appl Math Comput, 2019, 359: 1-16 |
[21] | Ibrahim A H, Kumam P, Kumam W. A family of derivative-free conjugate gradient methods for constrained nonlinear equations and image restoration. IEEE Access, 2020, 8: 162714-162729 |
[22] | Yin J H, Jian J B, Jiang X Z, et al. A hybrid three-term conjugate gradient projection method for constrained nonlinear monotone equations with applications. Numer Algorithms, 2021, 88: 389-418 |
[23] | Polyak B T. Some methods of speeding up the convergence of iteration methods. USSR Comput Math Math Phys, 1964, 4(5): 1-17 |
[24] | Sahu D R, Cho Y J, Dong Q L, et al. Inertial relaxed CQ algorithms for solving a split feasibility problem in Hilbert spaces. Numer Algorithms, 2021, 87: 1075-1095 |
[25] | Suantai S, Panyanak B, Kesornprom S, et al. Inertial projection and contraction methods for split feasibility problem applied to compressed sensing and image restoration. Optim Lett, 2022, 16: 1725-1744 |
[26] | Jian J B, Yin J H, Tang C M, et al. A family of inertial derivative-free projection methods for constrained nonlinear pseudo-monotone equations with applications. Comput Appl Math, 2022, 41(7): Article 309 |
[27] | Jiang X Z, Ye X M, Huang Z F, et al. A family of hybrid conjugate gradient method with restart procedure for unconstrained optimizations and image restorations. Comput Oper Res, 2023, 159: 106341 |
[28] | Zarantonello E H. Projections on convex sets in Hilbert space and spectral theory// Zarantonello E H. Contributions to Nonlinear Functional Analysis. New York: Academic Press, 1971: 237-424 |
[29] | Polyak B T. Introduction to Optimization. New York: Optimization Software Inc, 1987 |
[30] | Alves M M, Eckstein J, Geremia M, et al. Relative-error inertial-relaxed inexact versions of Douglas-Rachford and ADMM splitting algorithms. Comput Optim Appl, 2020, 75: 389-422 |
[31] | Ma G D, Jin J C, Jian J B, et al. A modified inertial three-term conjugate gradient projection method for constrained nonlinear equations with applications in compressed sensing. Numer Algorithms, 2023, 92(3): 1621-1653 |
[32] | Bauschke H H, Combettes P L. Correction to:Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Switzerland: Springer International Publishing, 2017 |
[33] | 尹江华. 非线性方程组投影型算法与非精确 Levenberg-Marquardt 型算法研究及其应用. 呼和浩特: 内蒙古大学, 2021 |
Yin J H. Research on projection type algorithms and intexact Levenberg-Marquardt type algorithms for nonlinear equations with applitions. Hohhot: Inner Mongolia University, 2021 | |
[34] | Yang Q Z. The relaxed CQ algorithm solving the split feasibility problem. Inverse Probl, 2004, 20(4): 1261-1266 |
[35] | Shehu Y, Gibali A. New inertial relaxed method for solving split feasibilities. Optim Lett, 2020, 15: 2109-2126 |
[1] | Yu Ting, Dong Ying. The Convergence Rate of the Fast Signal Diffusion Limit for a Three-Dimensional Keller-Segel-Stokes System [J]. Acta mathematica scientia,Series A, 2024, 44(4): 925-945. |
[2] | Ma Xiaojun, Chen Fu, Jia Zhifu. Research on a Strong Convergence Theorem for Proximal Split Feasibility Problems with Non-Lipschitz Stepsizes [J]. Acta mathematica scientia,Series A, 2024, 44(4): 1052-1065. |
[3] | Cai Yu, Zhou Guanghui. Global Convergence of a WYL Type Spectral Conjugate Gradient Method [J]. Acta mathematica scientia,Series A, 2024, 44(1): 173-184. |
[4] | Chen Jianhua, Peng Jianwen. Research on the Convergence Rate of Bregman ADMM for Nonconvex Multiblock Optimization [J]. Acta mathematica scientia,Series A, 2024, 44(1): 195-208. |
[5] | Jian Jinbao,Lin Hui,Ma Guodong. A Splitting Sequence Quadratic Programming Algorithm for the Large-Scale Nonconvex Nonseparable Optimization Problems [J]. Acta mathematica scientia,Series A, 2023, 43(4): 1284-1296. |
[6] | Liu Pengjie, Wu Yanqiang, Shao Feng, Zhang Yan, Shao Hu. Two Extended HS-type Conjugate Gradient Methods with Restart Directions [J]. Acta mathematica scientia,Series A, 2023, 43(2): 570-580. |
[7] | Lin Jie, Wang Tianyi. Well-Posedness and Convergence Rates of Three-Dimensional Incompressible Euler Flows in Axisymmetric Nozzles with Symmetric Body [J]. Acta mathematica scientia,Series A, 2023, 43(1): 219-237. |
[8] | Ning Zhang,Jinkui Liu. Spectral LS-type Projection Algorithm for Solving Nonlinear Pseudo-Monotone Equations [J]. Acta mathematica scientia,Series A, 2022, 42(6): 1886-1897. |
[9] | Tingwei Pan,Suxiang He. The Greedy Simplex Algorithm for Double Sparsity Constrained Optimization Problems [J]. Acta mathematica scientia,Series A, 2022, 42(3): 920-933. |
[10] | Gonglin Yuan,Yulun Wu,Hongtruong Pham. A Modified HS-DY-Type Method with Nonmonotone Line Search for Image Restoration and Unconstrained Optimization Problems [J]. Acta mathematica scientia,Series A, 2022, 42(2): 605-620. |
[11] | Zhibin Zhu,Yuanhang Geng. A Modified Three-Term WYL Conjugate Gradient Method [J]. Acta mathematica scientia,Series A, 2021, 41(6): 1871-1879. |
[12] | Yiyuan Cheng,Xingxing Zha,Yongquan Zhang. On Stochastic Accelerated Gradient with Convergence Rate of Regression Learning [J]. Acta mathematica scientia,Series A, 2021, 41(5): 1574-1584. |
[13] | Guodong Ma. Improved PRP and HS Conjugate Gradient Methods with the Strong Wolfe Line Search [J]. Acta mathematica scientia,Series A, 2021, 41(3): 837-847. |
[14] | Xiaoni Chi,Rong Zeng,Sanyang Liu,Zhibin Zhu. A Regularized Nonmonotone Inexact Smoothing Newton Algorithm for Weighted Symmetric Cone Complementarity Problems [J]. Acta mathematica scientia,Series A, 2021, 41(2): 507-522. |
[15] | Juan Wang,Jie Zhao. Homogenization of the Oscillating Robin Mixed Boundary Value Problems [J]. Acta mathematica scientia,Series A, 2021, 41(1): 81-90. |
|